Computing invariants of permutation groups using Fourier Transform

Nicolas Borie

March 1, 2011

Introduction

Classical algorithms

Using Fourier Transform

Work of implementation

Short presentation of the problem

- Data : Let \mathbb{C} be the complex field. Let n be an integer such that $n \geqslant 1$. Let G be a subgroup of S_{n}. (i.e. a group of permutations)

Short presentation of the problem

- Data : Let \mathbb{C} be the complex field. Let n be an integer such that $n \geqslant 1$. Let G be a subgroup of S_{n}. (i.e. a group of permutations)
- Fact : let $R=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{G}$ be the set of polynomials invariant under the action of $G . R$ is a graded connected finitely generated algebra over \mathbb{C}. It is also a free module over the symmetric polynomials $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{S_{n}}$.

What does we want?

- Goal : find the polynomials in R invariant under the action of G which generates R as an algebra.

What does we want?

- Goal : find the polynomials in R invariant under the action of G which generates R as an algebra.
- Example: The family $\left\{x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}, x_{1} x_{2} x_{3}\right\}$ generate $\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]^{s_{3}}$.

What does we want?

- Goal : find the polynomials in R invariant under the action of G which generates R as an algebra.
- Example: The family $\left\{x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}, x_{1} x_{2} x_{3}\right\}$ generate $\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]^{s_{3}}$.
- Find the secondary invariants (polynomials invariants under the action of G but not invariants under S_{n}).

What does we want?

- Goal : find the polynomials in R invariant under the action of G which generates R as an algebra.
- Example: The family $\left\{x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}, x_{1} x_{2} x_{3}\right\}$ generate $\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]^{s_{3}}$.
- Find the secondary invariants (polynomials invariants under the action of G but not invariants under S_{n}).
- $x_{1}^{2} x_{2}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1}$ is invariant under $C_{3}=<(1,2,3)>$ but not under the action of S_{3}.

What does we want?

- Goal : find the polynomials in R invariant under the action of G which generates R as an algebra.
- Example: The family $\left\{x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}, x_{1} x_{2} x_{3}\right\}$ generate $\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]^{s_{3}}$.
- Find the secondary invariants (polynomials invariants under the action of G but not invariants under S_{n}).
- $x_{1}^{2} x_{2}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1}$ is invariant under $C_{3}=<(1,2,3)>$ but not under the action of S_{3}.
- (2009) algorithms and computers can compute it efficiently up to $n=7$ in characteristic 0 .

Using Groëbner basis

Choosing an order on the variables, the usual way to dealt the problem is using Groëbner basis. (an average limit is 7-8 variables...).

- Groëbner basis break the symmetries.

Using Groëbner basis

Choosing an order on the variables, the usual way to dealt the problem is using Groëbner basis. (an average limit is 7-8 variables...).

- Groëbner basis break the symmetries.
- Very heavy cost for products of two polynomials.

$$
\begin{equation*}
|G|=100 \quad\left(\sum_{i=1}^{100} \alpha_{i} X^{i}\right)\left(\sum_{j=1}^{100} \beta_{j} X^{j}\right)=\sum_{k=1}^{10000} \ldots \tag{1}
\end{equation*}
$$

Using Groëbner basis

Choosing an order on the variables, the usual way to dealt the problem is using Groëbner basis. (an average limit is 7-8 variables...).

- Groëbner basis break the symmetries.
- Very heavy cost for products of two polynomials.

$$
\begin{equation*}
|G|=100 \quad\left(\sum_{i=1}^{100} \alpha_{i} X^{i}\right)\left(\sum_{j=1}^{100} \beta_{j} X^{j}\right)=\sum_{k=1}^{10000} \ldots \tag{1}
\end{equation*}
$$

- We make calculations in the whole algebra $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Using SAGBI-Groëbner basis

To go further in the computation, we can use an analogue of Groëbner basis for Ideals. With this, we keep the use of symmetries. (an average limit is 7-8-9 variables...)

- SAGBI-Groëbner basis preserves the symmetries.

Using SAGBI-Groëbner basis

To go further in the computation, we can use an analogue of Groëbner basis for Ideals. With this, we keep the use of symmetries. (an average limit is 7-8-9 variables...)

- SAGBI-Groëbner basis preserves the symmetries.
- Relatively heavy cost for products of two polynomials.

Using SAGBI-Groëbner basis

To go further in the computation, we can use an analogue of Groëbner basis for Ideals. With this, we keep the use of symmetries. (an average limit is 7-8-9 variables...)

- SAGBI-Groëbner basis preserves the symmetries.
- Relatively heavy cost for products of two polynomials.
- We make calculations in the algebra $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{G}$

Products in symbolic computation

The regular trick to simplify products in symbolic computation is divided the problem . For univariate polynomials, the Fast Frourier Transform appears today as one of the best method. $(O(n \log (n)))$

- How put the calculation inside
a quotient $\mathbb{C}[X]^{G} /<\left(\mathbb{C}[X]^{S_{n}}\right)^{+}>$?

Products in symbolic computation

The regular trick to simplify products in symbolic computation is divided the problem . For univariate polynomials, the Fast Frourier Transform appears today as one of the best method. $(O(n \log (n)))$

- How put the calculation inside
a quotient $\mathbb{C}[X]^{G} /<\left(\mathbb{C}[X]^{S_{n}}\right)^{+}>$?
- How many points do we have to set ?

Products in symbolic computation

The regular trick to simplify products in symbolic computation is divided the problem . For univariate polynomials, the Fast Frourier Transform appears today as one of the best method. $(O(n \log (n)))$

- How put the calculation inside a quotient $\mathbb{C}[X]^{G} /<\left(\mathbb{C}[X]^{S_{n}}\right)^{+}>$?
- How many points do we have to set ?
- How choosing evaluation points ?

Goals of a new method

- We want to work in $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{G} / \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{S_{n}}$ or a like (the important thing is to get rid of primary invariant)

Goals of a new method

- We want to work in $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{G} / \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{S_{n}}$ or a like (the important thing is to get rid of primary invariant)
- A controlled product relatively light. (a fixed cost not heavy...)

Some interesting point

Let ρ a n-th primitive root of unity. Let $A=\left(1, \rho, \rho^{2}, \ldots, \rho^{n-1}\right)$ be a point of \mathbb{C}^{n}.

$$
\begin{aligned}
\prod_{k=1}^{n}\left(X-\rho^{k}\right) & =X^{n}-1 \\
& =(X-\rho)\left(X-\rho^{2}\right) \ldots\left(X-\rho^{n}\right) \\
& =X^{n}-\left(\sum_{k=1}^{n} \rho^{k}\right) X^{n-1}+\cdots+\prod_{k=1}^{n} \rho^{k} \\
& =X^{n}-e_{1}\left(1, \rho, \rho^{2}, \ldots, \rho^{n-1}\right) X^{n-1}+\ldots \\
& \cdots+(-1)^{n} e_{n}\left(1, \rho, \rho^{2}, \ldots, \rho^{n-1}\right)
\end{aligned}
$$

The trick for evaluation

Let ρ be a $n^{\text {th }}$-primitive root of unity. Let $e_{1}, e_{2}, \ldots, e_{n}$ be the elementary symmetric functions. We have

$$
\begin{aligned}
e_{1}\left(1, \rho, \rho^{2}, \ldots, \rho^{n-1}\right) & =0 \\
e_{2}\left(1, \rho, \rho^{2}, \ldots, \rho^{n-1}\right) & =0 \\
\ldots & =0 \\
e_{n-1}\left(1, \rho, \rho^{2}, \ldots, \rho^{n-1}\right) & =0 \\
e_{n}\left(1, \rho, \rho^{2}, \ldots, \rho^{n-1}\right) & =(-1)^{n+1}
\end{aligned}
$$

Evaluations points

Let $L=\left\{\sigma\left(\left(1, \rho, \rho^{2}, \ldots, \rho^{n-1}\right)\right) \mid \sigma \in S_{n} / G\right\}$

- It define $\frac{n!}{|G|}$ point as the rank of the module:

$$
\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{G} / \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{S_{n}}
$$

Evaluations points

Let $L=\left\{\sigma\left(\left(1, \rho, \rho^{2}, \ldots, \rho^{n-1}\right)\right) \mid \sigma \in S_{n} / G\right\}$

- It define $\frac{n!}{|G|}$ point as the rank of the module: $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{G} / \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{S_{n}}$
- Symmetric polynomials vanishes of the computations (They are send onto $\mathbb{C}(1,1,1, \ldots, 1))$

Evaluations points

$$
\text { Let } L=\left\{\sigma\left(\left(1, \rho, \rho^{2}, \ldots, \rho^{n-1}\right)\right) \mid \sigma \in S_{n} / G\right\}
$$

- It define $\frac{n!}{|G|}$ point as the rank of the module: $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{G} / \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{S_{n}}$
- Symmetric polynomials vanishes of the computations (They are send onto $\mathbb{C}(1,1,1, \ldots, 1))$
- The product of two polynomials in completely controlled, it is a pointwise product of two vectors of evaluations of size $\frac{n!}{|G|}$ with element in $\mathbb{C}(\rho)$.

Evaluations points

Let $L=\left\{\sigma\left(\left(1, \rho, \rho^{2}, \ldots, \rho^{n-1}\right)\right) \mid \sigma \in S_{n} / G\right\}$

- It define $\frac{n!}{|G|}$ point as the rank of the module: $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{G} / \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{S_{n}}$
- Symmetric polynomials vanishes of the computations (They are send onto $\mathbb{C}(1,1,1, \ldots, 1))$
- The product of two polynomials in completely controlled, it is a pointwise product of two vectors of evaluations of size $\frac{n!}{|G|}$ with element in $\mathbb{C}(\rho)$.
- Theorem

The vectors of evaluation of secondary invariants span $\mathbb{C}^{\frac{n!}{|G|}}$

Implementation in Sage

Benchmark

I really need a standard machine to run my computations and make acceptable comparisons.

Benchmark: TODO

Thank you.

A powerful system of sharing :
http://www.sagemath.org/

A friendly community :
http://combinat.sagemath.org/

