
GENERATING TUPLES OF INTEGERS MODULO THE ACTION

OF A PERMUTATION GROUP AND APPLICATIONS

NICOLAS BORIE

Abstract. Originally motivated by algebraic invariant theory, we present an

algorithm to enumerate integer vectors modulo the action of a permutation

group. This problem generalizes the generation of unlabeled graph up to an
isomorphism. In this paper, we present the full development of a generation en-

gine by describing the related theory, establishing a mathematical and practical

complexity, and exposing some benchmarks. We next show two applications
to effective invariant theory and effective Galois theory.

Initialement motivé par la théorie algébrique des invariants, nous présen-

tons une stratégie algorithmique pour énumérer les vecteurs d’entiers modulo
l’action d’un groupe de permutations. Ce problème généralise le problème

d’énumération des graphes non étiquetés. Dans cet article, nous dévelop-

pons un moteur complet d’énumération en expliquant la théorie sous-jacente,
nous établissons des bornes de complexité pratiques et théoriques et exposons

quelques bancs d’essais. Nous détaillons ensuite deux applications théoriques

en théorie effective des invariants et en théorie de Galois effective.

Generation up to an Isomorphism, Enumerative Combinatorics, Computational
Invariant Theory, Effective Galois Theory

1. Introduction

Let G be a group of permutations, that is, a subgroup of some symmetric group
Sn. Several problems in effective Galois theory (see [Gir87, Abd00]), computational
commutative algebra (see [FR09, BT11, Bor11]) and generation of unlabeled with
repetitions species of structures rely on the following computational building block.

Let N be the set of non-negative integers. An integer vector of length n is an
element of Nn. The symmetric group Sn acts on positions on integer vectors in
Nn: for σ a permutation and (v1, . . . , vn) an integer vector,

σ.(v1, . . . , vn) := (vσ−1(1), . . . , vσ−1(n)) .

This action coincides with the usual action of Sn on monomials in the multivariate
polynomial ring K[x] with K a field and x := x1, . . . , xn indeterminates.

Problem 1.1. Let G ⊂ Sn be a permutation group. Enumerate the integer vectors
of length n modulo the action of G.

Note that there are infinitely many such vectors; in practice one usually wants
to enumerate the vectors with a given sum or content.

For example, the Problem 1.1 contains the listing non-negative integer matrices
with fixed sum up to the permutations of rows or columns appearing in the theory
of multisymmetric functions [Ges87, Mac04] and in the more recent investigations
of multidiagonal coinvariant [Ber09, BBT11].

1



2 NICOLAS BORIE

Define the following equivalence relation over elements of Nn: two vectors u :=
(a1, . . . , an) and v := (b1, . . . , bn) are equivalent if there exists a permutation σ ∈ G
such that

σ · u = (aσ−1(1), . . . , aσ−1(n)) = (b1, . . . , bn) = v.

Problem 1.1 consists in enumerating all Nn/G equivalence classes.
This problem is not well solved in the literature. Some applications present a

greedy strategy searching and deleting all pairs of vectors such that the second part
can be obtained from the first part. The most famous sub-problem is the unlabeled
graph generation which consists in enumerate tuples over 0 and 1 of length

(
n
2

)
enumerated up to the action of the symmetric groups acting on pair on nodes. This
example has a very efficient implementation in Nauty which is able to enumerate
all graphs over a small number of nodes.

The algorithms presented in this paper have been implemented, optimized, and
intensively tested in Sage [S+09]; most features are integrated in Sage since release
4.7 (2011-05-26, ticket #6812, 1303 lines of code including documentation).

2. Orderly generation and tree structure over integer vectors

The orderly strategy consists in setting a total order on objects before quotienting
by the equivalence relation. This allows us to define a single representative by orbit.
Using the lexicographic order on integer vectors, we will call a vector v canonical
under the action of G or just canonical if v is maximum in its orbit under G for
the lexicographic order:

v is canonical ⇔ v = max
lex
{σ · v | σ ∈ G}.

Now, the goal being to avoid to test systematically if vectors are canonical, we
decided to use a tree structure on the objects in which we will get properties relaying
the canonical vectors. Any result relating fathers, sons and the property of being
canonical in the tree may allowed us to skip some canonical test.

2.1. Tree Structure over integer vectors. Let r be the vector r := (0, . . . , 0)
called root, we build a tree with the following function father.

Definition 2.1. Let a = (a1, a2, . . . , an) be a tuple of integers of length n which
is not the root. Let 1 6 i 6 n be the position of the last non-zero entry of a. We
define the father of a

father(a1, a2, . . . , ai, 0, 0, . . . , 0) := (a1, a2, . . . , ai − 1, 0, 0, . . . , 0)

For any integer vector v = (a1, . . . , an), we can go back to the generation root
(0, . . . , 0) by sum(v) := a1 + · · ·+ an steps. The corresponding application giving
the children of an integer vector is thus:

Definition 2.2. Let a = (a1, a2, . . . , an) be a tuple of integers of length n. Let
1 6 i 6 n be the position of the last non-zero entry of a (i = 1 if all entries are
null). The set of children of a is obtained as:

children: (a1, a2, . . . , ai, 0, 0, . . . , 0) 7−→


(a1, a2, . . . , ai + 1, 0, 0, . . . , 0)

(a1, a2, . . . , ai, 1, 0, . . . , 0)
(a1, a2, . . . , ai, 0, 1, . . . , 0)

. . .
(a1, a2, . . . , ai, 0, 0, . . . , 1)





GENERATION MODULO THE ACTION OF A PERMUTATION GROUP 3

Proposition 2.3. For any permutation group G ⊂ Sn, for any integer vector v,
if v is not canonical under G, all children of v are not canonical. Therefore, the
canonicals form a ”prefix tree” in the tree of all integer vectors.

Sketch of proof: When a father is not canonical, there exists a permutation
such that the permuted vector is greater. Applying the same permutation on the
children shows also it cannot be canonical.

(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(2,0,0) (1,1,0) (1,0,1) (0,2,0) (0,1,1) (0,0,2)

(3,0,0) (2,1,0) (2,0,1) (1,2,0) (1,1,1) (1,0,2) (0,3,0) (0,2,1) (0,1,2) (0,0,3)

Figure 1. Enumeration tree of integer vectors modulo the action
of G = 〈(1, 2, 3)〉 ⊂ S3, the cyclic group of degree 3.

Figure 1 displays integer vectors of length 3 whose sum is at most 3 and shows
the tree relations between them. Choosing the cyclic group of order 3 and using
the generation strategy, underlined integer vectors are tested but are recognized to
be not canonical. Using Proposition 2.3, crossed-out integer vectors are not tested
as they cannot be canonical as children of non canonical vectors.

Our strategy consists now in making a breath first search over the sub-tree of
canonicals. This is done lazily using Python iterators.

2.2. Testing whether an integer vector is canonical. As we have seen, the
fundamental operation for orderly generation is to test whether an integer vector is
canonical; it is thus vital to optimize this operation. To this end, we use the work
horse of computational group theory for permutation groups: stabilizer chains and
strong generating sets.

Following the needs required by applications, we want to test massively if vectors
are canonical or not. For this reason, we will use a strong generating system of
the group G. We can compute this last item in almost linear time [Ser03] using
GAP [GAP97].

Let n a positive integer and G a permutation group G ⊂ Sn. Recall that its
stabilizer chain is Gn = {e} ⊂ Gn−1 ⊂ · · · ⊂ G1 ⊂ G0 = G, where

∀i, 1 6 i 6 n : Gi := {g ∈ G|∀j 6 i : g(j) = j} .

From this chain, we build a strong generating system T = {T1, T2, . . . , Tn} where
Ti is a transversal of Gi−1/Gi. This set of strong generators is particularly adapted
to the partial lexicographic order as stabilizers are defined with positions 1, 2, . . . , n
from left to right.

Let n and i be two positive integers such that 1 6 i 6 n. For v = (v1, . . . , vn)
and w = (w1, . . . , wn) two integer vectors of length n, let us define the following



4 NICOLAS BORIE

binary relations

v <i w ⇐⇒ (v1, . . . , vi) <lex (w1, . . . , wi)
v 6i w ⇐⇒ (v1, . . . , vi) 6lex (w1, . . . , wi)
v =i w ⇐⇒ ∀j, 1 6 j 6 i : vj = wj

where <lex and 6lex represent regular strict and large lexicographic comparison.
Algorithm 1 is a natural extension of McKay’s canonical graph labeling algorithm

as it is explained in [HR09].

Algorithm 1 Testing whether an integer vector is canonical

Arguments
• v: An integer vector of length n;
• sgs(G): A strong generating set for G, as a list {T1, . . . , Tn} of transversals.

def is canonical(v, sgs(G)) :
todo← {v}
for i ∈ {1, 2, . . . , n} :

new todo← { }
for w ∈ todo :

children← {g ·w|g ∈ Ti}
for child ∈ children :

if v <i child :
return False

else :
if v =i child and child /∈ new todo :

new todo← new todo ∪ {child}
todo← new todo

return True

Algorithm 1 takes advantage of partial lexicographic orders and the strong gen-
erating system of the group G. It tries to explore only a small part of the orbit of
the vector v; the worst case complexity of this step is bounded by the size of the
orbit, and not by |G|. In this sense, it does take into account the automorphism
group of the vector v.

Proposition 2.4. Let n be a positive integer and G a subgroup of Sn. Let v be
an integer vector of length n. Algorithm 1 returns True if v is canonical under the
action of G and returns False otherwise.

Sketch of proof: It is based on the properties of a strong generating system.

3. Complexity

3.1. Theoretical complexity.

3.1.1. Efficiency of the tree structure. Let n be a positive integer and G ⊂ Sn a
permutation group. For any non negative integer d, let C(d) (resp. C(d)) be the
number of canonical (resp. non canonical) integer vectors of degree d. Based on the
tree structure presented in Section 2.1, let T (n) (resp. T (n)) the number of tested
(resp. non tested) integer vectors.



GENERATION MODULO THE ACTION OF A PERMUTATION GROUP 5

Proposition 3.1. Generating all canonical integer vectors up to degree d > 0 using
the generation strategy presented in Section 2 presents an absolute error bounded
by C(d). Equivalently, regarding the series, we have

d∑
i=0

T (i)−
d∑
i=0

C(i) 6 C(d)

Sketch of proof: Using Lemma 2.3, we get this bound noticing two tested but
non canonical vectors cannot have a paternity relation.

This absolute error is not very explicit (directly usable), but it can be used to
get a relative error at the price of a rough approximation.

Corollary 3.2. Let n and b be two positive integers and G ⊂ Sn a permutation
group. Generating all canonical monomials under the action of G up to degree d
using the generation strategy presented in Section 2 presents a relative error bounded

by min{n(|G|−1)n+d , n− 1}.
Sketch of proof: We use the previous proposition with the fact that any integer

vector has at least one child but no more than n − 1 children (the generation root
is the only one having n children).

The bound is optimal for trivial groups ({e} ⊂ Sn), and seems to be better as
the permutation group is of small cardinality. This relative error becomes better as
we go up along the degree and tends to become optimal when the degree goes to
infinity.

3.1.2. Complexity of testing if a vector is canonical. We now investigate the com-
plexity of Algorithm 1. We need first to select a reasonable statistic to collect,
which will define the complexity of this algorithm.

The explosion appearing in the algorithm is conditioned by the size of the set
new todo. For v an integer vector and {T1, . . . , Tn} a strong generating system of a
permutation G, when i runs over {1, 2, . . . , n} in the main loop, the set new todoi
contains at step i:

new todoi = {g1 · · · gi · v|g1 · · · gi · v =i v,∀j 6 i : gj ∈ Tj}
The right statistic to record is the size of the union of the new todoi for all i
such that the algorithm is still running: that corresponds to the part of the orbit
explored by the algorithm. This statistic appears to be very difficult to evaluate by
a theoretical way. However, collecting it with a computer is a simple task.

3.1.3. Parallelization and memory complexity. Let us note that this generation en-
gine is trivially amenable for parallelism: one can devote the study of each branch
to a different processor. Our implementation uses a little framework SearchFor-

est, co-developed by the author, for exploration trees and map-reduce operations
on them. To get a parallel implementation, it is sufficient to use the drop-in paral-
lel replacement for SearchForest under development by Jean-Baptiste Priez and
Florent Hivert.

The memory complexity of the generation engine is reasonable, bounded by the
size of the answer. Indeed, we keep in the cache only the Canonical vectors of
degree d− 1 when we search for those in degree d. In case one wants to only iterate
through the elements of a given degree d, then this can be achieved with memory
complexity O(nd).



6 NICOLAS BORIE

3.2. Benchmarks design. To benchmark our implementation, we chose the fol-
lowing problem as test-case.

Problem 3.3. Let n be a positive integer and G ⊂ Sn a permutation group. Iterate
through all the canonical integer vectors v under the staircase (i.e. vi ≤ n− i).

A vector v of length n is said to be under the staircase when it satisfies v 6lex
(n− 1, n− 2, . . . 1, 0).

This problem contains essentially all difficulties that can appear. The family of
n! integer vectors under the staircase contains vectors with trivial automorphism
group as well as vectors with a lot of symmetries. Applications also require to deal
with this problem as the corresponding family of monomials plays a crucial role in
algebra.

3.2.1. Benchmarks for transitive permutation groups. We now need a good family
of permutation groups, representative of the practical use cases. We chose to use the
database of all transitive groups of degree ≤ 30 [Hul05] available in Sage through
the system GAP [GAP97].

The benchmarks have been run on an off-the-shelf 2.40 GHz dual core Mac Book
laptop running Ubuntu 12.4 and Sage version 5.3.

3.3. Benchmarks.

3.3.1. Tree Structure over integer vectors. This first benchmark investigates the
efficiency of the tree structure presented in Section 2.1. As we don’t test children of
non canonical integer vectors, one wants to take measures of the part of tested non
canonical vectors (which corresponds to the useless part of computations). For that,
we solve Problem 3.3 for each group of the database and we collect the following
information as follows.

Transitive Groups of degree 5

Database Id. |G| Index in Sn Canonicals number of tests

1 5 24 71 81

2 10 12 68 81

3 20 6 46 67

4 60 2 41 67

5 120 1 41 67

This table displays the statistics for transitive groups of degree 5. Database Id. is
the integer indexing the group, |G| and Index in Sn are respectively the cardinality
and the index of the group G in the symmetric group Sn. Canonicals denotes the
number of canonical vectors under the staircase and number of tests is the number
of times the algorithm testing if an integer vector is canonical is called.

From this information, we set a quantity Err defined as follows:

Err :=
number of tests− Canonicals

Canonicals
.

The following figure shows Err depending on the index n!
|G| . The figure contains

166 crosses, one for each transitive group over at most 10 variables. We use a
logarithmic scale on the x axis.



GENERATION MODULO THE ACTION OF A PERMUTATION GROUP 7

n!
|G|

Err

1

0.8

0.6

0.4

0.2

0
1! 2! 3! 4! 5! 6! 7! 8! 9!

××

×

× × ×

×

×
×
×

×

×

×
×

×

×
×
×

× ×
×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

×

×
× ×

×

×

××

×

×
×
×

×

×

×
×

×
×

×

×

×× ×

×
××

×

×

×
×

×
×

×

×
×

×

× ×

×

×

×

×

×

×
×

×

××
×

×
×
×

×
×

×

×
×

×

×

×

×
×

×

×

××

×

×

×

×

× ×

×

××

×

×

×
×

×

×
×

×

×

×

×
×

×
×

××

×

×

××

×

×

×

× ×

×

×

×
×

×

×

×

×

×

×

×

×

××

×

×
×

×
×

×
×

×
×

×

×

×

×

×

××

×

Figure 2. Relative Error between number of tested vectors and
number of canonicals vectors.

3.3.2. Empirical complexity of testing if a vector is canonical. Algorithm 1 needs to
explore a part of the orbit of the tested integer vectors. The following table displays
for each transitive group over 5 variables, the number of elements of all orbits of
tested vectors solving Problem 3.3 compared to the total number of integer vectors
explored.

Transitive Groups of degree 5
Database Id. |G| Index in Sn total orbits total explored

1 5 24 401 351
2 10 12 691 393
3 20 6 1091 365
4 60 2 1891 328
5 120 1 1891 326

Now we define Ratio to be the average size of the orbit needed to be explored
to know if an integer vector is canonical:

Ratio :=
total explored

total orbits
.

The following figure plots Ratio in terms of |G| for transitive groups on at most 9
variables.



8 NICOLAS BORIE

|G|

Ratio

1

0.8

0.6

0.4

0.2

0
2! 3! 4! 5! 6! 7! 8! 9!

×

×

×
×

×

×
×

×

×

×

×

×

×

×

×

×
×

××

×

×

×
×
×

×
×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

×

×

×
×

× ×
×

×

×

×

×
××

×
×

×

×
×

×
×

×

×

×

×

×

×

×

×
×
×

×
×

×
×

×

×

Figure 3. Average, over all integer vectors v under the stair case,
of the number of vectors in the orbit of v explored by
is_canonical(v).

3.3.3. Overall empirical complexity of the generation engine. We now evaluate the
overall complexity by comparing the ratio between the computations and the size
of the output. We define the measure Complexity as follows:

Complexity :=
total explored

Canonicals
.

The following graph displays Complexity in terms of the size of the group |G| for
transitive Groups on up to 9 variables (and excluding the alternate and symmetric
group of degree 9).

|G|

Complexity

30

20

10

1

2! 3! 4! 5! 6! 7! 8! 9!

×

× ×

×

×

×
×

× ×

×

×

×

×

×

×

×

×

×
×

× ×
×

××

×

×

×
×× ×

×

××

×

××
×

×

×

×

× ××

×

×

×

×

× ×

×

× ×

×

×

×

××
×

×

×

×
×

×××
×

×
×

×
××

×

×
×
×

×
×

×

× ×

××

×

×

×

×

×

××

×

×

×
××

×

×

×
×

×
×

×

×

×

×

×
×

× ×
××

×

×

× ×
×

The dashed line has as equation y = 5ln(|G|). Therefore, we get the following
empirical overall complexity:

Computations = O(ln(|G|)×Output size)



GENERATION MODULO THE ACTION OF A PERMUTATION GROUP 9

3.3.4. Tests around the unlabeled graph generation problem. Although the genera-
tion engine is not optimized for the unlabeled graph generation problem, we can
apply our strategy on it.

Fix n, and consider the set E of pairs of elements of n. The symmetric group
Sn acts on pairs by σ · (i, j) = (σ(i), σ(j)) for σ ∈ Sn and (i, j) ∈ E. Let G be the
induced group of permutations of E. A labeled graph can be identified with the
integer vector with parts in 0, 1. Then, two graphs are isomorphic if and only if the
corresponding vectors are in the same G-orbit.

Now, one needs just to know which are these permutation groups acting on
pairs of integers. In the following example, we retrieve the number of graphs on n
unlabeled nodes is, for small values of n is given by: 1, 1, 2, 4, 11, 34, 156, 1044,
12346, 274668, 12005168, ...

sage: L = [TransitiveGroup(1,1), TransitiveGroup(3,2),

TransitiveGroup(6,6), TransitiveGroup(10,12), TransitiveGroup(15,28),

TransitiveGroup(21,38), TransitiveGroup(28,502)]

sage: [IntegerVectorsModPermutationGroup(G,max_part=1).cardinality() for G

in L]

[2, 4, 11, 34, 156, 1044, 12346]

Notice that our generation engine generalizes the graph generation problem
in two directions. Removing the option max_part, one enumerates multigraphs
(graphs with multiple edges between nodes). On the other hand, graphs corre-
spond to special cases of permutation groups. From an algebraic point of view, we
saw graphs as monomials whose exponents are 0 or 1, canonical for the action of
the symmetric group on pairs of nodes.

4. Computing the invariants ring of a permutation group

Let us explain how the generation engine from Section 2 is plugged into effective
invariant theory (see [DK02] and [Kin07]).

A well-known application to build an invariant polynomial under the action of
a permutation group G is the Reynolds operator R. From any polynomial P in n
variables x := x1, x2, . . . , xn, the invariant is

R(P ) :=
1

|G|
∑
σ∈G

σ · P,

where σ · P is the polynomial built from P for which σ has permuted by position
the tuple of variables (x1, x2, . . . , xn). Formally, for any σ ∈ G

(σ · P )(x1, x2, ..., xn) := P (xσ−1(1), xσ−1(2), . . . , xσ−1(n)).

For large groups, the Reynolds operator is not very convenient to build invariant
polynomials. If P is a monomial xa := xa11 x

a2
2 · · ·xann where a = (a1, a2, . . . , an),

the minimal invariant one can build in number of terms is the orbit sum
∑

Orb(G)

(xa)

of x.
Let K a field, we denote by K[x]G the ring formed by all polynomials invariant

under the action of G.

K[x]G := {P ∈ K[x]|∀σ ∈ G : σ · P = P}.



10 NICOLAS BORIE

For any subgroups G of Sn and K a field of characteristic 0, a result due to
Hilbert and Noether state that the ring of invariant K[x]G is a free module of rank
n!
|G| over the symmetric polynomials in the variable x. Computing the invariant

ring K[x]G consists essentially in building algorithmically an explicit family (called
secondary invariant polynomials) of generators of this free module.

Searching the secondary invariant polynomials from orbit sum of monomials
whose vector of exponents is canonical (instead of all monomials) produces a gain of
complexity of |G| if we assume that all orbits are of cardinality |G|. This assumption
is obviously false; however, in practice, it seems to hold in average and up to a
constant factor [Bor11]).

In [BT11], the authors calculate the secondary invariants of the 61st transi-
tive group over 14 variables whose cardinality is 50803200. Using the canonicals
monomials, they managed to build a family of 28 irreducible secondary invariants
deploying a set of 1716 secondary invariants. This computation is unreachable by
Gröbner basis techniques.

5. Computing primitive invariants for a permutation group

5.1. Introduction. We now apply our generation strategy to this problem con-
cerning effective Galois theory.

Problem 5.1. Let n a positive integer and G a permutation group, subgroup of
Sn. Let K be a field and x := x1, . . . , xn be n formal variables. Find a polynomial
P ∈ K[x1, . . . , xn] such that

{σ ∈ Sn|σ · P = P} = G.

A such polynomial is called a primitive invariant for G.

Problem 5.1 (exposed in [Gir87] and [Abd00]) consists in finding an invariant
P under the action of G such that its stabilizer StabSn(P ) in Sn is equal to G
itself. Solving this problem becomes difficult when we want to construct a primitive
invariant of degree minimal or a primitive invariant with a minimal number of
terms.



GENERATION MODULO THE ACTION OF A PERMUTATION GROUP 11

Algorithm 2 Primitive invariant using stabilizer refinement
Prerequisites :
• IntegerV ectorsModPermgroup: module to enumerate orbit representatives;
• stabilizer of orbit of(G, v): a function returning the permutation group which
stabilizes the orbit of v under the action of the permutation group G.
Arguments:
• G: A permutation group, subgroup of Sn.

def minimal primitive invariant(G) :
cumulateStab← SymmetricGroup(degree(G))
chain← [[(0, 0, . . . , 0), cumulateStab, cumulateStab]]
if Cardinality(cumulateStab) == Cardinality(G) :

return chain
for v ∈ IntegerV ectorsModPermgroup(G) :

AutV ← stabilizer of orbit of(G, v)
Intersect← cumulateStab ∩AutV
if Cardinality(Intersect) < Cardinality(cumulateStab) :

chain← chain ∪ [v,AutV, Intersect]
cumulateStab← Intersect
if Cardinality(cumulateStab) == Cardinality(G) :

return chain

5.2. Primitive invariant of minimal degree.

5.3. Benchmarks. Algorithm 2 terminates in less than an hour for any subgroup
of S10. Even, it can calculate some primitive invariants for a lot of subgroups with
degree between 10 and 20 while the literature only provides examples up to degree
7 or 8. Using the same computer, this benchmark just collects the average time in
seconds of execution of Algorithm 2 by executing systematically the algorithm on
transitive groups of degree n.

Degree of Groups 1 2 3 4 5 6 7 8 9

Computations time 0.008 0.064 0.104 0.160 0.208 0.393 0.537 2.364 27.093

We would like to thanks Nicolas M. Thiéry, Simon A. King, Karl-Dieter Crisman
and Dmitri V. Pasechnik for useful comments about implementation details, review
of code and Cython optimizations.

This research was driven by computer exploration using the open-source mathe-
matical software Sage [S+09]. In particular, we perused its algebraic combinatorics
features developed by the Sage-Combinat community [SCc08], as well as its group
theoretical features provided by GAP [GAP97].

References

[Abd00] Ines Abdeljaouad. Théorie des Invariants et Applications à la Théorie de Galois effec-

tive. PhD thesis, Université Paris 6, 2000.
[BBT11] François Bergeron, Nicolas Borie, and Nicolas M. Thiéry. Deformed diagonal harmonic

polynomials for complex reflection groups. In 23rd International Conference on Formal
Power Series and Algebraic Combinatorics (FPSAC 2011). 2011.

[Ber09] François Bergeron. Algebraic combinatorics and coinvariant spaces. CMS Treatises in

Mathematics. Canadian Mathematical Society, Ottawa, ON, 2009.
[Bor11] Nicolas Borie. Calcul des invariants des groupes de permutations par transformée de

Fourier. PhD thesis, Laboratoire de Mathématiques, Université Paris Sud, 2011.



12 NICOLAS BORIE

[BT11] Nicolas Borie and Nicolas M. Thiéry. An evaluation approach to computing invariants

rings of permutation groups. In Proceedings of MEGA 2011, March 2011.

[DK02] Harm Derksen and Gregor Kemper. Computational invariant theory. Springer-Verlag,
Berlin, 2002.

[FR09] J.C. Faugère and S. Rahmany. Solving systems of polynomial equations with symmetries

using SAGBI-Gröbner bases. In (ISSAC 2099), 2009.
[GAP97] The GAP Group, Lehrstuhl D für Mathematik, RWTH Aachen, Germany and SMCS,

U. St. Andrews, Scotland. GAP – Groups, Algorithms, and Programming, 1997.

[Ges87] Ira M. Gessel. Enumerative applications of symmetric functions. In Proceedings of the
17-th Séminaire Lotharingien, Publ. I.R.M.A. Strasbourg, page 17, 1987.

[Gir87] Kurt Girstmair. On invariant polynomials and their application in field theory. Math.

Comp., 48(178):781–797, 1987.
[HR09] Stephen G. Hartke and A. J. Radcliffe. McKay’s canonical graph labeling algorithm. In

Communicating mathematics, volume 479, pages 99–111. 2009.
[Hul05] Alexander Hulpke. Constructing transitive permutation groups. J. Symbolic Comput.,

39(1):1–30, 2005.

[Kin07] S.A. King. Fast Computation of Secondary Invariants. Arxiv math/0701270, 2007.
[Mac04] Percy A. MacMahon. Combinatory analysis. Vol. I, II. 2004. Reprint of ıt Combinatory

analysis. Vol. I, II (1915, 1916).

[S+09] W. A. Stein et al. Sage Mathematics Software (Version 3.3). The Sage Development
Team, 2009. http://www.sagemath.org.

[SCc08] The Sage-Combinat community. Sage-Combinat: enhancing Sage as a toolbox for com-

puter exploration in algebraic combinatorics, 2008.

[Ser03] Ákos Seress. Permutation group algorithms, volume 152 of Cambridge Tracts in Math-

ematics. Cambridge University Press, Cambridge, 2003.

Univ. Paris Est Marne-La-Vallée, Laboratoire d’Informatique Gaspard Monge, Cité

Descartes, Bât Copernic – 5, bd Descartes Champs sur Marne 77454 Marne-la-Vallée
Cedex 2, France


	1. Introduction
	2. Orderly generation and tree structure over integer vectors
	2.1. Tree Structure over integer vectors
	2.2. Testing whether an integer vector is canonical

	3. Complexity
	3.1. Theoretical complexity
	3.2. Benchmarks design
	3.3. Benchmarks

	4. Computing the invariants ring of a permutation group
	5. Computing primitive invariants for a permutation group
	5.1. Introduction
	5.2. Primitive invariant of minimal degree
	5.3. Benchmarks

	References

