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1 Introduction

This work has been realised at the University of California Davis. I was there
from the 17th of April to the 16th of July 2008. I worked in the Mathematical
Science Building integrated in the Team of Anne Schilling. The aim of this
travel was to take a real contact with the research and people who work in
it. I had to work in team, to attempt several talks, to make my own work, to
participate to the weekly seminar, to work on a software development. Another
hard points were : discovering the combinatorics ways of thinking, practicing
the English language, organizing myself with the time.

Let’s see the beautifully Mathematical sciences building.

This was the part of the office that the M.S.B. (Mathematical Science Building)
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gave to me. It was very nice from them. That allowed me to have the better
conditions for working. I thank them and the team of Anne schilling for all
they done for me. Especially, I thank mister Thiéry who made possible this
adventure.

On a mathematical view, this study is about Hecke algebra and Hecke group
algebra. This last algebraic structure was studied by Florent Hivert and Nicolas
M. Thiéry [HT07]. The theory of usual Hecke algebra is not easy but there is
already a lot of results about them and their comportment at roots of unity.
The Hecke group algebra is a kind of globalising structure which contains all
the classic Hecke algebras for a given Cartan type. The aim of this study is
to explore what happen at roots of unity for Hecke group algebra. Nicolas M.
Thiéry and Anne schilling have proven an hard result about that [HST08] ; they
gave a limit for the roots of unity which make the representation degenerate.
By the computer, I tried to see the more...

After explaining the context and the construction of the Hecke group alge-
bra, I will say how I computed the representations and how I tried to improve
my observation. I will give my success and my failures in optimizing the results.

For the curious reader, I leave in Annexe parts of implementation in SAGE
[Ste08].

2 Context, Definitions and theory

2.1 Hecke algebra of a Coxeter group

Definition 2.1 (Coxeter Group). [BB05] A Coxeter system is a pair (W,S)
consisting of a group W and a set of generators S ⊂W , subject only to relations
of the form : (ss′)m(s,s′) = 1, where m(s, s) = 1, m(s, s′) = m(s′, s) > 2 for s 6=
s′ in S. In case no relation occurs for a pair s, s′, we make the convention that
m(s, s′) =∞. Formally, W is the quotient F/N , where F is a free group on the
set S and N is the normal subgroup generated by all elements (ss′)m(s,s′). When
S is finite (this will be always the case in following studies), and m(s, s′) <∞
for all s, s′ in S, we define (m(s, s′))s,s′∈S to be the Coxeter matrix M .

Remark We call rank of W , Rank(W ) = Card(W ). The rank of a Coxeter
group is the smallest number of reflexions we need to span it.

The main example are permutation groups. Sn is generated by the trans-
positions si = (i, i+ 1) where 1 6 i 6 n− 1. So S = {s1, s2, . . . , sn−1} generate
Sn and the Coxeter matrix of these groups are :

1 3 2 . . . . . . 2

3 1 3
. . .

...

2 3 1
. . . . . .

...
...

. . . . . . . . . . . . 2
...

. . . . . . . . . 3
2 . . . . . . 2 3 1
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The theory of reflexion group and Coxeter group is already describe in the
book of James E.Humphrey’s [Hum90]. These group are classified and recognize
by their dynkin diagram. With the same notation, this graph has its vertices
indexed by the set of generator S and we put an edge between the vertices s
and s′ if m(s, s′) > 2. We label the edge by m(s, s′) if m(s, s′) > 3.

Finite Coxeter groups Affine Coxeter groups

Group Symbol Rank Order
An n (n+ 1)!

Bn = Cn n 2nn!
Dn n 2n−1n!
I2(p) 2 2p
H3 3 120
F4 4 1152
H4 4 14400
E6 6 51840
E7 7 2903040
E8 8 696729600

Definition 2.2 (Group algebra). Let W be a finite group and K a field. The
group algebra K[W ] is the vector space over K which admit a basis Tw, w ∈W
indexed by element of W . The product in K[W ] is construct from the product
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in W and the mobility of the scalars of K.

For example, if W is the group S2 = {Id, s}. K[W ] is a vector space of
dimension 2. {Id, s} is a base of this vector space and the rule of multiplication
is given by this table :

× Id s

Id Id s

s s Id

So (5Id+ 2s)(−4s) = −20s− 8Id.

Definition 2.3 (Hecke algebra of a coxeter group). Suppose that (W,S) is
a Coxeter system with the Coxeter matrix M . Fix a ground ring R (most
commonly, R is the ring of the integers or an algebraically closed field, for us it
will be C). Let q be a formal indeterminate, and let A = R[q, q−1] be the ring of
Laurent polynomials over R.Then the Hecke algebra H(W )(q) defined by these
data is the unital associative algebra over A with generators Ts for all s ∈ S
and the relations:

TsT
m(s,t)
t = 1

for s, t ∈ S, s 6= t. These last are called the Braid relations. And for s ∈ S the
quadratic relation:

(Ts + q)(Ts − 1) = 0

This ring is also called the generic Hecke algebra, to distinguish it from the
ring obtained from H by specializing the indeterminate q to an element of R
(for example, a complex number if R=C).

Remark Let (W,S) be a Coxeter system. Let H(W )(q) be the generic
Hecke algebra of the Coxeter group W . Let T1, T2, . . . , Tn be the Hecke gener-
ators indexed by S. A natural basis of H(W )(q) is

Tw = Ti1Ti2 . . . Tirforw = i1i2 . . . irisareducedwordinW

Definition 2.4 (0-(Iwahori)-Hecke alegra). Let W be a Coxeter group. the 0-
Hecke algebra H(W )(0) is the Hecke algebra of W for which q is specialized to
0. therefore if the generators are T1, T2, . . . , Tn, the quadratic relations becomes

T 2
i = Ti, for1 6 i 6 n

The braid relations stay similar.

For example, in type A4, this mean the symmetric group S5 We can give an
explicit description of the generators of H(S5)(0).

35241 35241 35241

s1

y ys4 π1

y yπ4 π1

y yπ4

53214 53241 35214

s1

y ys4 π1

y yπ4 π1

y yπ4

35241 53241 35214
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πi act on the uplet a1a2a3a4a5. if ai+1 > ai, πi sort them else πi leave the uplet
already sorted at the ith position. For this Coxeter group, the 0-Hecke algebra
is generated by π1, π2, π3, π4. The relations are :

π2
i = π for all 1 6 i 6 4,
πiπj = πjπi for all |i− j| > 1,
πiπi+1πi = πi+1πiπi+1 for all 1 6 i 6 3.

In this example, we can also see a realisation of the group algebra of S5 which
is H(S5)(1) too. C[S5] is generated by s1, s2, s3, s4 and the relation are :

s2i = Id for all 1 6 i 6 4,
sisj = sjsi for all |i− j| > 1,
sisi+1si = si+1sisi+1 for all 1 6 i 6 3.

Remark The Hecke generators Ti are invertible if and only if q is invertible.
As we work over C, Ti is invertible if and only if q is non zero. From the
quadratic relation we conclude that

T−1
i = q−1Ts + (q−1 − 1)

Theorem 2.1. Let W be a Coxeter group and H(W )(q) the generic Hecke
algebra of W over the field C.
H(W )(1) is the group algebra C[W ]
H(W )(0) is the 0-Hecke Algebra
For q non zero and not a root of unity, H(W )(q) is isomorphic to C[W ].

2.2 Natural representations, symmetries and projections

it’s not my goal to expose all representations for any Weyl group, i will just
present it for the main types. For further information, i invite the reader to
open the excellent book of Humphrey’s [Hum90].

The symmetric group Sn (n > 2) is denote by the type An−1. It can be
thought of as a subgroup of the subgroup O(n,R) of n × n orthogonal matri-
ces in the following way. Make a permutation act on Rn by permuting the
standard basis vectors ε1, ε2, . . . , εn (permute the subscripts). Observe that the
transposition (i, j) acts as a reflexion, sending εi − εj to its negative and fixing
pointwise the orthogonal complement, which consists of all vectors in Rn having
equal ith and j th components. Since Sn is generated by transpositions, it is a
reflexion group. Indeed, it is already generated by the transpositions (i, i + 1)
where 1 6 i 6 n− 1.

For the type Bn (n > 2). Again let V = Rn, so Sn acts on V as above. Other
reflections can be defined by sending an εi to its negative and fixing all other
εj . These sign changes generate a group of order 2n isomorphic to (Z/2Z)n,
which intersects Sn trivially and is normalized by Sn : conjugating the sign
change εi 7→ −εi by a transposition yields another such sign change. Thus the
semidirect product of Sn and the group of sign changes yields a reflection group
W of order 2nn!.
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For the type Dn (n > 4). We can get another reflection group acting
on Rn, a subgroup of index 2 in the group of type Bn just described : Sn
clearly normalizes the subgroup consisting of sign changes which involve an
even number of signs, generated by the reflections εi + εj 7→ −(εi + εj), i 6= j.
So the semidirect product is also a reflection group.

Let ε1, ε2, . . . , εn be the canonical basis of the vector space Rn (Rn+1 and
ε1, ε2, . . . , εn+1 for the type An).

The simple roots are given by [HST08]

TypeAn : αi =
{
εn+1 − ε1 for i = 0,
εi − εi+1 for 1 6 i 6 n.

TypeBn : αi =


−ε1 − ε2 for i = 0,
εi − εi+1 for 1 6 i < n,
εn for i = n.

TypeCn : αi =


−2ε1 for i = 0,
εi − εi+1 for 1 6 i < n,
2εn for i = n.

TypeDn : αi =


−ε1 − ε2 for i = 0,
εi − εi+1 for 1 6 i < n,
εn−1 + εn for i = n.

From this, we can construct the simple symmetries. they work on x =
(x1, x2, . . . , xn) (x = (x1, x2, . . . , xn+1) for the type An).

TypeAn : si(x) =
{

(xn+1, x2, . . . , xn, x1) for i = 0,
(x1, . . . , xi+1, xi, . . . , xn+1) for 1 6 i 6 n.

TypeBn : si(x) =


(−x2,−x1, x3, . . . , xn) for i = 0,
(x1, . . . , xi+1, xi, . . . , xn) for 1 6 i < n,
(x1, . . . , xn−1,−xn) for i = n.

TypeCn : si(x) =


(−x1, x2, . . . , xn) for i = 0,
(x1, . . . , xi+1, xi, . . . , xn) for 1 6 i < n,
(x1, . . . , xn−1,−xn) for i = n.

TypeDn : si(x) =


(−x2,−x1, x3, . . . , xn) for i = 0,
(x1, . . . , xi+1, xi, . . . , xn) for 1 6 i < n,
(x1, . . . , xn−2,−xn,−xn−1) for i = n.

With this, the action of the projection on x = (x1, x2, . . . , xn) becomes
(x = (x1, x2, . . . , xn+1) for the type An)

TypeAn : πi(x) =


(xn+1, x2, . . . , xn, x1) for i = 0 and xn+1 > x1,
(x1, . . . , xi+1, xi, . . . , xn+1) for 1 6 i 6 n and xi > xi+1,
x otherwise.
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TypeBn : πi(x) =


(−x2,−x1, x3, . . . , xn) for i = 0 and x1 + x2 < 0,
(x1, . . . , xi+1, xi, . . . , xn) for 1 6 i < n and xi > xi+1,
(x1, . . . , xn−1,−xn) for i = n and xn > 0,
x otherwise.

T ypeCn : πi(x) =


(−x1, x2, . . . , xn) for i = 0 and x1 < 0,
(x1, . . . , xi+1, xi, . . . , xn) for 1 6 i < n and xi > xi+1,
(x1, . . . , xn−1,−xn) for i = n and xn > 0,
x otherwise.

T ypeDn : πi(x) =


(−x2,−x1, x3, . . . , xn) for i = 0 and x1 + x2 < 0,
(x1, . . . , xi+1, xi, . . . , xn) for 1 6 i < n and xi > xi+1,
(x1, . . . , xn−2,−xn,−xn−1) for i = n and xn−1 + xn > 0,
x otherwise.

2.3 Regular representations and action in CW

To say that W acts on itself by multiplication is tautological. If we consider this
action as a permutation representation it is characterised as having a single orbit
and stabilizer the identity subgroup {e} of W . The regular representation of W ,
for a given field K, is the linear representation made by taking the permutation
representation as a set of basis vectors of a vector space over K. The significance
is that while the permutation representation doesn’t decompose - it is transitive
- the regular representation in general breaks up into smaller representations.
For example if W is a finite group and K is the complex number field, the
regular representation is a direct sum of irreducible representations, in number
at least the number of conjugacy classes of W .

Let W be a finite Coxeter group and CW the vector space of dimension
|W | it spans. By its right regular representation, W act in CW and define
matrices of permutation. these same matrices represent the generators of the
group algebra C[W ] as element of End(CW ).

On the other side, we may realise the 0-Hecke algebra as follows. We saw
before that the generating set S of W is describe in RRank(W ) by the simple
roots. We can also construct the simple reflexions by their action on RRank(W ).
For W a Coxeter group of type A,B,C or D, any element w of W is repre-
sented by a permutation of {1, 2, . . . , n} or a signed permutation. So, we can
associate to w a vector ((−1)ε1εσ(1), (−1)ε2εσ(2), . . . , (−1)εnεσ(n)). The simple
projections act and stabilise this set of permutation. Therefore, for any simple
projection, we can construct a matrice in End(CW ) fulled with 0 and 1. As
sorting operator, these matrices Mi can’t be invertible but realise M2

i = Mi.
These set of matrices generated the 0-Hecke algebra in End(CW ).

Let W be a Coxeter group and z be a complex number, the Hecke algebra
H(W )(z) can be realised as acting on CW by interpolation, mapping Ti to
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(1− z)πi + zsi. Indeed, by identifying each w ∈ CW with Tw, one recovers the
right regular representation of H(W )(z), where

TwTi =
{

(1− z)Tw + zTwsi for i descent of w,
Twsi otherwise.

Through this mapping, T i = (1− z)πi + zsi.

2.4 Construction of the Hecke group algebra

Definition 2.5 (Hecke group algebra). Let W be a finite Coxeter group, and
CW the vector space of dimension |W | it spans. As we have just seen, we may
embed simultaneously the Hecke algebra H(W )(0) and the group algebra C[W ]
in End(CW ), via their right regular representation. The Hecke group algebra
HW of W is the smallest subalgebra of End(CW ) containing them both (see
[HT07]).

Remark The Hecke group algebra is therefore generated by (πi)i∈I and
(si)i∈I . HW is generated by the simple projections and the simple reflexions.
So by interpolation, it contains all H(W )(z) for any z complex. A basis for HW
is given by {wπw′ |DR(w) ∩DL(w′) = ∅}. A more conceptual characterization
is as follows; call a vector v in CW i-left antisymmetric if siv = −v; then,
HW is the subalgebra of End(CW ) of those operators which preserve all i-left
antisymmetries.

Example If W is the Coxeter group of type A1. W is isomorphic to the
symmetric group S2 = {(1, 2), (2, 1)}. CW = CId+ Cs the operators are :

id =
(

1 0
0 1

)
, s =

(
0 1
1 0

)
, π =

(
0 0
1 1

)
, π =

(
1 1
0 0

)
π is the operator of antisort. this action on CW is describe :

(1, 2) (2, 1)
(1, 2) 1 1
(2, 1) 0 0

If the second number is lower than the first one, π permutes them. The Hecke
group algebra of W is a vector space of dimension 3 over C. As a vector space,
HW = CId+Cs+Cπ. Let specify q to a complex number z, then the generator
of the Hecke algebra is (with the identity) :

T = (1− z)
(

0 0
1 1

)
+ z

(
0 1
1 0

)
=
(

0 z
1 1− z

)

3 Method, Computation and reading of the results

From a Cartan type of an affine Weyl group, we will first get the generators
of the representation which are square matrices and after, for any valor of the
parameter q, we will calculate the dimension as a vector space over C of the
built representation. We are specially interested of what happen at roots of
unity.
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3.1 Hard point before computation

Before to go on the code, we have to mind about the hardware. To get a
dimension of a vector space, we will have to make some Gauss reduction on
vectors over the field C. It is clear that we can’t make any operation over this
field. We have to stay with the rational or with a finite extension of them.
Q or a finite extension of Q are dealt the same way in a computer. With a
formal mathematic software, calculus are exacts. Real and complex number are
approximation in machine, the addition with this number are not associative.
During my work, i tryed to see what happen with the field C just by curiosity,
results are definitely different and wrong.

So, we will work with the rational but are we going to get the right result.
We want the dimension over C. An argument of tensorisation can answer the
question.

< T0, T1, . . . , Tn >Q
span−−−−→ HQ(W )(q)

⊗C
y y⊗C

< T0, T1, . . . , Tn >C
span−−−−→ HC(W )(q)

T0, T1, . . . , Tn are matrices with coefficients in Q. HQ(W )(q) admit a basis
composed by products of the Hecke generators. This same basis view as element
of HC(W )(q) is still a basis but now over C. So

DimQ(< T0, T1, . . . , Tn >Q) = DimC(< T0, T1, . . . , Tn >C)

remark This same proof work any finite extension of Q; for example if we
change Q by a cyclotomic extension for z any root of the unity.

3.2 Construction of the generators

Let W be a finite weyl group and W the affine weyl group corresponding.
We construct the generators as describe in the second part. This task can

be a little bit difficult and long. I tried to make the construction easier and
automatic but the work and the integration into SAGE isn’t already done. So,
for each Cartan type, I had to do these following steps.

First, i build the group W as a list of all these elements. for W = S3,
the list is {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}. thus I wrote a
small program describing the action for each simple reflexion. By this action, I
constructed the matrice of permutation corresponding. For the same example,
the reflexion s1, permutation (1, 2) give

(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)
(1, 2, 3) 0 0 1 0 0 0
(1, 3, 2) 0 0 0 0 1 0
(2, 1, 3) 1 0 0 0 0 0
(2, 3, 1) 0 0 0 0 0 1
(3, 1, 2) 0 1 0 0 0 0
(3, 2, 1) 0 0 0 1 0 0
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After, by adding the condition of action, I implemented the projection witch
are projection. For the projection π1, I got

(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)
(1, 2, 3) 0 0 0 0 0 0
(1, 3, 2) 0 0 0 0 0 0
(2, 1, 3) 1 0 1 0 0 0
(2, 3, 1) 0 0 0 0 0 0
(3, 1, 2) 0 1 0 0 1 0
(3, 2, 1) 0 0 0 1 0 1

With that, it is possible to construct the Hecke generators. We construct the
good field adapt to the specialization (most of the time, it was Q or any cyclo-
tomic extension) and with the complex number chosen z. T1(z) look like

0 0 z 0 0 0
0 0 0 0 z 0
1 0 1− z 0 0 0
0 0 0 0 0 z
0 1 0 0 1− z 0
0 0 0 1 0 1− z


3.3 Description of the algorithm

Now, we have to deal with a problem of linear algebra. From a set of square
matrices, we have to catch the full algebra generated by these matrices and
check its dimension as a vector space over Q. Clearly, the natural way to
resolve the point is to start with the generators, make products and products
with them and stop when we have a stability by multiplicative any element with
any generator.

We have to construct a non commutative algebra so the better way to mind
is to consider the set of generators as an alphabet and products of generators
will be words over the alphabet.

This is the main algorithm...

MatrixAlgebra(Generators,Field):

Current_space = Vector_space_generated_by(Generators)_over(field)

Current_basis = basis_of_the_vector_space(Current_space)_over(Field)

is_stable = False

while (not is_stable)

|

| is_stable = True

| List_products = list_of_products_of_any(Current_basis)_and_any(Generators)

| for (Word) in (List_products)

| |

| | if (Word) is_not_in (Current_space)

| | |

| | | Current_space = Vector_space_generated_by(Current_basis+Word)_over(field)

| | | Current_basis = basis_of_the_vector_space(Current_space)_over(Field)

| | | is_stable = False

| |

|
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| Print Dimension_of(Current_space)

return Current_space

Let consider T1, T2, . . . , Tn as an alphabet. We construct the list of words over this alpha-
bet

L∗ = {Id, T1, . . . , Tn, T1T1, . . . , T1Tn, T2T1, . . . , TnTn, T1T1, T1, . . . }

We order this list by size of words and by lexicographic order. The algorithm construct, read
this set and for each word, it looks if it is a linear combination of the preview. If it is, it forget
about the word, if not, the word is necessary to span the representation. As this representation
is finite (its dimension is lower than the size of the matrices which is |W |2), the algorithm
stop when it find the stability.

Let n be an integer and define Hn(z) to be the subspace generated as vector space by
words of size at most n. (DimHn(z))n∈N is strictly increasing suit from 0 to stability and
stationnary after stability. Therefore only the first numbers in this sequence are interesting.
The valor for which the sequence stabilise is the dimension of the representation.

3.4 Reading of the results

I remained the reader that I call Hn(q) (resp. Hn(z)) the subspace generated as vector space by
words of size at most n over the alphabet T1(q), T2(q), . . . , Tn(q) (rexp. T1(z), T2(z), . . . , Tn(z)
I mean here that the generators are specialised to a complex number).

During its work, the algorithm print the dimension of Hn(z). The algorithm stop at
stability when make any products between any element of the generated space and any Hecke
generator don’t create a new element. These sequence of number the algorithm give is the
information i can study. So, for each specialization, i recorded the sequence and I now present
the results in tableau.

A2 Dimension
Full Space W 0 W 1 W 2 W 3 W 4 W 5

q = 2 19 1 4 10 19 . .
q = 0 19 1 4 10 19 . .
q = 1 6 1 4 6 . . .

q = −1 18 1 4 10 16 18 .

q = 1
1
3 11 1 4 8 11 . .

q = 1
1
4 19 1 4 10 19 . .

q = 1
1
5 19 1 4 10 19 . .

q = 1
1
6 19 1 4 10 19 . .

q = 1
1
7 19 1 4 10 19 . .

q = 1
1
8 19 1 4 10 19 . .

The first column present the studied specialization. The second one, bold, show the dimension
of representation. After, each column is labeled by Wn that mean we can read the dimension
for Hn(z). The last number before the dots is the dimension of the full algebra H(z), the dots
mean the sequence is now stationnary. From these tableau, it is now time to search general
results.

4 Questions and improve

The main part of my work was really focused on this linear algebra problem. Starting with a
set of generators as algebra and search for the dimension as a vector space. There also were
problems with specializations. What happen when we specialise ?

Another point was identify which roots of unity make the dimension of the representation
decrease. I can read on the tableau for ”small” Cartan type, but rapidly, it become impossible
to identify them. To improve the observations and try to see more, we searched for a condition
easily computable which would permit us to know before the end of the full calculus.
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4.1 First results

There are a lot of way to dealt with the problem. The first one I felt is to relate this with
scheme theory. Specialization is defined on a localisation. I didn’t develop this way because I
don’t know enought about this theory and considering a scheme over an non commutative C(q)
algebra appear to me impossible. So, I tried to stay on a lower level. There were observations
to do just with linear algebra.

Lemma 4.1. Let q a format parameter and z a complex number. Let X1(q), X2(q), . . . , Xn(q)
a family of a C(q) vector space which specialise in X1(z), X2(z), . . . , Xn(z) by evaluation in z
; these lasts are element of a C vector space.
If the family X1(z), X2(z), . . . , Xn(z) is free over C thus the family X1(q), X2(q), . . . , Xn(q) is
free over C(q). In particular,

Dim(< X1(z), X2(z), . . . , Xn(z) >C) 6 Dim(< X1(q), X2(q), . . . , Xn(q) >C(q))

Proof. We proof this lemma by contraposition. A relation over C(q) induces a non trivial
relation over C. Assume that X1(q), X2(q), . . . , Xn(q) is non free over C(q). That mean we
have a relation such that :

kX
l=1

Pl(q)

Ql(q)
Xl(q) = 0

We want to specialise this relation but we have to be careful. let v(q−z) be the valuation of
C[q] in (q − z) that we extend on C(q) by :

v(q−z)(
P (q)

Q(q)
) = v(q−z)P (q)− v(q−z)Q(q)

With this, we define m to be :

m = min{v(q−z)(
Pl(q)

Ql(q)
), 1 6 l 6 k}

Now, the relation
kX

l=1

(q − z)−m Pl(q)

Ql(q)
Xl(q) = 0

still holds over C(q) but its specialization is now defined and non trivial over C.

I tried, in a second time, to push kernels. But it wasn’t very easy. The big difficulty is that
there is not natural morphism between objects. There are also hard tensorisation problem
with this strategy. With what tensorize ? Are we going to have a commutative action on each
object ? The specialization in z lie over C[q](q−z) and not over C(q). all my tentatives failled
this way...

Hi(q)
?−−−−−→ Hi+1(q)

?

??y ??y?

Hi(z)
?−−−−−→ Hi+1(z)

Another hard point came from observation. For the type A2, we have : Dim(H3(−1)) =
16 = Dim(H3(0))− 3 and Dim(H4(−1)) = 18 = Dim(H4(0))− 1. On this example, a loss of
dimension 3 reduces to one dimension at the end. So, the kernel can be push this step.

4.2 A lost conjecture

The following conjecture, which was suggested by the computer data allows for recognising
”bad” q’s as soon as a dimension loss is observed. Any application would have been for type
A4. The partial results for type A4 would have been sufficient to determinate what roots are
”bad”.
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Conjecture 4.1. Let q be a formal parameter. Let T1(q), T2(q), . . . , Tn(q) be square matrices
with coefficients in C[q].We define A(q) to be the C(q) algebra generated by T1(q), T2(q), . . . , Tn(q).
Let z ∈ C, we define A(z) as the unital algebra generated by T1(z), T2(z), . . . , Tn(z) where Ti(z)
is a matrix with each coefficient is the polynomial in q of Ti(q) evaluated in z. For i ∈ N, let
Ai(q) (resp. Ai(z)) be the subspace of A(q) (resp. A(z)) generated by all products of at most
i generators T1(q), T2(q), . . . , Tn(q) (resp.T1(z), T2(z), . . . , Tn(z) ).

Assume that dimC(Aj(z)) 6 dimC(q)(Aj(q)), for some j.

Then, dimC(Aj′(z)) 6 dimC(q)(Aj′(q)) for any j′ > j.

And in particular
dimC(A(z)) 6 dimC(q)(A(q))

Proof. Let us first focus on the application of specialization : q ←− z.
We define a partial section for specialization. That means for any element X(z) in A(z), we
can lift X(z) into an element X(q) in A(q) such that X(z) specialises X(q).

X(z) =
X
I∈J

αITI1(z)TI2(z) . . . TIk (z)

where I is finite sequence of elements in 1, 2, . . . , n, J is a finite set of such sequence and αI

is a complex number. Let’s define a antecedent of the specialization :

X(q) =
X
I∈J

αITI1(q)TI2(q) . . . TIk (q)

where I and J don’t move, αI is now a constant polynomial in q. So T (z) is trivially the
specialization of T (q) when q ←− z. By this way, we have define a kind a section for the
specialization. That’s proves that the specialization is surjective from Ai(q) to Ai(z) and
from A(q) to A(z).
After, from the loss of dimension over words of size i, I tried to construct adapted basis in
which I caught find a loss of dimension for word of size i + 1. But there was a mistake in
my proof. I tried to ovoid the problem without success. After doubts, I ask the computer to
search for a counterexample for this conjecture...

I found the following counterexample with the computer. (The way to found it can be
seen in annexe.)0@ 1 0 0

0 1 0
0 0 1

1A ,

0@ 0 1 0
1 q + 1 1
0 0 1

1A ,

0@ q − 1 q + 1 q − 1
0 q + 1 q − 1
0 q + 1 0

1A
If we specialised q to 1, we get0@ 1 0 0

0 1 0
0 0 1

1A ,

0@ 0 1 0
1 2 1
0 0 1

1A ,

0@ 0 2 0
0 2 0
0 2 0

1A
with the first matrices, we generate the algebra over C(q), for the last ones, over C. The
results are

A0(q) A1(q) A2(q) A3(q) A4(q) A5(q)
dim 1 3 7 9 . .

A0(1) A1(1) A2(1) A3(1) A4(1) A5(1)
dim 1 3 6 8 9 .

So we have a loss of dimension for the specialization but it is recovered at the end.

4.3 Conclusion

During this first contact with the research, I really learnt a lot about working methods. Manage
owns time is an hard task. The use of the computer in algebraic combinatorics is also very
important. There are times to observe, to conjecture and try to prove good results. Working
in a team allowed you to have another look of your staff. I worked sometimes in a bad way
but everytimes someone was there to bring my back in a good context. At the end, I didn’t
success to find the result I wanted to get. But this work is still oppen, not closed.
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5 Annexe and results of computation

All my work has been implemented in Sage[Ste08].

5.1 Cartan type A

A1 Dimension
Full Space W 0 W 1 W 2

q = 2 3 1 3 .
q = 0 3 1 3 .
q = 1 2 1 2 .
q = −1 2 1 2 .

q = 1
1
3 3 1 3 .

q = 1
1
4 3 1 3 .

q = 1
1
5 3 1 3 .

q = 1
1
6 3 1 3 .

q = 1
1
7 3 1 3 .

q = 1
1
8 3 1 3 .

A2 Dimension
Full Space W 0 W 1 W 2 W 3 W 4 W 5

q = 2 19 1 4 10 19 . .
q = 0 19 1 4 10 19 . .
q = 1 6 1 4 6 . . .

q = −1 18 1 4 10 16 18 .

q = 1
1
3 11 1 4 8 11 . .

q = 1
1
4 19 1 4 10 19 . .

q = 1
1
5 19 1 4 10 19 . .

q = 1
1
6 19 1 4 10 19 . .

q = 1
1
7 19 1 4 10 19 . .

q = 1
1
8 19 1 4 10 19 . .

A3 Dimension
Full Space W 0 W 1 W 2 W 3 W 4 W 5 W 6 W 7 W 8 W 9

q = 2 211 1 5 15 35 69 121 181 207 211 .
q = 0 211 1 5 15 35 69 121 181 207 211 .
q = 1 24 1 5 15 23 24 . . . . .
q = −1 125 1 5 15 33 59 89 115 125 . .

q = 1
1
3 152 1 5 15 35 68 112 139 149 152 .

q = 1
1
4 112 1 5 15 33 58 86 108 112 . .

q = 1
1
5 211 1 5 15 35 69 121 181 207 211 .

q = 1
1
6 211 1 5 15 35 69 121 181 207 211 .

q = 1
1
7 211 1 5 15 35 69 121 181 207 211 .

q = 1
1
8 211 1 5 15 35 69 121 181 207 211 .
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5.2 Cartan type B

B2 Dimension
Full Space W 0 W 1 W 2 W 3 W 4 W 5 W 6 W 7

q = 2 33 1 4 9 17 26 31 33 .
q = 0 33 1 4 9 17 26 31 33 .
q = 1 8 1 4 7 8 . . . .
q = −1 16 1 4 9 14 16 . . .

q = 1
1
3 26 1 4 9 17 25 26 . .

q = 1
1
4 22 1 4 9 16 21 22 . .

q = 1
1
5 33 1 4 9 17 26 31 33 .

q = 1
1
6 33 1 4 9 17 26 31 33 .

q = 1
1
7 33 1 4 9 17 26 31 33 .

q = 1
1
8 33 1 4 9 17 26 31 33 .

B3 Dimension
repr. W 0 W 1 W 2 W 3 W 4 W 5 W 6 W 7 W 8 W 9 W 10 W 11 W 12 W 13 W 14 W 15 W 16 W 17 W 18 W 19

q = 0 819 1 5 14 31 59 101 161 242 346 468 585 678 736 771 792 806 813 817 819 .

5.3 Cartan type C

As type B and type C created isomorphic structures, I just try to computed the type B2 to
realise it.

C2 Dimension
Full Space W 0 W 1 W 2 W 3 W 4 W 5 W 6 W 7

q = 2 33 1 4 9 17 26 31 33 .
q = 0 33 1 4 9 17 26 31 33 .
q = 1 8 1 4 7 8 . . . .
q = −1 16 1 4 9 14 16 . . .

q = 1
1
3 26 1 4 9 17 25 26 . .

q = 1
1
4 22 1 4 9 16 21 22 . .

q = 1
1
5 33 1 4 9 17 26 31 33 .

q = 1
1
6 33 1 4 9 17 26 31 33 .

q = 1
1
7 33 1 4 9 17 26 31 33 .

q = 1
1
8 33 1 4 9 17 26 31 33 .

5.4 Cartan type D

I didn’t get any result for type D. Not only a lack of time, the first group start at D4. Thus,
this group contain 234! = 192 elements. Generators would have contain 36864 coefficients.
This calculi is probably not adapted to classical machine.

5.5 The main algorithm

The main algorithm ask in arguments a list of generators and a field. From this, it constructs
the full algebra over the field generated by the entries.

def MatrixAlgebra(GEN=[[1]],K=QQ):

n = len(GEN) /*number of generators*/

m = len(trans_matrix(GEN[0])) /*Size of the generators*/

V = VectorSpace(K,m) /*Ambient space*/

Dim = n /*starting dimension*/

Current_Basis = map(V, map(trans_matrix, GEN))

Current_Space = V.subspace(Current_Basis)

Current_Basis = Current_Space.basis()
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Dim = Current_Space.dimension()

print Dim;

not_ended = true; /*by default, no stability*/

while not_ended:

new = [] /*Intialising list of new words*/

is_stable = true /*We suppose all is generated*/

for i in range(n-1):

for j in range(len(Current_Basis)):

op_left = trans_matrix(GEN[i+1]*recompose_matrix(Current_Basis[j]))

if ((V(op_left) not in Current_Space)):

new.append(V(op_left))

is_stable = false /*A new word, no stability*/

if is_stable: /*If we don’t find any new word...*/

not_ended = false; /*...the job is done*/

else:

Current_Space = V.subspace(Current_Basis + new)

Current_Basis = Current_Space.basis()

Dim = Current_Space.dimension()

print Dim /*Subspace generated by word of lenght . */

Return Current_Space;

5.6 Searching a conterexample of the conjecture

To search a conter example to the conjecture i followed during my work, i rapidly realised
that i would not be easy possible to find it in a human way. This time, the computer was
clearly needed. I was searching it with square matrices of size 3, so the ambient space was
of dimension 9. I was needed, with the identity, two random matrices, which don’t commute
most of the time. Calculus over the field C(q) with q formal was very heavy even the matrices
are small.

My first intuition was a good one this time. I constructed a program which give randomly
one of this 4 events : 0, 1, q + 1, q − 1. I just choice that by equiprobability with the random
function of SAGE [Ste08]. The specialization was in 1 this choice must be in correlation with
the choices q+ 1, q− 1. After, i just programmed a test by generate the generic Hecke algebra
over C(q) and generate a specialised Hecke algebra with q = 1. therefore, i had just to wait
and hope to see a loose a dimension with a recovery for last step...

Let’s see a log file of the searching algorithm.

How to read this --->

[Id, Generator_1, Generator_2]

[suit of dimensions over C(q)]

[suit of dimensions for q=1 over C]

Match if conter example, No match else.

-----------------------------------------------------------

[[1 0 0] [ 0 q + 1 q - 1] [q + 1 0 q + 1]

[0 1 0] [q + 1 0 1] [q - 1 q - 1 q - 1]

[0 0 1], [ 1 1 0], [ 1 1 q - 1]]

[1, 3, 7, 9]

[1, 3, 7, 9]

No Match

-----------------------------------------------------------

[[1 0 0] [q - 1 q + 1 1] [q + 1 q - 1 0]

[0 1 0] [q + 1 0 1] [ 1 0 q + 1]

[0 0 1], [q + 1 0 q - 1], [q + 1 1 0]]

[1, 3, 7, 9]

[1, 3, 7, 9]

No Match

-----------------------------------------------------------

[[1 0 0] [q - 1 q - 1 0] [q - 1 1 0]
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[0 1 0] [ 0 0 q - 1] [q - 1 q - 1 q - 1]

[0 0 1], [q + 1 q - 1 q - 1], [q + 1 1 0]]

[1, 3, 7, 9]

[1, 3, 4]

No Match

-----------------------------------------------------------

[[1 0 0] [ 1 0 0] [ 0 q - 1 1]

[0 1 0] [q + 1 0 1] [ 0 1 1]

[0 0 1], [q + 1 q - 1 q + 1], [ 0 0 1]]

[1, 3, 7, 9]

[1, 3, 7]

No Match

-----------------------------------------------------------

[[1 0 0] [q + 1 q - 1 q + 1] [ 1 q - 1 0]

[0 1 0] [q - 1 1 q - 1] [ 1 q + 1 q + 1]

[0 0 1], [ 0 0 1], [q + 1 q - 1 1]]

[1, 3, 7, 9]

[1, 3, 6, 7]

No Match

-----------------------------------------------------------

[[1 0 0] [q + 1 0 q + 1] [q - 1 1 q + 1]

[0 1 0] [q - 1 q - 1 0] [ 0 q - 1 0]

[0 0 1], [q + 1 q - 1 0], [q - 1 q + 1 1]]

[1, 3, 7, 9]

[1, 3, 7]

No Match

-----------------------------------------------------------

[[1 0 0] [q - 1 q + 1 1] [ 0 q + 1 q + 1]

[0 1 0] [q + 1 0 q + 1] [ 0 q - 1 q - 1]

[0 0 1], [ 1 q + 1 1], [q - 1 q + 1 q - 1]]

[1, 3, 7, 9]

[1, 3, 7, 9]

No Match

-----------------------------------------------------------

[[1 0 0] [ 0 1 0] [q - 1 q + 1 q - 1]

[0 1 0] [ 1 q + 1 1] [ 0 q + 1 q - 1]

[0 0 1], [ 0 0 1], [ 0 q + 1 0]]

[1, 3, 7, 9]

[1, 3, 6, 8, 9]

Match

For the last try, we see a loose dimension for words of size 2 which is recovered with words of
size 4. So, the set of matrices

0@ 1 0 0
0 1 0
0 0 1

1A 0@ 0 1 0
1 q + 1 1
0 0 1

1A 0@ q − 1 q + 1 q − 1
0 q + 1 q − 1
0 q + 1 0

1A

give a counterexample to the conjecture by specialise q to 1.
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A3 Dimension
Full Space W 0 W 1 W 2 W 3 W 4 W 5 W 6 W 7

q = 2 24 1 4 9 15 20 23 24 .
q = 0 24 1 4 9 15 20 23 24 .
q = 1 24 1 4 9 15 20 23 24 .
q = −1 24 1 4 9 15 20 23 24 .

q = 1
1
3 24 1 4 9 15 20 23 24 .

q = 1
1
4 24 1 4 9 15 20 23 24 .

q = 1
1
5 24 1 4 9 15 20 23 24 .

q = 1
1
6 24 1 4 9 15 20 23 24 .

q = 1
1
7 24 1 4 9 15 20 23 24 .

q = 1
1
8 24 1 4 9 15 20 23 24 .

A2 Dimension
Full Space W 0 W 1 W 2 W 3 W 4

q = 2 6 1 3 5 6 .
q = 0 6 1 3 5 6 .
q = 1 6 1 3 5 6 .

q = −1 6 1 3 5 6 .

q = 1
1
3 6 1 3 5 6 .

q = 1
1
4 6 1 3 5 6 .

q = 1
1
5 6 1 3 5 6 .

q = 1
1
6 6 1 3 5 6 .

q = 1
1
7 6 1 3 5 6 .

q = 1
1
8 6 1 3 5 6 .

B2 Dimension
Full Space W 0 W 1 W 2 W 3 W 4 W 5

q = 2 8 1 4 5 7 8 .
q = 0 8 1 4 5 7 8 .
q = 1 8 1 4 5 7 8 .
q = −1 8 1 4 5 7 8 .

q = 1
1
3 8 1 4 5 7 8 .

q = 1
1
4 8 1 4 5 7 8 .

q = 1
1
5 8 1 4 5 7 8 .

q = 1
1
6 8 1 4 5 7 8 .

q = 1
1
7 8 1 4 5 7 8 .

q = 1
1
8 8 1 4 5 7 8 .

B3 Dimension
repr. W 0 W 1 W 2 W 3 W 4 W 5 W 6 W 7 W 8 W 9 W 10

q = 2 ? 1 5 14 31 59 101 161 242 346 468 585
q = 0 ? 1 5 14 31 59 101 161 242 346 468
q = 1 48 1 5 14 31 45 48 . . . .
q = −1 ? 1 5 14 31 59 100

q = 1
1
3 ? 1 5 14 31 59 100

q = 1
1
4 ? 1 5

q = 1
1
5 ? 1 5

q = 1
1
6 ? 1 5

q = 1
1
7 ? 1 5

q = 1
1
8 ? 1 5
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