Algorithms and Bioinformatics

Part II — Comparative Genomics

II.3 — More on FPT Algorithms
(some of them in Bioinformatics)

Laurent Bulteau
Dynamic Programming

- Not specific to FPT, but often used in this context
- aka. “table-filling”
- Enumerate polynomialy many subproblems, solve each one by combining results from other (sub-)subproblems
- Other point of view: write a simple recursive program, use a cache to store and re-use intermediate results
Dynamic Programming

Maximum Agreement Subtree

Input: Two trees T_1, T_2, with leaf labels

Output: Subtrees T'_1 of T_1 and T'_2 of T_2, with max. number of leaves, such that $T'_1 = T'_2$ up to degree-2 vertex contraction.

D.P. table:

$\text{MAS}(u, v) = \text{size of Maximum Agreement Subtree of } T_1[u], T_2[v]$
Dynamic Programming

Maximum Agreement Subtree

Input: Two trees T_1, T_2, with leaf labels
Output: Subtrees T'_1 of T_1 and T'_2 of T_2, with max. number of leaves, such that $T'_1 = T'_2$ up to degree-2 vertex contraction.

▷ D.P. table: $MAS(u, v) =$ size of Maximum Agreement Subtree of $T_1[u]$, $T_2[v]$
Dynamic Programming

Maximum Agreement Subtree

| **Input:** | Two trees T_1, T_2, with leaf labels |
| **Output:** | Subtrees T'_1 of T_1 and T'_2 of T_2, with max. number of leaves, such that $T'_1 = T'_2$ up to degree-2 vertex contraction. |

- D.P. table: $MAS(u, v) = \text{size of Maximum Agreement Subtree of } T_1[u], T_2[v]$

Color Coding

- General use: find size-\(k\) subsets with specific properties in a large set of elements
- Randomized technique, can be de-randomized
- Best-known use case: find a length-\(k\) simple path in a graph
Minimum Weight Path

Input: A (directed) graph $G = (V, E)$, edge weights $w : E \to \mathbb{N}$, integer k

Param.: k

Output: A length-k simple path of G with maximum weight

- NP-hard...
- Motivation: find *signaling pathways* in protein-protein interaction networks
Color Coding

PPI Network

A Protein-Protein Interaction Network. \(^1\)

\(^1\) credits: Fan et al., Nature Scientific Reports 8:351, 2018
Extra knowledge can help: what if you know how to split the graph into k classes (*colors*), and know that a solution must use exactly one vertex in each class?
Color Coding
Principle

- Extra knowledge can help: what if you know how to split the graph into k classes (colors), and know that a solution must use exactly one vertex in each class?
- Plus: you know in which order the colors are visited!
Extra knowledge can help: what if you know how to split the graph into k classes (colors), and know that a solution must use exactly one vertex in each class?

Plus: you know in which order the colors are visited!

Exactly how we get this information we shall see later: for now just assume we know this.
Color Coding

With color order
Color Coding
With color order

order: black blue red yellow
Color Coding
With color order

order: ● ○ ▲ ▼
Color Coding
With color order
Color Coding

With color order
Dynamic Programming with color order

Dynamic programming table

For each $u \in V$, what is the maximum weight of a color-consistent path up to u? \(\rightarrow W[u] \) (n entries)

Filling the table

If u has color-rank i,

$$W[u] = \max_{v \text{ of rank } i-1} (W[v] + w(v \rightarrow u))$$

Border cases:

$$W[u] = 0 \text{ if } u \text{ has rank } 0$$
Color Coding

Dynamic Programming without color order

<table>
<thead>
<tr>
<th>Dynamic programming table</th>
</tr>
</thead>
<tbody>
<tr>
<td>For each $u \in V$, and each subset $X \subseteq [k]$ of colors, what is the maximum weight of a path ending in u using once each color in X? $\rightarrow W'[u, X]$ ($2^k n$ entries)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Filling the table</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W'[u, X] = \max_v W'[v, X\setminus] + w(v \rightarrow u)$</td>
</tr>
<tr>
<td>Border cases:</td>
</tr>
<tr>
<td>$W'[u, X] = 0$ if $X = {\text{col}(u)}$</td>
</tr>
<tr>
<td>Running time: $O(2^k n^2)$</td>
</tr>
</tbody>
</table>
Color Coding
Without color order
Color Coding

Without color order
Color Coding

How do we pick colors?

Randomly!

Number of colorings of k vertices with k colors: k^k

Number of colorful colorings of k vertices with k colors: $k!$

Probability to be colorful on the solution: $\frac{k!}{k^k} \approx e^{-k}$

Number of tries to get constant probability: $\approx e^k$

Key point: this value does not depend on n

Randomized FPT algorithm

• Draw C^e_k random colorings of the graph.
• For each one, run the dynamic programming algorithm.

⇒ Running time $O(e^k^2 k n^2)$ (or $O(k^k n^2)$).
Color Coding

How do we pick colors?

- Randomly!
Color Coding
How do we pick colors?

- Randomly!
- Number of colorings of k vertices with k colors: k^k
Color Coding
How do we pick colors?

- Randomly!
- Number of colorings of k vertices with k colors: k^k
- Number of \textit{colorful} colorings of k vertices with k colors: $k!$
Color Coding
How do we pick colors?

- Randomly!
- Number of colorings of \(k \) vertices with \(k \) colors: \(k^k \)
- Number of \textit{colorful} colorings of \(k \) vertices with \(k \) colors: \(k! \)
- Probability to be colorful on the solution: \(\frac{k!}{k^k} \sim e^{-k} \)
Color Coding
How do we pick colors?

- Randomly!
- Number of colorings of k vertices with k colors: k^k
- Number of colorful colorings of k vertices with k colors: $k!$
- Probability to be colorful on the solution: $\frac{k!}{k^k} \sim e^{-k}$
- Number of tries to get constant probability: $\sim e^k$
Color Coding

How do we pick colors?

- Randomly!
- Number of colorings of k vertices with k colors: k^k
- Number of colorful colorings of k vertices with k colors: $k!$
- Probability to be colorful on the solution: $\frac{k!}{k^k} \sim e^{-k}$
- Number of tries to get constant probability: $\sim e^k$
- Key point: this value does not depend on n
Color Coding

How do we pick colors?

- Randomly!
- Number of colorings of k vertices with k colors: k^k
- Number of colorful colorings of k vertices with k colors: $k!$
- Probability to be colorful on the solution: $\frac{k!}{k^k} \simeq e^{-k}$
- Number of tries to get constant probability: $\simeq e^k$
- Key point: this value does not depend on n

Randomized FPT algorithm

- Draw $C.e^k$ random colorings of the graph.
- For each one, run the dynamic programming algorithm.

\Rightarrow Running time $O(e^k2^k n^2)$.
Color Coding

How do we pick colors?

- Randomly!
- Number of colorings of k vertices with k colors: k^k
- Number of colorful colorings of k vertices with k colors: $k!$
- Probability to be colorful on the solution: $\frac{k!}{k^k} \sim e^{-k}$
- Number of tries to get constant probability: $\sim e^k$
- Key point: this value does not depend on n

Randomized FPT algorithm

- Draw $C.e^k$ random colorings of the graph. (enumerate $k!$ relative orders on the colors)
- For each one, run the dynamic programming algorithm.

\Rightarrow Running time $O(e^k 2^k n^2)$.
Color Coding
How do we pick colors?

▶ Randomly!
▶ Number of colorings of k vertices with k colors: k^k
▶ Number of colorful colorings of k vertices with k colors: $k!$
▶ Probability to be colorful on the solution: $\frac{k!}{k^k} \approx e^{-k}$
▶ Number of tries to get constant probability: $\approx e^k$
▶ Key point: this value does not depend on n

Randomized FPT algorithm

• Draw $C\cdot e^k$ random colorings of the graph. (enumerate $k!$ relative orders on the colors)
• For each one, run the dynamic programming algorithm.

⇒ Running time $O(e^k2^k n^2)$ (or $O(k^k n))$.
Color Coding

How do we pick colors deterministically?

- **Smart** enumeration of some colorings:
Color Coding
How do we pick colors deterministically?

- **Smart** enumeration of some colorings:
 - Any size-k subset of V is separated at least once into k colors.
Color Coding
How do we pick colors deterministically?

- **Smart** enumeration of some colorings:
 - Any size-\(k\) subset of \(V\) is separated at least once into \(k\) colors.
 - \(k^n\) colorings is too many.
Color Coding
How do we pick colors deterministically?

- **Smart** enumeration of some colorings:
 - Any size-\(k\) subset of \(V\) is separated at least once into \(k\) colors.
 - \(k^n\) colorings is too many.
- Such a list of colorings is called *perfect family of hash functions*
Color Coding

How do we pick colors deterministically?

- **Smart** enumeration of some colorings:
 - Any size-k subset of V is separated at least once into k colors.
 - k^n colorings is too many.

- Such a list of colorings is called *perfect family of hash functions*

Theorem

There exists a perfect family of hash functions of size $2^{O(k) \log(n)}$ computable in time $2^{O(k)} n \log(n)$.
Color Coding

How do we pick colors deterministically?

- **Smart** enumeration of some colorings:
 - Any size-k subset of V is separated at least once into k colors.
 - k^n colorings is too many.

- Such a list of colorings is called *perfect family of hash functions*

Theorem

There exists a perfect family of hash functions of size $2^{O(k) \log(n)}$ computable in time $2^{O(k) n \log(n)}$.

Cons: Additional factor $2^{O(k) \log(n)}$ in the running time
Color Coding

How do we pick colors deterministically?

- **Smart** enumeration of some colorings:
 - Any size-k subset of V is separated at least once into k colors.
 - k^n colorings is too many.

- Such a list of colorings is called *perfect family of hash functions*

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>There exists a perfect family of hash functions of size $2^{O(k) \log(n)}$ computable in time $2^{O(k) n \log(n)}$.</td>
</tr>
</tbody>
</table>

Cons: Additional factor $2^{O(k) \log(n)}$ in the running time

Pros: Deterministic
Color Coding
How do we pick colors deterministically?

- **Smart** enumeration of some colorings:
 - Any size-\(k\) subset of \(V\) is separated at least once into \(k\) colors.
 - \(k^n\) colorings is too many.
- Such a list of colorings is called *perfect family of hash functions*

Theorem

There exists a perfect family of hash functions of size \(2^{O(k) \log(n)}\) computable in time \(2^{O(k) n \log(n)}\).

Cons: Additional factor \(2^{O(k) \log(n)}\) in the running time

Pros: Deterministic

Anyway: Two algorithms in one; let the user choose.
Practice

13. Give an FPT algorithm based on color-coding for the problem below. Bonus: show that it is NP-complete.

Cheap Subtree

Input: A complete binary tree T with a set L of leaves, a graph $G = (V, E)$, a cost function $c : V \times L \to \mathbb{N}$

Param.: $k = |L|$

Output: A subset $V' \subseteq V$ such that:
- $G[V']$ is isomorphic to T,
- the total cost of the mapping between V and L is minimal.

14. Same question:

Polychrome Matching

Input: A graph G with an r-edge coloring

Param.: r

Output: A maximum-size set of independent edges of G with pairwise-distinct colors.
15. Same question:

Disjoint r-Subsets

Input: Size-\(r\) subsets \(X_1, \ldots X_m\) of \([n]\), integer \(k\)

Param.: \(k + r\)

Output: \(k\) pairwise disjoint subsets \(X_{i_1}, \ldots X_{i_k}\)
Color Coding

Final remarks

- Color coding cannot help W[1]-hard problems.

Multi-Color Clique

Input: A k-partite graph $G = (V, E)$, with $V = V_1 \cup \cdots \cup V_k$

Param.: k

Output: A size-k clique K, such that $|K \cap V_i| = 1$ for all i.
Color Coding

Final remarks

- Color coding cannot help W[1]-hard problems.

Multi-Color Clique

Input: A k-partite graph $G = (V, E)$, with $V = V_1 \cup \cdots \cup V_k$

Param.: k

Output: A size-k clique K, such that $|K \cap V_i| = 1$ for all i.

- Use more colors in randomized algorithms: optimal close to $1.3k$ for Minimum Weight Path (fewer trials, but longer dynamic programming)
Iterative Compression

Principle

- Other “heavy” approach, mostly for graphs
- Idea:
 - Start with an empty graph and an empty solution
 - Add vertices (or edges) one by one
 - Each time: update the solution
 - If the solution is too large: compress it by one
- Core algorithm: Given a graph, a target solution size of k, and a solution of size $k + 1$, find a solution of size k (if any).
Iterative Compression

Vertex Cover

- Start with empty graph, empty solution (X)
- Add vertex v (and connecting edges) to G and to X
- If $|X| = k + 1$:
 - Partition X into K ("Keep") and D ("Discard")
 - Create $X' = K \cup N(D)$. If $|X'| \leq k$, continue with next vertex.
 - Try with every 2^{k+1} branches: reject if no good X'.
- Total running time: $O(2^k n^2)$
Iterative Compression

Odd Cycle Transversal

Odd Cycle Transversal

- **Input:** A graph $G = (V, E)$, an integer k
- **Param.:** k
- **Output:** A subset X of G such that $G[V \setminus X]$ is bipartite.

- Start with empty graph, empty solution (X)
- Add vertex v (and connecting edges) to G and to X
- If $|X| = k + 1$:
 - Partition X into 3 parts (K, L, R)
 - Create X' using Min-Cut. If $|X'| \leq k$, continue with next vertex.
 - Try with every 3^{k+1} branches: reject if no good X'.