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Introduction

Introduction
Tome V : 1961-1963

C’est une période extrémement féconde, qui voit la parution de nombreux
articles dans plusieurs de ses domaines principaux de recherche :

- les langages algébriques (ou context-free) avec [1961-1], [1962-6], [1963-1],

[1963-5] et [1963-7],
— les séries rationnelles : notamment [1961-4], [1962-1], [1962-3] et [1963-4]
- la combinatoire, avec [1962-5] et [1963-7]

la théorie des codes, avec [1961-2] et [1961-5]

— les automates et les transductions, avec [1961-3].

C’est certainement 'article en commun avec Noam Chomsky, The algebraic
theory of context-free languages [1963-7] qui est le plus connu, en tout cas le
plus cité. Il a fait 'objet d’une traduction en allemand, et d’une traduction
en francais ([1968-4]), peut-étre dans d’autres langues. Cet article esquisse et
méme décrit de maniére assez détaillée une théorie des langages dits context-
free qui serait algébrique plutét que constructive ou combinatoire. Par exemple,
une grammaire pour un langage est considérée comme un systéme d’équations,
les variables de la grammaire jouant le role des inconnues. Les solutions de ce
systéme d’équation sont calculées par approximations successives (c’est la mé-
thode des points fixes) dans I’algébre des séries formelles non commutatives, et
prennent ainsi en compte les ambiguités éventuelles dans les dérivations. L’ar-
ticle contient de nombreux exemples et des propriétés de cloture. On y trouve
aussi la définition des langages de Dyck, des langages rationnels locaux, et le
fameux théoréme de Chomsky-Schiitzenberger selon lequel tout langage algé-
brique est I'image homomorphe de l'intersection d’un langage de Dyck et d’un
langage rationnel local. L’article contient aussi des résumés ou des citations de
nombreux résultats démontrés par M.-P. Schiitzenberger dans d’autres publica-
tions.

Ce volume contient d’autres travaux sur les langages context-free. Publié
avant son travail en commun avec Chomsky, l'article Some remarks on Chom-
sky’s context-free languages [1961-1] est une étude sur les liens entre langages
et séries formelles. En particulier, il y est établi que le support des séries N-
rationnelle (resp. N-algébriques) est un langage rationnel (resp. algébrique).
C’est ici que se trouve ’origine de la terminologie « moderne » de langage ra-
tionnel ou algébrique pour reqular ou context-free.

L’article On probabilistic push-down storage [1962-6] décrit une variante du
fonctionnement usuel des automates a pile : ces automates peuvent effacer des
« segments rationnels » dans leur pile; ceci veut dire que l'automate peut, en
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un seul mouvement, effacer un mot de pile pourvu qu’il soit dans un langage
rationnel donné. Cette extension donnera naissance beaucoup plus tard au « au-
tomates & taquets » de Sheila Greibach [4] qui permettra une classification assez
fine des langages algébriques déterministes. Dans On context-free languages and
push-down automata [1963-5|, M.-P. Schiitzenberger montre que, dans le théo-
réme de Chomsky-Schiitzenberger, le langage de Dyck peut étre remplacé par
le noyau d’un groupe libre (aussi appelé « langage de Dyck bilatére »), ten-
tant ainsi de relier la théorie des langages algébriques a ’algébre plus classique.
Cette tentative donnera des résultats beaucoup plus tard, comme par exemple
les travaux de Muller et Schupp [6] sur le lien entre les langages algébriques et
la théorie des bouts.

La formulation algébrique d’une propriété — que nous venons de mentionner
a propos des grammaires — est 'un des objectifs récurrents de M.-P. Schiitzen-
berger qui considére les objects non commutatifs, les mots, codes, grammaires
ou séries, comme relevant d’un traitement algébrique.

Les travaux de M.-P. Schiitzenberger ont montré que les grammaires des
langages algébriques se traduisent trés simplement en des équations pour les
séries formelles génératrices énumérant les mots du langage correspondant. Sans
que Schiitzenberger lui-méme ait publié des écrits sur ce sujet, ce constat et son
enseignement ont permis & certains de ses éléves d’élaborer, en liaison aussi avec
la méthode bijective, une technique trés puissante pour obtenir des formules
d’énumération. Cette technique, dont les premiéres prémices remontent peut-
étre & Maurice Gross [5], a été particuliérement féconde pour énumérer plusieurs
famille d’objets proches des mots de Dyck, comme par exemple les cartes et
triangulations planaires qui constituent un des chapitres les plus actuels des
interactions entre physique statistique et combinatoire.

Les articles On a special class of recurrent events [1961-2] et On a family of
submonoids [1961-5|, contiennent les principaux résultats de la théorie des codes
bifixes. Le premier est publié¢ dans une revue de théorie des probabilités (Annals
of Mathematical Statistics). Comme beaucoup d’articles de M.-P. Schiitzenber-
ger, il met en valeur un énoncé présenté comme le résultat principal de larticle,
alors que celui-ci en contient beaucoup d’autres. Le résultat en question (Pro-
perty 1) est le fait remarquable que les codes bifixes maximaux coupants ont
une longueur moyenne qui est un entier quelle que soit la distribution de Ber-
noulli sur ’alphabet. L’énoncé est exprimé dans la terminologie de Feller des
événements récurrents. Il avait été formulé dans un cas particulier par Gilbert
et Moore dans leur célébre article de 1959. L’article présente, sous forme d’énon-
cés numérotés comme des remarques, de trés nombreuses propriétés des codes
bifixes, parmi lesquelles le fait qu’il n’existe qu’un nombre fini de codes bifixes
maximaux finis de degré donné et un grand nombre de constructions, comme la
transformation interne dont Cesari devait prouver en 1972 (|2]) qu’elle permet
d’obtenir tous les codes bifixes maximaux finis.

Le deuxiéme article, On a family of submonoids, est publié dans une revue
a moins grande diffusion (la revue de I’Académie des Sciences Hongroise). Il est
destiné & un public d’algébristes et présente les sous-monoides engendrés par
les codes bifixes comme une généralisation intéressante des sous-groupes d’un
groupe. L’article développe les constructions utilisant la théorie des semigroupes
et en particulier la structure de I'idéal minimal et du groupe de Suschkevitch
d’un semigroupe ayant des idéaux minimaux.
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Larticle A remark of finite transducers [1961-3] est le premier dans lequel
M.-P. Schiitzenberger traite des transducteurs non ambigus qui apparaissent en
particulier pour le décodage des codes & longueur variable. Il définit les bima-
chines, reprises plus tard dans le livre d’Eilenberg en 1974, comme un modéle
permettant de représenter toutes les fonctions rationnelles et en particulier la
composition d’une transduction séquentielle gauche et d’une transduction sé-
quentielle droite.

L’article On the definition of a family of automata [1961-4] est le docu-
ment fondateur pour la théorie des séries rationnelles en variables non com-
mutatives, vues comme ’extension des langages rationnels. Il contient ce que
l’on appelle maintenant le théoréme de Kleene-Schiitzenberger, et aussi ’algo-
rithme de construction de la représentation minimale. Depuis, le théoréme de
Kleene—Schiitzenberger a été redémontré et étendu a des situations plus géné-
rales, comme les séries en variables partiellement commutatives. L’article Finite
counting automata [1962-1] contient I'un des théorémes les plus difficiles de la
théorie, a savoir la caractérisation des séries rationnelles & croissance polyno-
miale. Ce théoréme a, comme cas particulier, le théoréme de Burnside pour
les semigroupes de matrices. Une démonstration retravaillée de ce résultat se
trouve dans le livre [1] qui contient aussi les résultats sur les séries rationnelles
non commutatives postérieurs aux travaux de Schiitzenberger, notamment ceux
de Fliess, Jacob, Soittola, Berstel, Reutenauer.

L’article [1962-2] Certain infinite formal products and their combinatorial
applications, qui fait partie des actes d’un colloque, est la premiére contribution
a la théorie des factorisations des monoides libres qui donnera lieu en particulier
a larticle [1965-6].

L’article The equation a™ = b"cP in a free group [1962-5] contient ce que I'on
appelle le théoréme de Lyndon et Schiitzenberger selon lequel ’équation dans le
groupe libre 2™y™ = 2P n’a, pour n,m,p > 2, que des solutions triviales, c’est-
a-dire que z,y, 2z sont tous puissances d’un méme élément. L’un des lemmes
utilisés (Lemma 4) est le fait que si les mots z™ et y™ ont un préfixe commun
de longueur |z|+ |y, alors z et y sont puissances d’un méme élément. La borne
peut en fait étre remplacée par |z| + |y| — 1 mais cela n’apparait qu’un peu plus
tard, dans l’article de Fine et Wilf de 1965 ([3]).

L’article On the minimum number of elements in a cutting set of words
[1962-8] est un rapport de recherche d’IBM sur les ensembles coupants. Il donne
une borne asymptotique sur la taille des ensembles coupants minimaux de mots
de méme longueur. Le résultat sera repris dans article de [1964-1].

L’article Quelques remarques sur une construction de Schensted [1963-6], re-
pris dans l'exposé [1963-3], est le début d’une longue série d’articles concernant
les tableauz de Young. Schensted a défini une bijection entre permutations w et
paires de tableaux (P(w), Q(w)) de méme forme (construction liée en fait & un
travail plus ancien de Robinson). M.-P. Schiitzenberger montre que la paire cor-
respondant a 'inverse de w est (Q(w), P(w)), et que par ailleurs la conjugaison
par rapport & la permutation maximale induit une involution sur les tableaux,
qui peut se réaliser par une procédure d’évacuation. Cette involution apparait
fréquemment dans la littérature sous le nom d’involution de Schiitzenberger,
terme désavoué par M.-P. Schiitzenberger qui lui préférait le nom d’involution
naturelle.
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C. SOME REMARKS ON CHOMSKY'S CONTEXT-FREE LANGUAGES
1. Introduction

This report is devoted to the examination of several families of subsets of a free
monoid that arise rather naturally when generalizing some definitions of classical analy-
sis to the noncommutative case. These families contain, in particular, the regular
events of Kleene and the context-free languages of Chomsky.

The main tool is the so-called formal power $eries with integral coefficients in the
noncommutative variates x € X.

By definition, such a formal power series, r, is a mapping that assigns to every
word f € F(X), (where F(X) is the free monoid generated by X) a certain positive or
negative integral "weight" <r, f>, the coefficient of f in r. Thus, in fact, a formal power
series is just an element of the free module with basis F(X).

In fact, if instead of considering only a subset F' of F(X) we specify a process pro-
ducing its words, it seems natural to count how many times each of them is obtained and
the formal power series is the tool needed for handling this more detailed information.

Of course, with this interpretation we only get positive power series, i.e., power
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series in which every coefficient <r,f> is non-negative. The general case may be
thought of as being associated with two processes and then the coefficient of f is the
difference between the number of times f is obtained by each of these processes.

In any case, we shall define the supporf of r as the subset F = {fe F:<r,{>#0}.

The power series form a ring A(X) with respect to the following operation:

multiplication by an integer: the coefficient of f in nr is simply n<r, f>

addition: <r+r',f>=<r,f>+ <r',f>, for all f

multiplication: <rr',f>= Z<r,f> <r', f">, where the sum is extended to all factor-
izations f = f'f".

It is clear that when r and r' are positive, the support Fi‘+r' of r+r' is just the
union of the supports of r and of r'; similarly, the support of rr' is the set product
FrFr" For arbitrary r the interpretation is more complicated.

It is convenient to introduce a topology in A(X) in order to be able to define the limit
of a sequence. Among the many possibilities that are available the simplest one is based
upon the following definition of the distance: " r-r' " = 1/n if and only if <r,f>= <r',f>
for every word f € F of degree ("length") strictly, less than n and <r, f># <r',f> for
at least one f € F of degree n.

Thus, " r-r' " = 0if <r,e># <r',e>, where e is the empty word and " r-r' || = 0if
r=r'.
It is easily checked that " r-r' " < sup (|| r-r" " , " r'-r" ||) for any r, r', r" € A(X), and

that the addition and multiplication are continuous. The norm " r" of r is just " r—O".
Clearly, " r" = 1/n, where n is the smallest integer such that <r, f># 0 for some f of
degree (= length) n. Thus r has a finite norm if and only if <r,e> # 0.

We now introduce the important notion of an inverse.

By definition r € A(X) is invertible if r' = e-r has a finite norm, i.e., if <r,e>= 1.

If this is so, the infinite sume+ £ '™

n>0

= r" satisfies the identity r" - r'r' = r" -

r'r"=e, i.e., r"r=rr" =e.

1

This suggests the notation r" = r ' and, since r". is invertible, one can also con-

struct (r")_l.

It is easily verified that (r")_l = r, and thus there is no inconvenience in considering
the infinite sum r" as the inverse r—l of r. It is worth noting that if ry is a positive
element with finite norm, then (e—rl)_1 is positive and has as its support the subset
F:: = U (Fr )n in Kleene's notation.

1 n>0 1

Thus we are able to interpret all of the usual set theoretic operations except for
complementation and intersection.

With respect to the first, we can observe that by construction the formal power

series ( - = x)‘l is equal to Z{f: fe F(X)}.
x€X
Consequently, if we associate with the subset F' of F the formal power series

156
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r,,= % f(i.e., the power series with <r.,,,
F feF' F
port of (e -z x)—1 =T is precisely the complement of F' in F.
x€X

f>=1if f € F' = 0, otherwise) the sup-

With respect to the intersection, we can define a Hadamard product which associates

with any r, f € A(X) the new power series r®r', defined by <r®r', f>= <r,f> <r',f> for

all f. Clearly, the support of r®r' is the intersection of the supports of r and r'.
However, the Hadamard product is no longer an elementary operation and this may

explain why some otherwise reasonable families of subsets are not closed under inter-

section (cf. below).
2. Relation with Ordinary Power Series

This can be expressed in a loose way by saying that ordinary power series are
obtained from the elements of A(X) by disregarding the order of the letters in the words
fe F. Formally, let ¢ be a bijection (one-to-one mapping onto) X - X. An ordinary

n,. n n
power series T in the variates §i € X is an infinite sum r=X% a . n fl 15('22 . imm
n, n, n_ 172 m
extended to all the monomials 3:‘1 5(2 . Sc'm .
We can consider that any such r (with integral coefficients 2 n n ) is the image
- LR WY
by the homomorphism e of at least one r € A(X) by defining & n n 2 the sum of
172" " "m
<r,f> extended to all of the words f € F(X) containing the letters X, n) times; the letters
1. "2 m
X, n, times ... etc.; i.e., to all words f such that ef = il SEZ ce Em , where e is

the homomorphism sending F(X) onto the free commutative monoid generated by X. It

r, = ar,ar, = ar,ar,; a(r_l) = (arl)"l identi-

is trivial that a(rlirz) = ar 1 1 1

cally.
Also, when X contains a single letter no difference need be made between formal

1 ES arz; ¢zr1

(noncommutative) and ordinary (commutative) power series.

Since the theory of ordinary power series is an extremely well-developed chapter
of mathematics, the existence of the homomorphism e may at times be used for the
study of the formal power series and of their support. The discussion of some elemen-
tary examples of this approach is, in fact, the main content of this report.

3. The Algebraic Elements of A(X)

In ordinary calculus, one usually considers as especially elementary functions the
polynomials, the rational functions, and the algebraic functions.

By definition, a polynomial is the function represented by an ordinary power series
with only finitely many nonzero coefficients; a rational function is the quotient of two
polynomials; an algebraic function is a function of the variates with the property that

157
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it satisfies identically some algebraic relation expressed by a polynomial.

X, X

For example, 5 is a rational function of Yl and ')Ez, and the function r of the
2
commutative variates ')'El and 332 that is such that 3'(1_2?2 - T+1 = 0 identically is an alge-

1-%

braic function.

We can imitate this hierarchy by introducing the following definitions: an element
re A(X)is a polynomial if its support is a finite set; an element r € A(X) is rational
if it can be obtained from the generators x € X as a finite expression using only the sum,
the product, and the inversion (of invertible elements).

It is clear that the polynomials form a subring of A(X). Indeed, this ring is what
is usually called the free ring generated by X.

In a similar manner, the set R(X) of the rational elements is a ring, i.e., it is closed
under addition, subtraction, and multiplication. Furthermore, it is closed under inver-
sion (of invertible elements). In fact, f_f(X) is the smallest subring of A(X) closed under
this last operation and containing X.

It is easily verified that for any r € R(X) the "Abelianized" ordinary power series
T = ar represents a rational function.

Consider, for instance, the formal power series r with <r,f> = 1 if and only if

7 3-0-2n1 3~}'2n2 3+2nm 5
f= X%, XX Xy o ee XX X5, and <r,f>= 0, otherwise. This series r
= 6 3(_2yv1y! s
belongs to R(X) because r is equal to xz(e—xle e—xl) ) X5 and er can be reduced
to the quotient of two polynomials by writing

ar = %5 (%, %3 (e-r:z)“l)~1 %5
2 271 1 2

_6((e_i2)-l(e__2_'_f _‘5))—1 =5
X2 1 X17%2%) *2

2 2 3\-1_11
(e—xl) (e—xl—xle x5

11 2
X, (l—x 1)

-2 -2

X] XX,
The family of all subsets of F that can be the support of a rational element of A(X) has

been defined elsewhere.7 It is not difficult to verify that it is closed under union, inter-
section, set product, and Kleene's star operation.

Having recalled these facts, we proceed to the definition of an algebraic element
of A(X).

For this purpose, we consider a finite set : of m new elements §i, and we denote
by @ an m-tuple of polynomials o’g in the (noncommutative) va:_ilates yeY=xU E that
satisfy the condition that <o, e>= <o, g'>=0forall§, '€ * .

158
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Now let W denote the set of all m-tuples w = (Wl’ Wy, - -Wm) of elements of A(X).
We consider & as a mapping of W into itself by defining the coordinate ?wg of the trans-
formed vector ow as the element of A(X) obtained by replacing in the polynomial Fg every
symbol £' by the corresponding coordinate wg, of W

+xl§1x2§2; and if w is the vector

For instance, if crgl = xlgzxz; (ng = XX,

2 4 . —
(3x1—xle,x2+2x3), the w coordinates of ¢w are
ow

2 4 _ 3 4
xl(x2+2x3) X, = XX, + lex:{;x2

&

n

— 2 4
Wﬁz X %y + x1(3x1—x2x1) xz(x2+2x3)

=X X, + 3x x + (:xlxz 3 xlxlex; lexlex2 ‘;
It is clear that o is a continuous mapping in the sense that if w, w' € W are such that
"w-wg || <1/nfor each e ! 1 (i.e., for short, if [|[w-w'| < 1/n, then |[ew-sw!|.<1/n.

Indeed, the relation " w-w' || 1/n expressed the fact that the coefficients <wg, f>
and <w§, f> are equal for every coordinate £ € : and for every word f of degree <n.
Since the coefficient of every word of degree n in the polynomial in the letters x € X
obtained by the substitution §' - wg, or £' - w'g, in °'§ depends only on the terms of lower
degree, the result is a simple consequence of the definition.

In fact, because of our hypothesis on @, a stronger result can be proved when w and
w' satisfy the supplementary condition that <W§’f>= <W:§’ e>= 0 for all §£. Then,
obviously, this last condition is still verified for ow and ow' (because <o, e> = 0).
Furthermore (because <o'€, £'>=0), we can conclude from ||w—w' " 1/n that ﬁ -o’w'"
1/n+l. This, again, is a direct consequence of the fact that the coefficients of the terms
of degree n+l of ow are determined univocally by the coefficients of the terms of
degree <n of w.

Let us now consider the infinite sequence w, Wi eees Woa ooy where W= (0,0,...,0)

n

1 'Ewn. By applying our previous remarks and using induction, we can easily

show that for all n and n' > 0 we have "w “Woen " <1/n. Consequently, we have proved

and w

that w = lim w_ is a well-defined element of W and that lim ow_ - w, = 0. This sug-
n=-co n=+00
gests that we speak of w as of a solution of the system of equations § = T (i.e., w=ow),

since, in fact, for each £, we is equal to the formal power series in the x € X obtained
by replacing in o each £' by the coordinate We-

We shall say, accordingly, that We is an algebraic element of A(X). Because of our
definition of &, any w has a f-i::ite norm (i.e., <wg, e> = 0). This restriction would be
artificial; we shall denote by S(X) the set of all formal power series that is the sum of
a polynomial and of a coordinate Wes defined above, for some suitable finite set of poly-
nomials o, or, as we prefer to say, by a set of "equations" § = g

159
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It is not difficult to verify the fact that S(X) is a ring closed under the formation of
inverses (of invertible elements). Indeed, let r and r' be obtained as the coordinates
we and w'g of the solutions w and w' of the equations w = ow and w' = T'w'. For the

— —'
and -,

sake of clarity, we assume that ¢ and ' are defined by two disjoint sets -,

" —

!
of m and m' elements, and we consider the union of : » ., and of a new letter £".

-
—
Then, if we denote by o" the direct sum of © and ', it is clear that the new equation £" =
o'€+a':§, determines w'é,, = r+r'. Similarly, the equation £" = ££' determines w'é =rr'.

In order to get (e—r)—l -e (= z rn) it is enough, for instance, to add the new
equation £" = ££" - 7. n>0

As a final remark it may be pointed out that (as for rational elements) the homomor-
phism e sends the algebraic elements of K(X) onto the Taylor series of the ordinary
algebraic functions. These last series are easily proved to converge in some small
enough domain around 0. Let us also mention that S(X), as defined constructively here,
can also be shown to be identical to the set of all formal power series with integral coef-
ficients that satisfy a set of equations of the type w = ow, described above, provided, of

course, that such solutions exist.

Example 1.

X

1

Let rrgl = xlglxz + X%,

(rgz = glgz + xlglx2 + X)X,

Since the first equation involves only gl, it can be solved for its own sake, and one easily

obtains r = wg = Z xxllxrzl. Then the second equation gives
1 n>0

-1
w, =rw, +r, thatis, w, = r(e-r) ".
Thus, by definition, a word f belongs to the support of wg if and only if it can be
2
n, n n, n n_ n
factorized as a product (xllle) (xlzxzz) “e (xlmxlm) of words belonging to the sup-
port of r.

Since, trivially, this factorization is unique, we always have <w§ ,f>=0o0r 1.
2

Example 2.
Let 51 = "1’51"251 + xlngl + xlglxz +x %,

After settingr=-e + §l we get the simpler form r = x rX,r + e, instead of the equation

1

§1 =0p . Again, <r,f>= 0, or 1; with <r,f>= 1 if and only if
1

1°. f contains as many X, as X,.

2°, any left factor f' of f contains at least as many X as X,.
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Since the equation can also be written in the form r = (e—xlrxz)_l, it follows that every
fe Fr has one and only one factorization as a product of words belonging to the sup-
port F' of X TX,.

F' is closely related to the well-formed formulas in Lukasiewicz' notation because
f belongs to F' if and only if it satisfies 1° and, instead of 2°, condition 3°. Any factor {'
of f contains, strictly, more x, than x,, unless f' = e or {' = f.

Let us now observe that X rx, satisfies the equation xl(e--xlrxz)"1 X, = X IX,. Taking
the homomorphic image as ¢ and writing r' = a (xlrxz), we get the ordinary equation
X%, (1-F) = e, % -F+ %%, =0.

By construction, the ordinary power series r' takes the value 6 for X%, =0 and

thus, as is well known,
1-./1-4x %
Fee—m v 12 1 5 xn|1/2
= z 'zz(xlxz)[n]
1/2] . . . .
where n |18 the binomial coefficient.
Because <xlrx2, f>=0or 1, we can conclude that (—l)n [léz] is the number of dis-
tinct words of degree 2n in the support of X TX,.

The reader may notice that our present computation is exactly the one used in the
classical problem of the return to equilibrium in coin-tossing games.

Example 3.
Let : be the union of {,n and of gi (i=1, ...2m) and agree that gi+m = gi" when
i=i'+m. LetX= {xi} i=1, 2, ..., 2m, and consider the 2m equations
2n
s 2 _
gi = xix, o+ X t+0°+tnt Z xj(e+n) xj+m X0
=1
2m
L= Z Eim=0+0Ln.
1=1

Simple transformations reduce these to standard form, and it can be proved that

<e+n,f>= 0, or 1 with <e+n,f> = 1 if and only if f belongs to the kernel K of the homo-

morphism ¢, which sends F(X) onto the corresponding free group (with (4>xi)_l = ¢xi+n).
After performing the homomorphism a, we compute the value of an = u(t) for il =

Xy = oo = me = %n— By construction, u(t) is the generating function of the recurrent

event consisting in the return to K, and u(l) is the probability that a random word ever
belongs to K when the letters x; € X are produced independently with constant proba-
bility 1/2m.

We find that w = u(t) is defined by the quadratic equation (4mz—t2)uz -4m2u+ thz= 0,

which is in agreement with similar results of Kesten3 to which we refer for a more
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explicit interpretation of u(t).

4. Some Subfamilies of S(X)

It seems natural to distinguish in S(X) the subset §1(X) of those elements that are
obtained when each o of o has the special form

o'g =f+Z {'£'f", where f, f'f" € F(X), and the summation is over any finite set of
triples (f', §', f") (with, eventually, the same £' occurring several times; i.e., when
each o is linear in the variates £ € :

Within §1(X) itself we shall distinguish the special case SO(X) for whicho = f+Z £'f";
i.e., only one-sided linear equations are considered.

Clearly, after taking the homomorphic image as a, both §1(X) and §O(X) collapse
onto the ring of the ordinary rational functions but, at the level of A(X). the sets from
§O(X) form only a very restricted subset of §1(X), as we shall see.

A second principle of classification is provided by the restriction that every coeffi-
cient in the polynomials "g is non-negative.

Under this hypothesis, the same is true of the power series w,, and, correspondingly,
we obtain three subsets (in fact, three semirings) which we denote ST(X), EJI(X), and
E:(X). It is to be stressed that the converse is not true. Indeed, it is quite easy to dis-
play examples of formal power series having only non-negative coefficients that belong
to _§0(X), but not even to §+(X).

A priori the inclusion relations shown in Fig. XII-1 hold. Here, PO(X) and P;(X)

A(X)
s(X)
N
3"|(x) 5,

3 Fig. XII-1.
| /-S—O(X)

5o(X) \
Ny

Py (X)

denote the polynomials and the positive polynomials, respectively. Insofar as the cor-
responding supports are concerned, three theorems summarize the results.

THEOREM 1. (Ginsburg-Rice). The family of the supports of the elements of §+(X)
is identical to the family ¢ of Chomsky's context-free languages.
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THEOREM II. (Chomsky). The family of the supports of the elements of S;(X) is
identical to the family '@o of Kleene's regular events.

THEOREM III. The family of the supports of the elements of SO(X) is identical to
the family £ of the sets of words accepted by an automaton of the type &7 (i.e., itis
identical to the family of the supports of the rational elements of K(X)).

In order to prove Theorem I we need to alter slightly Chomsky's definition and we
propose

DEFINITION. A context-free grammar is given by

i. Two disjoint finite sets |-, and X;
ii. A finite set G of pairs (£, g), where £ € : ge FXU S). g#e, g{D
iii. A distinguished element £ € : .

The language Dx(ﬁo,G) produced by G is the intersection F(X) N D(§°,G), where
D(f;o.G) is the smallest subset of F(XUE) which is such that §oe D(ﬁo,G) aicil
glg'g2 € D(&,O,G). and (£', g) € G implies g,88, € D(£,G). In the usual terminolegy, .,
(resp. X) is the nonterminal (resp. terminal) vocabulary, and G is the grammar; our

definition departs from Chomsky's by the easily met restriction g ;{ : for each rule
(£, g) of G.
With this notation the equivalence of ¥ with the set of all supports F'r: r e_S+(X)
is trivial.
Let G be given, and define for each § € 2 the polynomial u'g as the sum X g extended
to all g so that (£, g) € G.
If we interpret the support of we as the set DX(E, G), it is clear that any equation
wg = Tw can be interpreted as describing Dx(g.G) as the union of the sets Dx(g,G)
((€, g) € G) obtained by replacing in g every letter £' by a terminal word f € Dx(g',G).

rm
yand ge

Conversely, let us assume that @ is such that <cr§, g>=20forallfe
FX, ).

By introducing enough new variates £', we can find & which is such that <a'g, g>=0
or 1, and the new polynomials cr'g reduce to old polynomials Ug when the new variates §'
are identified with the old ones in a suitable manner. Furthermore, for every new §'
(corresponding to the old variate £) we add an equation cg. identical to o'g.

Thus the original wg is equal to a sum = w'g. (with w' = ¢'w') and o' can be associ-
ated with a grammar in a unique fashion, since <a"g,, g>=0 or 1.

This interpretation throws some light on the other families. Thus, 'S*I'(X) corre-
sponds to the family ‘Kl of the context-free languages in which every rule has the form
(;£'€'f") or (£, f) with £, f', f" € F(X).

In turn, -S:)(X) is obtained by restricting the rules to have the form (£, §'f) or (£, f)
with f € F(X).

Observe now that, in any case, the coefficient <wg, f> of the word f expresses the
number of distinct factorizations of f according to the rule of grammar. Thus, for
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S -
any twor, r' € S+(X). the support of r-r' consists precisely
/ of those words that have a different number of factoriza-
¢
$
1

tions in the two grammars associated with r and r',

respectively.
Reciprocally, given any r" € §(X), it is easy to
prove that r" = r-r' for at least one pair r,r' e_S+(X),

and the same is true for §1 and 3: or for §o and
=+

&€
! S
o
Z Summarizing our remarks, we obtain (on top of
/ the family of the finite subsets) the six families illus-
R trated in Fig. XII-2. Here, S and Sl correspond to
o

S(X) and §1(X), respectively. In order to prove that
Fig. XII-2. these six families are all different and do not enjoy
further inclusion relations, it would be enough to
build three subsets, say Fl' Fz, F3 of F(X) having the following properties:
R e, F £
F,e €, F, ¢ X
Fae %, F £ 8,
I am not able to construct a set such as F3,10 but there exists an F4 which is such that
F4 € ¥ and F4,( ‘{1. Thus the only possible diagrams apart from Fig. XII-2 are
Fig. XII-3a and 3b. Again, there is no further inclusion relation. In fact, it seems

S or S _ 81
S
1 &
z
({l
174
o
R Fig. XII-3b.
[o]
Fig. XII-3a.
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most unlikely that € C § 1’ and the original scheme probably represents the true situa-
tion.

The counterexamples F and F3 are very simple:

Let F = {xlx2 Ill: n>0} This set is produced by G = {(g b'e gxl) (€, xz)} and thus
F € ({ C €. On the other hand, it is known that F2 does not belong to .4?

Let F {xlxzxg" n,n'=0 n*n} It is known that F € Z, and it is not difficult
to show that F; does not belong to % because of the relatwely simple structure of a

grammar G wh1ch produces infinite sets of the form {xlxzx : n,n' linked by a certain

relation}. '

Indeed, as the reader can verify, any set of this type is a finite union of finite sets
and of sets having the form:

{xT+Nx2x?'+N': N,N',n,n'20; n=0 (mod p), n'=0 (mod p‘)} for some integers N, N',
p.p'-

(The proof is based upon the fact that, when X has a single letter, ¥ reduces to
the family of regular events.)

For the construction of F4 we need a more explicit description of & g

F' belongs to ‘fl if and only if there exist

(a) A finite set Y;

(b) Two mappings ¢ and & from F(Y) to F(X) that are a homomorphism and an anti-
isomorphism (i.e., &gg'= &g' ®g);

(c) A regular event G' C F(Y) that is such that F' = {¢g<§ g:ge G'}.

The proof of this statement follows the same lines as Chomsky's proofl of the fact
that the support of any r € EZ(X) is a regular event.

The same technique, of course, is valid for the more general case of EI(X) (with
the obvious modifications) and it displays every element of ‘61 obtained by the three
following steps:

1. Taking the words g from some regular event on F(E);

2. Forming the products gﬁ*E, where g* is a new symbol, and g is the "mirror
image" of g;

3. Making a transduction 6 of E and of g into F(X), and erasing §*.7

Let us now return to our problem. For any f € F(X) (X = {xl, xz}) let \f denote the
difference between the number of times X, and X, appear in f.

We claim that F, belongs to & and not to %1, where F, = {f: Af=0; AMf'>0 for all
proper left factors of f}.

The first part of the claim has already been verified (Example 2).

Let us now observe that if F' € ‘61 is such that for all integers n < 0 there exists
age F(Z) which is such that g,88,¢€ G' for some g8y and that A\¢ g <n, then
F'# F4 Indeed, since G' is a regular event, there exists a finite set of pairs (gl, g'z)
which are such that for any g € F({-}) either F(iNeg F( ) N G' is empty, or else
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g,8 g'z € G' for some of these pairs. Thus, under this hypothesis, we can find that f =
¢gig g'l Qgig g'i € F' which is such that its left factor f' = ¢gig satisfies A\ f' < 0, and thus
fe F'andf¢ F 4
It follows that if F" € ‘51 is contained in F4, we can find a large enough integer n'
which is such that no f € F" has a factorization f= f,f,f,f, with xfl >n; xflf =1;
Af f,f5 > n (and M £,£5f, = 0 because by hypothesis f € F,). Since clearly F, contains
such words, we have proved that F" € %1 and F" C F4 implies F" # F4; that is, F4/ ‘(1.
These remarks can be pictorially expressed by saying that the words of F" have, at
most, one arbitrarily high peak. It follows from the definition of F4 that this last set
contains words having an arbitrary number of arbitrarily high peaks. Thus, incidentally,
we have proved the stronger result that ¢ is different from the family of subsets obtained
from ‘51 by closure under a finite number of set products or set unions.

5. Some Miscellaneous Remarks

a. As an easy source of counterexamples we could consider the special case of X
reduced to a single element because then no difference exists between commutative and
noncommutative power series.

The results known thus far contribute to the statement that in this case & and 8l are
equivalent to 3?0. No result is known for §.

However, although the proofs that € = .%0 and that 81 = Z are quite easy, the proof
that Z = 9?0 is a rather deep theorem of Skolem.® Nonetheless, the fact that when
X = {x} any r € S(X) is the Taylor series of some ordinary algebraic function of n allows
us to construct simple families of sets that cannot belong to §.

Nl NZ Nm
A rather general instance is the family of the infinite sets ¥x ",x “,...,x Y ee e

N
which have the property that lim I{InH is infinite (i.e., which have the property that the
m
ratio NmH/Nm exceeds for some finite m any prescribed finite value).

In order to prove that no set of this type belongs to § we consider any r € S(X) (X=x).
m .
Without loss of generality we may assume that <r, e> = 0. By definition, r = a + T ar,
i2
where m is finite and the ai's are polynomial in x. By comparing the two members of
the equation, we see that for each n<r, x" > must be equal to a linear combination with

n n n
fixed coefficients of sums of the type = <r, e l> <r, x 2> ce <r, x m> extended to all

representations of ri-h as a sum n, + n,...n., where h 21 is bounded by the degrees

1
of the a.'s, and m' are bounded by the degree m of the equation. It follows that if N is

1
such that <r, xN+k> = 0 for 0 <k <mN, then <r,x" >= 0 for alln' 2N; i.e. , risa
polynomial. N. N
Since the condition imposed on the set{ x 1, x 2, .. } amounts to the existence of at

least one such N for every finite m, our contention is proved.
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A similar method could be applied to show that {xnzz n>0} does not belong to S.

b. Our next example shows that the intersection problem even for so restricted a
family as &, is an undecidable one.

Let :::= {g} X= {a, b, c} and consider the two grammars:

G = {(£. ata), (£, bEb), (£, c)}

G'= {(g, c), (€, fiﬁf'i): ie I}, where (fi’ f'i)(i € I) is an arbitrary set of pairs of elements
from F = F(a, b).

The language Dx(g, G) is a special instance of Chomsky's mirror-image languages
and there exists an f € Dx(é,G) n DX(E,G') if and only if one can find a finite sequence

i,, i,, i, ..., i_ of indices such that the word f, f. ... f. is equal to the mirror image
1772’ 73 n i, i
of f'i fi f'i f‘i . Thus clearly the intersection problem for G and G' is equivalent
n n-1
to the classical correspondence problem of Post5 and since this last one is undecidable,

our contention is proved.

c. It may be mentioned that other principles could be used for distinguishing inter-
esting subsets of words. For example, Ginsburg and Rice2 have shown that € contains
as a proper subset the family ‘{' corresponding to the case in which the set of equations
w = ow has the following property which these authors call the "= sequential property":
There exists an indexing gl, 52 . §m of the variates £ € ,_":‘. which is such that for all
j the polynomial rrF,j does not involve the variates §., with j' > j.

In Chomsky's terminology this means that no &J., (j' >j) appears in a word g that is
such that (£., g) € G. (Then, clearly the rewriting process must be started from §o= §m).

Another possibility is to consider the subset‘Sl(X) of those s € -é(X) that are such
that <s,f>= 0, or 1, for all f.

It has been shown by Parikh4 that there exist sets of words in & (in fact, in the
closure of ‘fl by finite union and set product) which cannot be the support of an s € ‘él(X)
having this property.

In our notation, Parikh's example is described as follows:

o-go =66, +E,85; rrgl =3x8 %, +x,8,%; o'gz =%, + %5655
‘rgs = x,6,%, + X8 ,4%,5 0'54 =x, +x§,.

From this reasoning we deduce the following equations in which, for short, w; denotes
the coordinate of w whose index is gi:

w_= Wlw2 + W4W3;

o

w, = xl(wl+w2) 3
Wy = xz(w3+w4) X,
W, = X, X,W,

W4= Xl + X1W4-

These equations can easily be solved because they are "sequential" in the sense of
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Ginsburg and Rice. Indeed, the last equation can be written Wy =X \W, =X That is,
_ S § _ n
(e xl)w‘l-x1 and we have Wy = (e xl) xl-n‘zgoxl.
oo -1 n n
Similarly, w, = (e-x,) " x, = Z x,. Thus W3 = XWX, + T X,X)X,, and, con-
n>0 n>0
sequently, w3 = = z xlznxrllx;_n; w, = = z xrlnxgxrln. Thus we finally obtain
n>0 m>0 n>0 m>0
_ m_n_m n' m" n_m.n
w, = Z z X XX, Z x|+ z x| XXX,
n>0 m>0 n'>0 m'>0 n>0 m>0

= ) x0yn,m' e’ r(m,n, m'n')
17271 1 P

The last summation is, after all, quadruples (m, n, m',n') of positive integers, and the
coefficient r(m, n, m', n') has the following values:

r(m,n,m',n')=0 if m# m' and n#n'

=1 if m#m' and n=n'

=1 if m=m' and n#n'

=2 if m=m' and n=n'.
The fact that this coefficient is equal to 2 for certain words exactly measures the
"ambiguity" of the grammar. It would be interesting to give examples in which this
grammatical ambiguity is unbounded.

I mention that conversely the following process gives elements s € §+(X) with
<s,f>=0, or 1.7

Let ¢ be a homomorphism of F(X) into a finite monoid H (i.e., let us consider a
finite automaton), and B a mapping that assigns to every pair (h,h') € (H, H) an integer
B(h,h'). For any word f € F(X)let p*f be the sum Zp(¢f1,¢f2) extended to all factorizations
f= flfz of f, and say that f is accepted if and only if B*f does not belong to a prescribed
finite set Z' of integers.

Then the formal sum s = T f' extended to all f' which are not accepted (i.e., s=
= {f": ¥ € Z'} belongs to 3T (x).

An equivalent definition8 is: Let u be a representation of F(X) by finite integral
matrices uf and assume that there exists a constant K which is such that for all words f
the value (“f)l,N of the (1, N) entry of uf is, at most, equal to K times the degree
(length) of f.

Then the set of all f with the property that “fl, N # 0 is the set of the words accepted
by an algorithm of the type described above (and reciprocally). As an auxiliary result,
we have shown that the complement of a set F' belonging to the simplest subfamily of
2 which is different from .%0 belongs itself to the far higher family €. In general, the
complement of a set from F' does not.

Trivially, this construction applies to sets of words defined by the condition that
some linear function of the number of times each letter x € X appears in them has a
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given value. It is quite remarkable that the sets defined by two or more such constraints
(for instance, the sets of words which contain the same number of times X X, and X3
or the set {xrllxlzlxxl1 =nz 0}) do not seem to have any relation to €.

I conclude these rather disconnected remarks by an interesting construction of ¢
which is due to Parikh and which can also be applied to S(X).

6. Parikh's Const ruction4

Let us consider a grammar G satisfying the usual conditions and extend to a homo-
morphism A — A the mapping j: T~ — A defined by j§ = = {g: (£.g) e G}

For anyge F(X U Z), the support of jg is the set of all words which can be derived
from g by the application of one rule of G to each of the occurrences of a symbol §'e€ ':.
Every element of this set has either a strictly larger total degree (length) than f or the
same total degree but a strictly larger partial degree in the variates x € X. Thus the
supports of the elements f, jf, jzf, cees j?, ... are all disjoint. Their union, say F',
is a subset of the set D*(f,G) of all words derivable from f.

Of course, F' is, in general, different from D*(f.G) because of the extra condition
that every €' € :, is rewritten at each step. However, when considering only the inter-
section D*(f,G) N F(X) = Dx(f,G) we have F' | F(X) = D*(f,G) N F(X), since in order to

get an element f € F(X) we have to rewrite each § € : at, least once at one time or

another.
1 1
Let us now denote by u the sum = {£: £ € :} for any subset : of : The ele-
mentt=u+ = jnu belongs to A, as we have seen, and it satisfies the Schréder-like

n>0
equation u + jt = t.

Conversely, we can write t = (e—j)"l u, where € is the identity mapping A — A. Let
60 denote the retraction A(X U :) - A(X) induced by 605 = 0 for each £ € :; (a retrac-
tion is a homomorphism that allows a subset invariant and sends everything else into
this subset; here the subset is that of the words not containing a single § € S.)
Example. . ={a,p} X ={a b} :' = {a}
G = {(e, eaB), (a. a), (B. b)}

We have
ja=aeap + a
iB = b.

Thus u=a; ju= a+ aaf;
jzu (ataaf)(ataaf) b = azb + aaaPfb + aaPab + aaPaafb
u = a(ataap)(ataaB) bb + (a+aap)(ateap) bab + ((a+eap)?b)® b
3,2 2 2,22 . -
= a’b” + a“bab + a“ba“b” + terms of degree =1 in the £ € oa’ etc.
The support Fi': of éot is the set of the well-formed formulas in Lukaciewicz notation.

n

M. P. Schiitzenberger
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ON A SPECIAL CLASS OF RECURRENT EVENTS

By M. P. SCHUTZENBERGER
Unaversité de Poitiers and University of North Carolina

I. Introduction. Let F be the set of all finite sequences (words) in the symbols
x &€ X. According to W. Feller ([2], Chap. VIII), a recurrent event & is a pair
(4, p) where A is a subset of F and u a probability measure fulfilling the condi-
tions recalled below; one says that the event & = (A4, u) occurs at the last letter
z;, of a word f = x4, - -+ 2, if and only if f belongs to the set 4 ; we shall call
A the support of & and denote by T (A, u) the mean recurrence time of the
event &. .

If the pair (B, u’) defines another recurrent event on F, the pair (AN B, u’)
defines also a recurrent event. It results from the general theory of Feller ([2],
Chap. VIII) that, when T'(B, ') is finite, the ratio = T(B, u’)/T(AN B, u')
is, in a certain sense, the limit of the conditional probability that a random word
S € F belongs to A when it is known to belong to B. For given arbitrary A4, it is
in general possible to find infinitely many (B, x’) having finite T'(B, x’) which
are such that = = 0. '

The main point of this note is to verify several statements which, together,
imply the following property:

ProprerTY 1. If the support A s such that T(A N B, u’) is finite for every re-
current event (B, u’) having finite T(B, u’), then, for every such (B, u'), = ' is
an integer at most equal to a certain finite number 6* which depends only upon A.

Classical examples of this occurrence are the return to the origin in random
walks over a finite group [3] and, in particular, the recurrent event which occurs
at the end of every word whose length is an integral multiple of a particular
integer.

In Section II, we discuss some properties of a class of recurrent events which
we shall call birecurrent; in Section III, we verify the statements mentioned
above, and in Section IV we describe examples of birecurrent supports.

I1. Preliminary remarks. We consider F as the free monoid ([1], Chap. 1)
generated by X; the empty word e is the neutral element of F and the product
1’ of the words f and f” is the word f” made up of f followed by f’; f(f) is called
a left (right) factor of f”; a word is proper if it is different from e.

Feller’s condition ([2], Chap. VIII) that the non empty subset 4 of F is the
support of a recurrent event can be expressed as follows: U, : if a ¢ A and f ¢ F,
then, af € A if and only if f ¢ A. This condition implies that 4 is a submonoid of
F (ie., that e ¢ A and A> € A). We shall say that A is birecurrent if it satisfies
U, and the symmetric condition U;, U, :if a ¢ A and f ¢ F, then, fa ¢ A if and
onlyiff e A.

It follows immediately that, if {4} is any collection of supports of recurrent
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(birecurrent) events, the same is true of the intersection C of the sets 4 ; indeed,
C is a submonoid because every A; is a submonoid and, if, e.g., a, of ¢ C, the
word f belongs to all the sets A; (because of U,) and consequently it belongs
also to C.

Throughout this paper, A will denote a recurrent (or, eventually, birecurrent)

support and we shall use the following notations:

A* = the set of all the proper words at the end of which the event whose sup-
port is A occurs for the first time; for any recurrent support B, B* is
defined similarly.

8 = F — A*F (= the complement in F of the right ideal A*F);
R =F — FA*.
We state explicitly the following well known facts:

IL1. Every f ¢ F admits one and only one factorization f = as with a € 4 and
s £ S and at least one factorization f = ra’ with o’ ¢ A and r ¢ R. If and only
if A is birecurrent the second factorization is unique for all f ¢ F.

II.1'. Every proper a of A admits a unique factorization as a product of ele-
ments of A*.

The two statements are quite intuitive but a formal proof of them has been
given in ([5]); II.1’ shows that any bijection (i.e., one to one mapping onto) of
A* onto a set Y can be extended to an isomorphism of 4 onto the free monoid
generated by Y.

The following remark will be used repeatedly in the course of this paper:

IL.1”. When A is birecurrent, if s, s’ ¢ S (r, v € R) are such that s is a right
factor of s’ (r is a left factor of +') and that sf, s’f € A (fr, fr' ¢ A) for some
feF,thens = s (r = ). If, furthermore, f ¢ B (f ¢ S), then sf ¢ A* U {¢}.

Proor. Because of the perfect symmetry of U, and U; we can limit ourselves
to the proof of the statement concerning s and s’. By hypothesis, s’ = f’s for
some f’ £ S and sf, f'sf € A; because of U, this implies f’ ¢ A. Because of &’ ¢ S =
F — A*F and I1.1’, this, in turn, implies f/ = e, and we have proved that s’ =
es = s. Let us assume now that sr ¢ 4 with s ¢ S and r ¢ R. If, in addition,
sr = e, the result is proved. If sr ¢ A — {e}, I1.1’ shows that sr = aa’ with
a £ A* and o’ € 4; as above, a cannot be a left factor of s and, consequently, a’
is a right factor of r; but, by a symmetrical argument, this shows that a’ = ¢ and
that consequently sr = a ¢ A*. This concludes the proof of I1.1”.

Let us assume now that A is birecurrent; we denote by ASf(ARS) the set of
the right (left) factors of f that belong to S(R) and by Af the set of the triples
(7, a, s) such that f = ras and that r ¢ R, a ¢ A, s & S; such a triple will be
called an A-factorization of f and 8f will denote the number of distinct triples in
the set of the A-factorizations of f.

IL.2. For any f, f' ¢ F, 6ff' = max (5f, 8f’) and 5ff’ = of (= &f’) if and only if
for every left (right) factor f” of f (of f) the product f” (f”f’) has a factoriza-
tion ff” = sa (f’f’ = ar’) where a ¢ A and where f” is a right (left) factor of a.
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Proor. Let us consider any element g ¢ F and prove that there exists a bijec-
tion o, : ARg — ASg. Indeed, by II.1, to any r ¢ ARg (i.e., to any r ¢ R which
is such that ¢ = r¢’ for some ¢’ ¢ F') there corresponds a unique s ¢ ASg (de-
termined by the conditions ¢’ = as, a € 4, s £ S) which we call o,r; because of
the symmetry implied by the hypothesis that A is birecurrent we can construct
in a similar manner a mapping ASg — ARg which we call ¢;". Since, clearly, for
any r ¢ ARg we have (¢;" o ¢,)r = r and similarly for any s ¢ Sg, this shows
that o, is a bijection and also that the A-factorizations of g are in a one-to-one
correspondence with the elements of ARyg.

We now revert to the proof of I1.2. By the above construction we know that
off’ is equal to &8f (i.e., to the number of elements in ARf) plus the number of
proper ' ¢ ARf’ such that fr’ ¢ R. Thus, §ff’ = §f with the equality sign if and
only if we do not have ff” ¢ R — ARf for some left factor f” of f’, i.e., if and
only if every such ff” satisfies the condition stated in I1.2. Because of the sym-
metry this concludes the proof.

For any f ¢ F, let us denote by of the smallest positive integer for which
¥ ¢ A; of is infinite if the only finite power of f that belongs to 4 is f° (= e,
by definition).

II.3. A sufficient condition that the recurrent support A is birecurrent is that
of is finite for all f ¢ F'; reciprocally if A is a birecurrent support, then, for any
f € F, of is at most equal to the supremum &'f of 8™ over all the positive powers
of f.

Proor. By hypothesis, A satisfies U, and, in order to show that it is birecur-
rent, it will be enough to show that if ¢ and fa belong to A then f also belongs
to A. Let us assume that (af)™ e A for some positive finite m; we have (af)™ =
a(fa)™'f € A and, because of the fact that a, (fa)™ " € A and U, , this implies
f € A. This proves the first part of II.3.

Now let A be birecurrent and f such that &f is finite; by IL.1, any
(0 £ n £ §f) admits an A-factorization (e, a, , s.) and, by II 2, to each such
s there corresponds one A-factorization of f° 7. Since, by definition, af" 7 < ¢,
we must have s, = s, (= s, say) with 0 = m, n £ §'f and, e.g., m < n. Thus,
f" = asand f™ = a’s with a, @’ ¢ A and, after cancelling s, we obtain f* "a’ = a.
Because of U, this last relation shows that f*~™ belongs to A and, since 0 <
n — m < 8'f, by construction, the result is entirely proved.

Let us assume now that A4 is birecurrent and that f is such that 8f = &> < .
We consider the set K (containing at least f*) defined by K = {f’ e fFf:8f' = of}.

I1.4. There exists a group G, a subgroup H of G and a mapping ¢:K — G
that have the following properties: ¢ is an epimorphism (i.e., homomorphism
onto) and G is finite; o "H = KN A and the index of H in G is at most f.

ProorF. According to IT.2, the hypothesis 8f = &f* implies the existence of a
bijection ¢*:ASf — ARYf defined for each s ¢ ASf by o*s, the unique r ¢ ARf
which is such that sr ¢ 4; trivially, o*e = e. Also, by I1.2 and the very definition
of K, we have ARk = ARfand ASk = ASf for any & ¢ K; consequently, K* C K.
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Thus, recalling the definition of ¢, given in the proof of I1.2, we can associate
to any k ¢ K a bijection o4 : ARf = ARY defined by of = %o oy .

Let us now verify that for any k, k&’ ¢ K we have op = of o o5 . Indeed, if
(r,a,8) e Akand (', a’,s") € Ak’ we shall have (r, a”, s’) € Akk’ for some o” ¢ A
if and only if sr’ ¢ A and the identity is verified. Because of the hypothesis that
df is finite, this construction shows that the set {ox} (k ¢ K) is a group G and
that the mapping ¢ which sends every k & K onto ox is an epimorphism.

Observe now that & belongs to A if and only if (e, k, e) ¢ Ak, that is, if and
only if o keeps e invariant. Again, because @ is finite, the elements & & K which
bave this last property map onto a subgroup H of G and, clearly, ¢ "H is con-
tained in A. The fact that the index of H in @ is at most equal to the number
of elements in ARf (i.e., to the number §f) is a standard result from group
theory. As a corollary of I1.4 we state IT.4’.

I1.4'. If A is such that the supremum &* of §f’ over all f’ ¢ F is finite and if
8f = 6*, then the representation {sf} described in II.4 is isomorphic to the rep-
sentation of G over the cosets of H.

Proor. The property stated amounts to the statement that the group
G = {ox} is transitive or, in an equivalent fashion, to the fact that for every
s € ASf there exists at least one k ¢ K such that oxe = s, i.e., such that k= as
with a ¢ A.

In order to prove this, let (r, a’, s) ¢ Af. By 11.3 we know that there exist
finite positive integers m and m’ such that f* ¢ A and 7™ & A. Thus the product
™7 = f™™ as admits the factorization a”s with a” = f*f™a’ ¢ A and it
belongs to K since, under the hypothesis that &f is maximal, K is identical to fFf.

The next statement is not needed for the verification of property 1. Its aim
is to show that the representation described in Section IV below covers all the
birecurrent supports with finite 6* = sup df.

IL.5. If A is a birecurrent support with finite 6* there exists a monoid M and
an epimorphism (homomorphism onto) v:F — M such that yy4 = A, and
that M admits minimal ideals.

Proor. Let us consider any f ¢ F and denote by {yf} the set of all f' ¢ F which
satisfy the following condition: for any fi, f2 ¢ F, fiffs € A if and only if fif'f ¢ A.
The relation f’ ¢ {yf} is reflexive and transitive and it is well known that it is
compatible with the multiplicative structure of F (i.e., it is a congruence) ; thus
we can identify each set {yf} with an element yf of a certain quotient monoid
M of F. Since f ¢ A if and only if fif f» ¢ A with fi = f» = e, A is the union of
the sets {ya} (a £ A) and, trivially, y 'vA = A.

Let us now take an element f such that §f = &%, a finite quantity; according
to I1.2, the maximal character of §f implies that for every f; the product fif has
a left factor fir ¢ A for some r ¢ ARf. Thus, because of the symmetry, any rela-
tion fif fo € A implies fir, sfy € A with (7, a, s) & Af.

It follows immediately that for any two k, k' ¢ K(= fFf), the relation vk =
vk’ is equivalent to the relation ¢k = ¢k’ in the notations of II.4. Thus, ¢K is
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isomorphic to a group and since K is the intersection of a right and of a left ideal
of F, this shows that M admits minimal ideals.

We now revert to the preparation of the proof of the main property and we
consider 4, a birecurrent support, B a recurrent support and C = A N B; we
assume that C does not reduce to {e} and that consequently C* (the set of the
proper words at the end of which the events whose supports are A and B respec-
tively occur together for the first time) is not empty.

II.6. Any element f from F — C*F has a unique factorization f = fifs with
fi e B — C*B and f. ¢ F — B*F; conversely any such product fif2 belongs to
F — C*F.

Proor. Because of I1.1 any f has a unique factorization f = fife with f; ¢ B
and f; ¢ F — B*F. Since C is a recurrent support contained in B, any product
fifs with f1 ¢ B and fs ¢ F — B*F belongs to F — C*F if and only if f; belongs
to B — C*B and this concludes the proof.

As mentioned in II.1’, there exists an isomorphism §:B — @ where Q is the
free monoid generated by Q* = BB* and it is easily verified that the image P of
C by B satisfies U, and U; when, according to our hypothesis, A is birecurrent.
Indeed, P is surely a submonoid of @ and it is enough to verify that the relations
p,p’, pgp’ € P imply ¢ £ Q (because 8'p, 87'p’, 8 'pgp’ ¢ A imply, e.g.,8 qgp c A,
by U, , then 87'¢ ¢ 4, by U; and, finally ¢ ¢ P = 8(AN B)).

As before, we define a P-factorization of an element ¢ ¢ @ as a triple (7, p, 5)
such that ¢ = 7psand that 7 e R = Q — QP*, p e P,5 ¢ 8 = Q — P*Q with
P* = BC*. All the remarks made in I1.2 apply here since P is a birecurrent sup-
port in @, and we define g as the number of P-factorizations of q.

I1.7. Forany b ¢ B, §8b < 4b.

Proor. Let 7 be any element of R and define 8*7 as the (uniquely determined)
element 7 ¢ R such that (r, a, ¢) ¢ Ab for some a ¢ A. We show that the restriction
of the mapping 8* to any set ARq (¢ € Q) is an injection (i.e., is one to one into).
Indeed, if 7, # ¢ ARq we have, e.g., # = 7¢’ for some ¢’ ¢ Q; thus, if g*F = g*#
(= r, say), we have the following relations: 7' = ra ¢ B with a ¢ A; 7'# =
ra’ ¢ B with o’ ¢ A; ra’ = rab’ with b’ = g '¢g8 ¢ B. Consequently, a’ = ab’
and, because of U,, b’ ¢ A. This shows that ¢’ = b’ belongs to P and that
finally, ¢’ = e because of the relation # = 7¢’ ¢ R. Thus, # = 7 and our con-
tention is proved.

The remark I1.7 is also proved since we have shown that for any b ¢ B there
exists an injection of ARBb into ARD.

I1.8. If &* (= sup &f) is finite and if 8b = &* for at least one b ¢ B, then &*
(= sup &q) is a divisor of &*.

Proor. Under these hypotheses, we may assume without loss of generality that
B contains an element f such that &f = &* and 38f = §. We use the notations
of I1.4 and II.4’. By construction, the image G’ by ¢ of BN K is a subgroup of
G and we have BN ¢ (HN ') = AN BN K. Thus, by a standard result of
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group theory the index &'* of HN @ in G’ is a divisor of the index of H in @
(ie., of 5*). We prove now that ’* is in fact equal to §*; for this we repeat the
construction of I1.4 and I1.4’ with 3(BN K) in the role of K and we obtain an
epimorphism &: (BN K) — @G such that §* is the index of the subgroup H of G.
We recall the definition of the mapping 8* used in I1.7 and we observe that we
can define a bijection g*™': ARf N B*ARBf — ARBS such that g** o g* is the
identity mapping of ARSf onto itself; 8* induces in a natural fashion an epi-
morphism §**: @ — @ and, trivially, HN @ is the inverse image of H by g**.
Thus §* is equal to 8’* and I1.8 is proved.

III. Verification of property 1. We keep the notations already introduced and
we assume that (4, p) is a recurrent event. According to Feller, u satisfies the
two conditions:

Mo:ue = land forany f e F, uf = D (ufz: z ¢ X),

M, :ifa e AandfeF then uaf = papf.

We shall say that u is a positive product measure if pff’ = ufuf’ > 0 for any f,
f’ € F, and, in this case, M, is trivially satisfied.

We denote by |f| the length of the element f and for any subset F’ of F we
use the following notations: Fr, = {f € F': |f| < n}; uF’ = limp,ew 2, {uf:f € Fi}.
It follows that uF’ < 1 if F’ is such that any f ¢ F has at most one left factor
which belongs to F’; this condition is satisfied in particular by any subset of A *
and, according to Feller’s definition, we shall say that (A4, u) is persistent if and
only if uA* = 1. The next two statements are verified by an imitation of
Feller’s proof procedure.

III.1. For any recurrent event (A4, u) we have T(4, u) = uS.
Proor. Let us introduce for any s ¢ S the notation S(s) = SN sF. We verify

the identities

(I11.1). forallm = [s|: 0 < us — uAmis(s) = pSmi1(s) — uSm(s);

(IT1.17). forallm = 1: (1 — pd*) 4 (pd* — pd}) = pSm — pSma

Indeed, (III.1) is an immediate consequence of M, and of the fact that the sets
{8} U Sm(8)X and Sm41(s) U Amia(s) are identical for any m = [s|. (IIL.1") is
the special case of (IIL.1) for s = e.

From this second identity we deduce that if wd* = 1 we have
limmaw (uSm — uSm—1) = 0. Thus, a fortior: (from the first identity) pd* = 1
implies us = pAd*(s). We now sum the second identity from m = 1 tom = n.
After rearranging terms, we obtain:

(IIL.17).  uS. = (n 4+ 1)(1 — pdk) + D {lo| pa: a ¢ A%}.

This shows that if (4, u) is not persistent, xS is infinite and we assume now that
* = 1. Under this hypothesis, T(4, u) is defined as lim,.. Y {|a| ua:a & 4%},
and-since uA* = 1 implies that

(n+1)(1 — pd?) = 2 {(n + 1pa:a e A* — A}},
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we can write for all n
> {la|pa:a e A%} < uSa = D {la| pa:a e A* — A%} + D {|a| na:a e A7}

This concludes the proof since it shows that uS = T(A, u) if this last quantity
is finite and that uS is infinite if T'(4, u) is so.

For any s € S let us define R*(s) as {e} if s = ¢ and, as the set of those f ¢ F
such that sf € A*, if s # e.

IIL.2. If A is birecurrent, u a product measure and (A4, u) persistent, we have
T(A, ) = uR and, for all s £ 8, 1 = uR*(s).

Proor. Under these hypotheses all the notions are perfectly symmetrical.
Thus, the identity (II1.1”) shows that uR, = uS, and, as a special case, that
wR = T(A4, 1). Since any a £ A*(s) has a unique factorization @ = sf with
f € R*(s), and since u is a product measure, we have for all m = |s| the identity

(I11.2) pAn(8) = psuRm—iai(s)-

Thus, we have in any case uR(s) = ud*(s)/us = 1 because of the formula
(II1.1); with the equality sign when (4, x) is persistent because as seen above
us = ud*(s).

II1.3. If A is birecurrent and u a product measure, T(4, u) = &*.

Proor. We use the notations of Section II and we recall the following facts:

(1) According to II.1”7, R*(s) is a subset of R;

(2) for the same reason, if s, s’ € ASf for some f ¢ F, the sets R*(s) and R*(s')
are disjoint.

(3) if 6* is finite and §f = &* then, by IL.2, to every r ¢ R there corresponds
one s £ ASf such that sr ¢ A* Thus, in this case, the union of the sets R*(s)
over all s £ ASf is equal to . Now to the proof! We shall show that if 8f = &*
we have the inequalities uR < §f < wR and, trivially, the result will follow by
II1.2.

The second inequality is vacuously true when (A, p) is not persistent since,
then, pR is infinite. When (A, u) is persistent we have for any f’ ¢ F the in-
equality 8f' = D {uR*(s): s ¢ ASf"} < uR since, then, uR*(s) = 1 and since
the sets R*(s) are pairwise disjoint. Thus the second inequality is always true.
If now §f = &* we know by 3 above that > {uR*(s): s £ ASf} = uR. Since in
any case, as we have seen in the proof of II1.2, we have uR*(s) = 1, it follows
that uR < 6* and the result is proved.

IIL.4. If (B, 1) is a recurrent event and if A is birecurrent we have
T(AN B, u) = &*T(B, p)

where &* is defined below.
Proor. Let B = {b ¢ B': ub > 0} and C = AN B; it is easily verified that
(B, p) is again a recurrent event and that, according to III.1. we have

T(AN B',p) = T(AN B, u) = u(F — C*F)
T(B', u) = T(B, u) = uw(F — B*F).
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We keep the notations used in the proofs of I1.6 and I1.7 and we observe that,
by taking into account II.6 and the condition M, on u, the remark III.4 is
equivalent to the relation u(B — C*B) = §*. In order to prove this identity we
define a measure » on @ by the relation »8b = ub, for all b ¢ B; because of M,
and of the definition of B, » is a positive product measure and, since we know
that P = BC is birecurrent, (P, v) is a recurrent event on . Because of III.1
and II1.3 T(P, ») = »(Q — P*Q) = &*. But, by definition, »(Q — P*Q) =
v3(B — C*B) = u(B — C*B) and the result is proved.

IIL.5. If 6* is finite, and (B’, u) persistent for some measure u which satisfies
the condition that for every f ¢ F at least one element from FfF has positive
measure, then §* is a divisor of &*.

Proor. Because of the conditions satisfied by u and 6* we can find an element
f such that §f = 6&* and that uf > 0; we have f = b/s’ with ¥ ¢ B
and s ¢ F — B*F. Because (B, u) is persistent, it follows from III.1
that u(B* — s'F) = us’. Since this last quantity is positive, there exists at least
one element b ¢ B* §'F. Finally, because of I1.2 we have 6b'b = §* with b'b ¢ B.
Thus, we can apply I1.8 and the result is proved.

The next statement is intended to give a characterization of the birecurrent
supports in terms of their intersection with other recurrent events; by £ we mean
any fixed birecurrent support such that T'(E, u) is finite for some positive prod-
uct measure u; E* is defined as usual and we say that (E’, u’) belongs to the
family ((E)) if the two following conditions are met:

(1). (B, ') is a recurrent event on F;

(ii). there exists a finite integer m such that any element from E’* is the
product of m words from E*. It is trivial that under these hypotheses E’ is bire-
current. Since F itself is a birecurrent support (with F* = X') a simple example
of a family ((E)) is the family of the birecurrent events (F(my , um) Where F(m
is the set of all words whose length is a multiple of m and where u., is a suitable
measure.

II1.6. If the recurrent support A4 is such that (AN E’, u’) is persistent for every
(E', ') € ((E)), then, A is a birecurrent support.

Proor. This is a simple application of I1.3 and we use the notations of this
remark. If of is finite for all f, then we know by I1.3 that A is birecurrent. Thus
we may suppose that A and f are such that of is infinite and we show that
(AN E’, u) is not persistent for some suitable (E’, u’). Indeed, by the second
part of I1.3 we know that f™ ¢ E for some finite positive m. Thus f™ admits a
factorization as a product of m’ elements from E*. We take E’ defined by the
condition E'* = E*™ and y’ defined by the condition that u’f™ = 1 and u'f’ = 0
for any other f ¢ E'*. The conditions M, and M, recalled at the beginning of
this section are obviously satisfied and T'(E’, u’) is finite. Finally, (A N E’, u’)
cannot be persistent since A N E’ reduces to {e} and this ends the proof.

Clearly, the conditions of II1.6 are satisfied if A is such that T(AN B, u) < «
for any (B, w) with finite 7(B, u).

The next statément is a simple application of II.2.
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IIL.7. If A is birecurrent and if &* is finite, then, for any product measure, v,
the distribution of the recurrence time of (A4, u) has moments of every order.

Proor. Let A’ = {a ¢ A: pa > 0}. Trivially, A’ is birecurrent and, by I1.7 we
know that every f ¢ F has at most 6* A’-factorizations. Since the distribution of
the recurrence times of (4, u) and (A4’, u) are the same, there is no loss of gen-
erality in assuming that A = A’, i.e., that u is positive.

Since 6* is finite there exists an element f ¢ F which, because of I1.2, has the
property that for any proper s ¢ S the product sf has a factorization sf = ar
with @ ¢ A*4. Thus, for any integer n, the definition S = F — A*F allows us
to write the inequality

Suf': ' e A% nlfl < |f] £ (0 + DI} = pd¥eanlf] — pd3lfl £ 1 — w)™™

Consequently the distribution of the |a| for a & A*,4.e., of the recurrence time
of A* is dominated by an exponential distribution and this proves the result.

IV. Examples. We want to describe a class of monoids, ¥, which allows the
construction of birecurrent supports. For this purpose, we consider a group ¢’
(whose elements are identified with the corresponding elements of its Frobenius
algebra) and a subgroup H’ which contains no proper normal subgroup of G’;
I = {4} and J = {j} are two sets of indices and w is a T X J matrix with entries
w;; in H'. Without loss of generality we can assume that there exists no pair of
indices j, 7/ ¢ J (¢, ¥ € I) and no element h ¢ H’ such that w;h =
w;;r (hws; = wy ;) identically for allz e I (j e J).

We shall denote by V the set of all 7 X I matrices » with entries in @ U {0}
that have the following property: for each j ¢ J there exists an index j/ £ J and
an element g;;» ¢ @ which are such that the product vw.; (with w.; = the jth
column vector of w) is equal to w.;.g;;» (i.e., to the vector whose ¢th entry is
equal to w;;-g;;-). Trivially, this condition implies that » has one and only one
non zero entry in each line; it also implies the exisfence of an isomorphism
» — 7 which sends V onto the monoid V of the J X J matrices defined by the
symmetric condition and which is such that vw = w, identically; V is a monoid
and it contains as minimal ideal the set Vy of all matrices whose 7th column
vector is equal to w.;g (with any 2 ¢ I, j ¢ J, g ¢ @) and whose 7/th column
vector is zero for 7/ 5 1.

IV.1. The subset L C V of the matrices of V which have at least one entry
in H' satisfies U, and U, .

Proor. L is not empty since it contains at least the neutral element of V. Let
us assume that » ¢ L and that v;;» ¢ H'. Because of the hypothesis that all the
entries of w belong to H’, the 7th coordinate of vw.; for any 7 ¢ J, (that is, v.;-ws- ;)
belongs to H’'. Thus, vw.; = w.;-h for some 5/ ¢ J and h ¢ H; it follows that all
the non zero entries-of » belong to H’. This shows that L is a monoid and, trivi-
ally, that it satisfies U, and U, .

IV.1'. If F is a free monoid and y’: F — V an homomorphism, then the subset
A = (LN 4'F) is a birecurrent support and the corresponding parameter,
8*, is at most equal to the index of H’ in .
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Proor. The first part of the statement does not need a proof; we verify the
second part by showing that for any f ¢ F (with the notations of I1.2) there exists
an injection of ARf into the set of the left H’'-cosets. Let r, 7’ ¢ ARf with, e.g.
r' = rf’; for any ¢ ¢ I, the condition (y'r):;» ¥ 0 defines in a unique manner
© eland g = (vY'r)ur € G'. In a similar way, we define ¢” € I and ¢’ € G’ by
the condition 0 % (Yf')irir (= ¢’). Since (y'r')sr = (¥'rf')ii» = gg’ we see that
g and ¢’ belong to the same H’-coset if and only if g ¢ H’, that is, if and only
if f' € A, that is, finally, if and only if » = 7’ and this ends the proof.

Reciprocally, if A is a birecurrent support with finite 6* we can take (with the
notations of I1.5) @' = G and H' = H and find, I, J and w such that yF = M
is a submonoid of V. Then V, C +F and a sufficient condition that vf € V, is
of = &*. We shall not prove these results here since they are a straightforward
application of Clifford’s theory [4].

IV.1”, If &* is finite and if for each f & F there exists a finite positive m such
that 4f™ € Vo, then the parameter §* defined in I1.7 is always a divisor of &*.

Proor. We consider the group G’ defined in II.8. According to the general
theory of monoids [4] the only groups contained in ¥F under the hypothesis of
IV.1” are in fact contained in V,. Consequently, they are isomorphic to sub-
groups of G and this concludes the proof.

1IV.2. If A is a birecurrent support such that A* is a finite set then either there
exists an s ¢ S for which s# N A = ¢ (and then (4, p) is not persistent for any
positive product measure u) or else, the conditions of IV.1” are satisfied by A.
In this second case, yF is a group if and only if A* reduces to the set of all the
words having some fixed finite length. [5].

Proor. We assume that A* is finite and that A N sF = ¢ for all s £ S; then,
by the very definition of v the monoid vF is finite. By I1.2 we see that if r,
' & ARf for some f ¢ F, then the equation yr = 4’ implies » = 7. Thus, the
parameter 6* is finite. Let us take any element f ¢ F'; the hypothesis that §f < 6*
implies that for some pair (f/, f”) one has f'ff” ¢ A*. Thus for all f ¢ F, §f™ = &*
for large enough m since, otherwise, A* would not be finite. This proves that 4
satisfies the conditions of IV.1”.

We now make the supplementary assumption that vF is a group G with
vA = H, and we consider a, an element of maximal length of A*. If |a| = 1
the result is vacuously true since, then, A = F. If |a| = 2 we write ¢ = sza’
with z, ' ¢ X. Because of U, , no left factor of a belongs to A* and because of
the maximality of |a], we have szz” ¢ A for all ” ¢ X. Thus, all the generators
of F belong to the same left H-coset. For this reason, we cannot have sz” ¢ A*
for any z” £ X and, because again of the maximal character of |a| this implies
that sz”z'"" ¢ A* for any two 2”7, 2’ ¢ X. Thus, for any two elements z, ' ¢ X,
the left coset z2’H does not depend upon the choice of z and z’. If |a| = 2, this
proves the result. If |a| = 3 we can write s = s’y with y £ X and by the same
argument we prove that for any z, 2/, ” ¢ X the coset z2'z” H does not depend
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upon the choice of these three elements. Since |a] is finite, by hypothesis, a simple
induction gives the result. '

The next statements discuss the existence of birecurrent supports with finite
6*. Without loss of generality, we shall assume from now on that X contains a
finite number =2 of elements.

IV.3. For any finite » = 3 there exist infinitely many different birecurrent
supports with this value of &*.

Proor. In the next section we shall show the existence of at least one birecur-
rent support with 6* = 2 and A* infinite. In this section we show that to every
birecurrent support A and element u ¢ A* we can associate one other birecurrent
support B with 85 = &* 4+ 1 and B* infinite and that, for the same A* and
different choice of u ¢ A*, the two corresponding new supports are different.
Thus IV.3. will be entirely proved with the help of IV.4.. Let us now take u £ A*,
a fixed element, and define: J = (uFN Fu) — {u}; J* = J — J* (ie., = the
subset of those elements of J that cannot be written as the product of two ele-
ments of J). With the help of II.1”, it is easily verified that there exists a bire-
current support B which is such that B* = J* U (4* — {u}) and we prove that
for all f ¢ F the number (say, 6(B, f)) of its B-factorizations is at most equal to
of + 1. In order to do this, we slightly extend the notations of I1.2, and for any
subset F’ of F we say that the triple (7, f/, f'"’) is a F'-factorization of f if f’ ¢ F’
and f”f’f'"" = f; also, we denote by §(F’, f) the number of distinct F’'-factoriza-
tions of f and we observe that by induction on the length of f, the result of II.3
can be summarized by the identity |f| + 1 = 6(4, f) + 6(4*, f).

Here, we have

8(A%, f) = 8(A* — {u}, f) + o({u}, /),
8(B*, f) = 8(A* — {u},f) + 8(J* 1),

We want to show that 8(B*, f) < 8(4*,f) + 1. If 6({u}, f) = 0 or 1, we have
8(J*, f) = 0 and the result is proved; consequently, we assume now
that 8({u},f) = 2 and we consider two {u}-factorizations (f; , u, f1) and (f2, u, f3)
with, e.g. |fi| < |f2]. The element w determined by the equation f = fiwf; belongs
to J; it belongs to J* if and only if there is no {u}-factorization (fs, u, f3) for
which |fi] < |fs] < |fel; it follows instantly that 6(J*, f) = é({u}, f) — 1 and
the result is proved.

IV.4. For each finite n = 3 there exist at least two different birecurrent sup-
ports with A* finite and 6* = n.

Proor. One of these supports has been described in IV.2; in order to produce
the other one, we take a birecurrent support 4, a fixed element u £ (F — A*F) N
(F — FA*) and we construct another birecurrent support B with 85 = 6*; in
the last part of the proof we verify that by a proper choice of » and 4* we can
make B* finite.
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Let the following sets be defined:

C*¥ = 4% — A*N (uF U Fu),
Z = {f:uf ¢ A¥ — A*N Fu},
Z' = {f:fu e A* — A*N uF},
J* = A*N wF N Fu,

P* = {f: fu ¢ A*N uF}.

Thus, A* admits a partition into the sets C*, uZ, Z'u and J*; by construction,
there exists a recurrent support P such that P* = P* — P (with P = {e} if P*
is empty) and one can verify that there exists a birecurrent support B such that
B* admits a partition into the sets C*, {u} and Z’PuZ.

In order to verify that 85 = 6* we take an arbitrary positive product measure
w and, for any F' C F, we write T'(F') as an abbreviation for Y, (|f] uf:f € F').
Thus, by II1.3, we have, e.g., 6* = T(A, u) = T(A4A*).

By a simple computation, we obtain when §* is finite: 8* = T(4*) = T(C*) +
T(P*) + [u|(wZ + pZ' + pP*)pu + (T(Z) + T(Z') + T(P*))uu. Also,
pZ = pZ' = 1 — pP*;uP = (1 — wP*)7; T(P) = (1 — wP*)™*T(P*). Now,
T(B*) (= &3) is equal to the sum T(C*) + |uluu + T(Z'PuZ); because of
the above relations, we have T(Z'PuZ) = |u|lpupZ + (T(Z) + T(Z') +
T(P*))uu and this concludes the second part of the proof.

Let us now observe that B* is finite if and only if C* is finite and P = {e}.
The first condition is surely satisfied when A* is finite and the second one is
equivalent to P* = ¢, that is, to A*N uF N Fu = ¢.

Thus, if A* is the set of all words of length n > 2 and if 2, , z; & X, the word
u = x7 "2, belongs to F — A*F and to F — FA* and it satisfies our last condi-
tion; this ends the proof of IV.4.

If we take » = 2 and w = 2; we find that P* = 2, and the corresponding B*
is infinite; this is the example needed for IV.3.

IV.5. For each finite n there exists only a finite number of birecurrent sup-
ports A with 6* = n which satisfy one or the other of the two following supple-
mentary conditions: that yF is a group or that A* is finite.

Proor. This is obvious for the first condition since, because of I1.4’, it amounts
to the fact that for any finite n there exist only finitely many groups of permu-
tation on » symbols.

With respect to the second condition we first verify the following elementary
remark: let Ko = F — {e}, K1, Ko, - -+ be a decreasing sequence of subsets of
F defined inductively by the relation K, ,; = {fFf:fe K;}. If X is finite there
exists for every finite 7 a finite value d(¢) which is such that every word of
length at least d(7) has at least one factor belonging to K; . Indeed, if d(z) has
already been defined, we take d(7 + 1) as d() (1 + |X|*®) where |X| denotes
the number of elements of X. Then, every word of length d(¢ + 1) contains at
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least two disjoint identical factors of length d(z) and the result follows by in-
duction.

We now observe that if f 5 e the hypothesis that 4* is a finite set (with finite
8*) implies that §ff’f = inf (8*%, 6f + 1). Indeed, this is surely true if §f" > of
or if 3ff"f = &*; in the remaining case, i.e., in the case that 8f = §ff’f < 6*, we
would have according to I1.2, for all finite m, §(ff')™f = &f < 6* and, according
to the same remark, there would exist for all finite m at least one a ¢ A* admit-
ting (f7)™f as a factor, which is impossible since 4* is assumed to be finite.

Thus, by induction, every word f of length = d(&*) is such that §f = 6* and,
consequently, it cannot be a factor of a word a £ A*. This proves that for given
6* the hypothesis that A* is finite imposes that the lengths of the words from
A* is bounded and it concludes the proof (cf.[6]).
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1. INTRODUCTION

In this note we consider a very restricted class of transducers, i.e., of
automata which transform finite input words into finite output words
(cf. Moore, 1956). The simplest case is the transformation consisting in
the replacement of every input letter x by an output word n(x) which
is eventually the empty word ey . Algebraically, since the set Fx(Fy)
of all finite input (output) words is the free monoid (Chevalley, 1956)
generated by the input alphabet X = {z} (the output alphabet Y = {y}),
this transformation is simply an homomorphism »: Fx — Fy .

If 7 is such that n(f) = 5(f') only if f = f, it iS called an encoding
(with unique decipherability) and then % is an isomorphism.

Next in simplicity are the transformations realized by a conventional
[one way, one tape (Rabin and Scott, 1959)] automaton supplemented
by a printing device (Huffman, 1959). Upon reading « on the input tape
and, accordingly, going from the state s to the state s’ = sx, a word
n(s; x) function of s and z only is printed on the output tape which is
moved the corresponding length. Trivially, any mapping from Fx to F'y
can be performed by a transformation of this type if no restriction is im-
posed on the number of states. We shall always assume here that S =
{s} is a finite set. This forces drastic limitations on # and, in particular,
it introduces a difference between the right transformations (where read-
ing and printing are done from left to right) and the left transformations
(where both operations are done in the opposite direction). For example
no (finite) right automaton can perform the task of reproducing the
input word when it ends with a given letter and of printing nothing when
it does not.

Consequently the composite operation which consists of transforming
first the input word by a right automaton, and then of transforming
again the output word by a left automaton cannot as a rule be carried

185
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out in a single pass; we shall call it a transduction and we shall describe
some of its elementary properties:

1. The transductions form a set closed by finite composition and also
by inversion when this last operation has a meaning (Huffman, 1959).

2. The transductions transform regular events (Kleene, 1956) on the
input words into regular events on the output words and any regular
event can be obtained in this manner.

These two properties indicate that there is no difference between the
languages which can be accepted by finite automata and the languages
which can be produced by any bounded number of finite automata; here,
the boundedness condition cannot be omitted as is easily shown by
Chomsky’s counter examples (cf. Chomsky, 1959).

For notational reasons it is more convenient to define a transduction
n with sets of states (S, S’) as the transformation from an input word
f = mx2 - - - 2, and a pair of states s; € S, s’ ¢ S’ to an output word that
is obtained by replacing every letter x; by a fixed output word
n(8: ; % ; Sn—iy1) Where the states are given inductively by the equations
Sj+1 = 8;z; and Sh_je = Z;Sn_j41 . With this definition, right (left) trans-
ductions correspond to the special case where n(s;; z; si) does not
depend effectively upon its right (left) argument and where, conse-
quently, S’ (S) can be taken as reduced to a single state and, finally,
omitted.

The finite closure property 1 shows that this new construct is equiva-
lent to the composition of a right and of a left transduction; encodings
correspond to the case where S and S’ reduce to a single state and, then,
the property 1 shows that the deciphering can always be performed by a

transduction.
Example. Let X = {x;, 2} and Y = {1, x, y3}. Every input word
hasa uniquefactorizationf = z;' 2;* - - - (¢ 5 ¢’) into runsz;* consisting

of the same letter x; repeated n; times, and we suppose that we want to
perform the transformation n which lets invariant the runs of even length
and replaces every run of odd length by y; .

Thus, for example,

3 2 3 4 2 2 4
NTy Lo L1k X1 = Y3T2 Y3 L1 -

This can be realized if for any factorization f = f'zf” we follow the two
instructions: (1) Print out x if it belongs to a run of even length. (2)
Print out y; or nothing when z belongs to a run of odd length according
to whether z is or is not the last letter of this run.
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In order to carry them out it is sufficient to know that f’ and f” re-
spectively end and begin by runs of length n’ > 0 and »” > 0 in the
letters 2’ and z” because: (1) z belongs to a run of even length if 2’ =
x = z” and n’ and n” have different parity or if 2’ = z 3 2” and n’ is
odd or if 2’ # z = 2” and n” is odd; (2) x is the last letter of a run
of odd length if x 5 z” and n’ is even, or if 2’ > x = z”.

Consequently, all that is needed is the parity of n’ and n” and the last
and first letter respectively of f/ and f”. As we shall see below this infor-
mation can be supplied by two finite state automata, one having read
f’ from left to right and the other one having read f” in the opposite
direction.

Let us now consider how this transformation could be achieved in two
passes.

The first one is performed by a right transduction with states {s.}
(0 £ 7 £ 4), initial state s and transitions:

Sor; = S = 831 = Say = 81,
i = $g,
STy = 81Tz = So%y = 84¥y = 83,
83y = 84 .

Thus for any input word f’ the last state reached, s;, has index of the
same parity as the last run of f’; and 7 = 2 if and only if the last letter
of f' is 21 . The machine has an output alphabet Z = {2} (1 £ 7 < 4)
with the printing rule »’(s; ; £;) = 2, when s;z; = s». For example,

3.2 3 4
N (0T 1T ) = 222atieRti2 = 1'f.

The second pass is performed by a left transducer with states {s;’}
(0 £ ¢ £ 4), initial state s’ and transitions:

leil = S]I if %2 and 2182’

I

= 82,; 228," = 82’ lf 7 # 1 and 2281, Sll;

|

238 = 8’ if 74 and 28/

=s/;2s =8’ if 13 and zs’ = s

The printing rule is given by 7”(z; ; s;/) = &2y when s = 2 and j 5 1;
= mrswhens = 4andj > 3; = y;whens = landj =0,2,40r¢ = 3
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and j = 0, 1, 2; = ey (nothing) in all other cases. For example,
7" ('f) = eveyyserTaayseveryseyTiTieyiT; ,
that is, n(so ; f; 80').
II. FORMAL DEFINITION AND NERODE’S THEOREM

A transduction 7 is given by the following structures:

1. A finite input alphabet X = {z} and an output alphabet ¥ = {y}.

2. Two finite sets of states S = {s} and S’ = {s'}.

3. Two mappings (S, X) — S and (X, S’) — S’ written respectively
sz and xs’.

4. A mapping 5: (S, X, S’) — Fy written 5(s; x; s’). These mappings
are extended in a natural fashion to any f ¢ Fx by the following inductive
rules:

sex = sand exs’ = §', n(s;ex ;8') = ey forany (s, s') € (S, S').

For any feFx, xeX, (s, §) e (S, 8): s(fx) = (s)z, (fx)s' =
f(xs"), n(s; fx; ") = n(s; f; xs')n(sf; x; 8).

It is easily checked that these rules are equivalent to the ones given
in the introduction. By induction the last rules gives the following iden-
tity which could be taken as a definition and which displays n as a
two-sided coset mapping Fx — Fy : for any f1, f2, fs e Fx

n(s; fifefs 5 8") = n(s; fu; fofss")n(sfi s fo 5 fs8")n(sfifa s f5 5 87).

In a more concrete manner 5 can be realized by finite matrices whose
entries belong to the union of F'y and of a zero, 0. Indeed for any z ¢ X
let ux be a square matrix whose rows and columns are indexed by the
pairs (s;, si') € (S, 8’) and whose entries are

ne((si, si0), (85, 87)) = n(si;2585) if sw=3s; and si = asj,
= 0, otherwise.

Then if f = z12s - - - @, the corresponding output word 5(s;f; s’) is equal

to the entry uf((s, fs"), (sf, §')) of uf = pawzs - - pa. .
Proor. For any f e Fx and x ¢ X we have

quE((sia 32’)7 (SJ' ’ S;'))
= Zluf((si, si7), (s, s Www((se, sir), (55, 85.))]

where the summation is over all the pairs (s, si') € (S, S’). The only
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nonzero term in the sum is the one corresponding to the pair defined by
the equations s, = s;f and sir = sy ; we have then s; = sz and s =
fsi' , thatis, s; = s;fx and sir = fxs; . Thus the entry under consideration
is equal to %(s;; f; zsy ) n(sif; x; si), that is, to n(s:; fz; s;) and the
result follows by induction.

Example. Let X = {a, b}; Y = {¢, d}; S = {s1, 8}; 8 = {t1, t3};
810 = 80 = Sb = 81 ;80 = 8 ;bby = bty = ate =t ;at, =t . n(s; ; x;
t;=ccifr =aandi = j; = difx =aands # jorifz = band1 =
i1# j;=cifx =bandi = j = 2; = ey in all other cases.

Then, for instance, n(s; ; bbab; t;) = ccc according to the following
self-explanatory scheme

S1 So S1 S1 Sy
bey) ble) alec) bley)
h h to 11 i
Also we have

0d 00O 0 0 evr d 0 0 ccc ceed
_ccOOO'b_OOOO.bbab_OOOO
HE=10cc 00 T lesc 0 of % TV\0 0dd ddd
d 0 00 0 00 O 000 O

and n(s; ; bbab; ;) is equal to ubbab( (s, t1), (52, t)).

As an immediate consequence of the definitions we derive the follow-
ing weak form of Nerode’s ultimate periodicity theorem (Nerode, 1958).
There exist finite integers m and n which are such that for any f, f', f” € Fx ,
(s, 8) e (8, 8),p,r=0,andr £ n one has n(s; f'/f\"""*f"; s =
g'g"g” where g, g', g” € Fy do not depend on p.

Proor. Since S and S’ are finite we can find integers m and n such
that for all (s,s') € (S, 8'),fe Fx,p = 0,0 < r < n, we have: sf" """
= sf™" Ty = . Thus

n(s; ST S
= n(s; S5 PSS P S ) (s 5 ).

Because of our choice of m and n the second factor is equal to p times the
word ¢ = n(sf'f"*"; f*; f"f”s’) and the result is proved.

III. FINITE CLOSURE PROPERTIES

A. To any two transductions n: (S; Fx ; 8') = Fyand & (T; Fy; T)
— F there corresponds a transduction 7: (R; Fx ; R’) — F; which is
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such that forany fe Fx, (s,5") € (8, 8"), (,t') € (T, T') one has identi-
cally £(t; n(s; f; §');t') = «(r; f; r') where the statesr e R and r’ ¢ R’
are functions of s and ¢ and of s’ and ¢’ respectively.

Proor. We define an equivalence relation ¢ on Fyx by the following
rules: of = of’ (to be read: the s-class of f is the same as that of f’) if
and only if (1) for all se S, sf = sf’; (2) for all (s, s’) € (S, §’) and
teT, tn(s; f; 8') = tn(s; f'5 §').

The relation ¢ has at most | S| ' x | T | ""'™XISIXIS'l (| S| the num-
ber of states in S) distinct classes. Furthermore it is right regular (i.e.,
of = of implies off” = of’f” for all f”) since when of = ¢f’ we have
(1) sff” = sf'f” for any s e S (because sf = sf’'); (2) for any (s, ') ¢
(S, S8')andte T,

tn(s; ff"; 8') = tn(s; f5 s )n(sf; f75 8")

tn(s; /5 f7s)n(sf's f75 87) = tn(s; fif"; §').

We now define R as the set of all triplets » = (s, ¢, of) and the mapping
(R, X) — Rby (s, t,af)x = (s,t, afz). In a perfectly symmetric manner

we construct a left regular equivalence o', a set of states R’ = {r'} =
{(s, ', a'f)}, and a mapping (X, R’) — R’. Finally, we put
w((s, ¢, of )5 x; (/515 o'f"))

= £(tn(s; f5 of's') 5 n(sf; @5 f's') 5 m(sfz; f'; §)Y).

This definition is free from ambiguity because the three expressions
n( ; ; ) entering in it depend only upon the classes of and ¢’f’; this
is a direct consequence of the definition of ¢ and ¢’ and it concludes the
proof since it is sufficient now to check by developing the expressions
that if f = f'zf” we have £(¢; 9(s; f; 8'); t') = «(r; f; r') where r =
(s, t, oex) and ' = (&', t/, o’ex). Before verifying the second closure
properties we recall the following facts:

1. Let R, denote the family of the subsets F’ C F; that are regular
events in the sense of Kleene (1956). The specification of an F’ ¢ R; is
equivalent (cf. Shepherdson, 1959) to that of an homomorphism v:
F;—> P where P is a finite monoid together with the subset P’ of P asso-
ciated to F’ by the relations yF’' = P'; F' = v 'P' (= {f:vf & P'}). The
equivalence on F; defined by vf = vf’ is at the same time left and right
regular and it has only finitely many classes.

2. According to D. Huffman’s theory (1959) the transformation 5 can
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be said to be information lossless on the subset F’ of Fx if the equations
n(s; f;8) = n(s; f;8); 8 = of'; fs' = f's'; f, f' e F' imply f = f'.

B. If  is information lossless on the subset F’ ¢ Ry there exists a
transduction £(= 5 ) which is such that for any f ¢ F’, (s, ') € (S, S")
we have £(¢; n(s; f; 8'); t’) = f where the states te¢ T and t' ¢ T are
functions of s and fs’ and of s’ and sf respectively.

Proor. Let H be the set of all the words 7(s; z; s’) with z & X and
K(K’) the set of all proper right (left) factors of the words of H (i.e.,
k ¢ K if and only if kf ¢ H for some f 5 ey). If o is a right regular equiva-
lence on Fy with | ¢ | classes, we say that g ¢ F'y admits a factorization
of type (of, s:, s;, Sj, Si, k) (where of is any o-class; s;, s; ¢ S; 8",
s; € 8'; ke K) if there exist f’ ¢ Fx and ¢’ ¢ Fy such that the following
relations are satisfied:
of =of'; g=gk; g =alsi;f5s0);  sf =si;  flsii=sp.
Clearly, if | h | is the maximal length of an element of H, there exist at
most | ¢ | X (| 8] X | 8" ])* X | h| different types of factorization. Thus
if we write A\g1 = Ag. when the elements ¢1, g» ¢ F'y admit exactly the
same set, of types of factorization, the relation A has only a finite number
of classes when the same is true of ¢ and, by construction, \ is right regu-
lar. In perfectly symmetric manner we associate a left regular equiva-
lence N’ on F'y to any left regular ¢’ on Fx .

We now come to the construction of £ As indicated above we con-
struct the relations A and A\’ on F'y associated with the (left and right
regular) relation v on F'x used for the definition of F’, and we define 7" as
the set of all triples (s, s’, A\g) with (s, s’) € (S, 8’) and Ag a \-class;
the mapping (T, Y) —> T is given by (s, s’, A\g)y = (s, 8, A\gy). The set
of states 7’ and the mapping (Y, T’) — T’ are defined in symmetric
manner with the help of the relation \’.

For each triple (s, s’, x ¢ X) such that 5(s; x;s") > ey we select arbi-
trarily one factorization kyk’ of 9(s; z; s’) and we define ¢ by the follow-
ing rules: £((s1, sd/, N\g); y; (sa, 8/, Ng’)) = x if there exists g, §' ¢ F'y ;
keK;KeK';f f'eFx; s, 836 8; 8, 85’ ¢ 8 satisfying the following
relations:

Ag = Mk; Ng' = NE'7';

g=n(s;f;8);af =s;fs' =500 =8;

’

g = n(ss;f ;8);8f = 84518 = 8528 =8

37



M.-P. Schiitzenberger: (Euvres completes, Tome 5 page #44 7-7-2009

1961-3. A remark on finite transducers Année 1961

192 SCHUTZENBERGER

kyk’ is the selected factorization of n(s: ; x; s5');
fxf’ belongs to F’.

In all other cases the value of ¢( ) above is ey.

The possibility of solving all except the last of the above equations for
giveny e Y, \g, N'¢’, 81, 84, 81, 84 is a direct consequence of the definition
of X and N'. Taken together these equations imply that there exists at
least one triple f, x, f' ¢ Fx for which (s; ; fxf’; si') = gkyk'q’ = ¢”
with a selected factorization; sifxf’ = s4 and fxf’s)’ = s/; faf’ ¢ F'.

Thus, if the word ¢” = gkyk’q’ has been obtained from a word f” in
F’ by a transduction with the indicated initial and final states, it follows
from Section ITI, A that £(¢; g”; t') will be identical to f” and, because
of the hypothesis that 5 is information lossless on F’, this proves a pos-
teriori that the above equations have a unique solution.

REMARK.

Because of the assumption that S’ is finite it is always possible to
realize in a single pass any arbitrary transduction if one is allowed to use
a bounded number of output tapes and if one has the possibility of
erasing on them.

Since the general case is rather cumbersome it may be sufficient to
restrict ourselves to the detailed examination of the procedure needed
for the deciphering of an encoding. Thus, let us assume now that S and
S’ are reduced to a single element and that consequently % is an iso-
morphism Fy — Fy. The sets H and K have the same meaning as in
Section III, B and P = 9Fx is the submonoid of Fy generated by H.

To any g € Fy we associate the set Ag of those k ¢ K which are such
that ¢ = pk for some p & P; \g contains at most | h | elements and,
consequently, the equivalence relation on Fy defined by A\g = A\g’ has
only finitely many classes; since, furthermore, it is right regular we can
construct a conventional automaton whose states are identified with the
various possible Ag’s and whose transitions are given by (Ag)y = A(gy).
We still observe that for any g € F'y either Ag is empty (and in this case
g cannot be a left factor of a word in P) or, if k £ Ag there exists a uniquely
determined element f = #p ¢ Fx such that ¢ = (nf)k = pk.

Let us now consider a word ¢” ¢ P and any factorization ¢” = gyg’ of
it; let us assume also that we have been able to record on | Ag | tapes the
words £p; corresponding to the | Ag | elements k; € \g. The automaton is
in state Ag and upon reading the letter y it will go to the state A(gy).
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For each k; ¢ A\g four cases are possible and we list below the printing
instructions to be followed in each of them:

1. k;y does not belong to H nor to K (i.e., k;y cannot be a left factor
of a word of P); then the machine erases the corresponding word £p, .

2. k;y belongs to H and not to K; the machine writes on the corre-
sponding tape the letter x ¢ X such that nx = k;y ; thus, on this tape
we now have (ép;)z.

3. k;y belongs to K and not to H; the machine does nothing on the
corresponding tape.

4. k.y belongs to H and to K ; the machine does as in 2 above but also
it takes a new tape and it reproduces on it the word £p; . This new tape
corresponds to the element &,y € N(gy) and the old tape corresponds to
the element ey £ A(gy).

At the end of the reading of g”, \g” contains ey because, by hypothesis,
g” € P and the corresponding tape carries the word £g” such that 5(&g”)
= g”. It is clear that, at any given stage of the procedure | | tapes, at
most, are needed since we can use the tapes made free by the operation 1
above.

The proof of the validity of the algorithm is left to the reader and in
Tables I and II we give a complete account of the construction of the
state diagram and of the deciphering of the word a'ba’b’a’ for the follow-
ing example:

X={e§(1=i=5); Y =/{aqb};
7T = aa; nxs = baa; nr; = bb; nxs = ba; nxs = bb;
K = {ey, a, b, ba, bb}.
(This is an encoding because it is a left prefix code in the three words:

u = a;v = ba;w = bb) (Schiitzenberger, 1956). We find £(a‘ba'd’a’) =
x12x2x1x3x1 .

IV. RELATIONSHIP WITH REGULAR EVENTS

As we shall deal here with fixed initial states, we write for any subset
F'(G") of Fx(Fy):

W = {geFy:g = n(si;f;8'), feF};
7 G = {feFx:n(si;f;8') G}

A. The subset G’ of nFx belongs to Ry if and only if 7'G’ belongs
to Rx .
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TABLE 1
Corresponding states and
K ey e b ba bb transitions
ey + b
a + ty = Lo
b + ts = 4Hb
aa -+ o= ta
ab to = t)b = fa = tnb
ba + ts = La
bb + + ts = tsb
baa + + te = ta
bab + ts = tid
bba + te = txa
bbb ts = tsb
baaa + te = toa
= tsb

baab -+ ts

Proor. By definition there corresponds to every F’ ¢ Rx a right regular
equivalence y with finitely many classes such that F’ is a union of v-
classes; in the proof of Section III, B we have seen how to construct A
associated to v and such that nF” is a union of \-classes; since A is right
regular and has only finitely many classes, this proves the forward im-
plication. In particular, since F'x belongs to Rx , this shows that the total
output nFx is a regular event.

Now let G’ be a subset of 7Fx that belongs to Ry ; G’ is defined by a
certain right regular relation A with finitely many classes and we con-
struct the relation ¢ on Fx by the following conditions:

of = of if and only if (1) sif = sif’; (2) forany s’ € 8, Aq(s1 ;f;8") =
M(s:; f'; §'). o is right regular because, if of = of’, we have s;ff” =
sf 7 and Mp(sis; ff7; 8') = (Wa(se; f; f'S))n(sf; 75 §) =
AnCse; 55778 )n(sif’; f75 8") = An(s1; f'f”; s') where the second and
third equality result from the right regularity of A and where the second
equality is a consequence of of = of’. Also, ¢ has at most | S| X | A | 171
classes and 5 'G” is a union of o-classes. This concludes the proof.

B. Provided that X contains two letters or more, there corresponds to
each G” ¢ Ry a right transduction % such that G” = Fx .

Proor. Because of our hypothesis on X it is sufficient to prove the
same statement for an arbitrarily large (finite) input alphabet and then
to perform a preliminary encoding.
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The result is trivial if G” is finite and, by Kleene’s theory, it is suffi-
cient to show that if G and G’ are the total outputs respectively of the
right transductions 7 and 5’ (with the disjoint input alphabets X and X”)
we can construct right transductions #;, 72, 73 (with input alphabet
X u X’) such that their total output is respectively G u G’, GG, and G*
in Kleene’s notation. The construction given below is the simplest to
describe.

Let S and S’ be the set of states of the right transducers 7 and »’; we
can assume that S and S’ are disjoint and we define S” as the union of
S, 8’ and of two new states s;* and so* for which we have:

TABLE II

Tapes .
Input word States ———-—— e e Instructions
TT T2 T3
ot
a
ts [
a |
. tl T T T T — T]
) |
a ||
I T T + n—T1
b |
i3
: |
N T TN > T2, 24— T1
« I
te T ‘I‘ To — T2
a I
to = | 2 T1
a
te T ry — T2
b
b
s T T2 - T3; x5 — T2
a
ls xr3 — T3
a
te - xr — T2
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1. si*2” = six” or = s;’2” and n;(s1*;2”) = n(s1;2”) or = 7' (s//;2”7)
according to 2”7 ¢ X or ¢ X'.

2. so*z” = so* for all ” and 79.,(s”; 2”) = ey for all s”, ” such that
s"x” = so*.

3. s”2” and 7:(s”; x”) are the same as in the original transducers
when s” € S and 2” € X or when s” ¢ 8’ and 2” ¢ X'.

4, m:8"2” = so* when s” ¢ S and 2” ¢ X’ or when s” ¢ S and z” ¢ X.

For ny: §"2” = 2”7 and 72(s”; 2”7) = m(s*; 2”7) when s” ¢ S’ and
2” ¢ X' and s”2” = s¢* when s” ¢ S’ and 2” ¢ X. For »; , we take G = G’
(and S identical to S’) and we define s”2” = s* and 73(s”; 2”) =

n3(s1*; 2”) when s” ¢ S and z ¢ X’ or when s” ¢ §' and 2”7 ¢ X.
The verification is left to the reader.

Receivep April 3, 1960
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On the Definition of a Family of Automata™
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Faculté des Sciences (Poitiers)
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I. INTRODUCTION

In this note we discuss the definition of a family @ of automata de-
rived from the family @, of the finite one-way one-tape automata (Rabin
and Scott, 1959).

In loose terms, the automata from @ are among the machines char-
acterized by the following restrictions:

(a) Their output consists in the acceptance (or rejection) of input
words belonging to the set F of all words in the letters of a finite alpha-
bet X.

(b) The automaton operates sequentially on the sucessive letters of
the input word without the possibility of coming back on the previously
read letters and, thus, all the information to be used in the further com-
putations has to be stored in the internal memory.

(¢) The unbounded part of the memory, Vy , is the finite dimensional
vector space of the vectors with N integral coordinates; this part of the
memory plays only a passive role and all the control of the automaton
is performed by the finite part.

(d) Only elementary arithmetic operations are used and the amount
of computation allowed for each input letter is bounded in terms of the
total number of additions and subtractions.

(e) The rule by which it is decided to accept or reject a given input
word is submitted to the same type of requirements and it involves only
the storage of a finite amount of information.

Thus the family @ is a very elementary modification of @ and it is not

* This work has been done in part at the Department of Statistics of the Uni-
versity of North Carolina under contract number AF 49 (638)-213 of the United
States Air Force.
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claimed that it relates usefully to the Turing machines or to the algo-
rithms used in actual computing practice. In a more formal manner we
have

DEriNITION 1. An automaton a € @ is given by the following struc-
tures:

(1) An automaton ay € @ (the finite part of o), that is, a finite set
of states =, a mapping (2, X) — Z, an initial state o, € Z, a distin-
guished subset of =’ of 2.

(2) A finite integer N, an initial vector v; from Vy and for each state
¢ in 2’ a distinguished finite union V,’ of homogeneous linear subspaces
of VN .

(3) For each pair (o, z) in (2, X) a mapping n:Vy — Vy which is
such that each of the coordinates v;” of n(v, ¢, ) can be computed by a
finite computing program independent of the vector » and involving
only the following operations: reduction of an integer modulo a positive
integer at most equal to a finite bound K,(o, z, ), multiplication of an
integer by an integer of absolute value at most equal to a finite bound
Ky(o, z, j), addition and subtraction of two integers.

(4) For each input word f = z;, z,, - -+ x;, the automaton computes
recursively the sequence of states oy, , 0i, , 04, , -+, 0s, = o1f and the
sequence of vectors v, , vy, , Vi, -, Vs, = v(f) by the rules

Gy = 01 and Cipy = (U,'m_l , xim)

v'i() =0 a’nd Vs = "(v'im—l ) o'im—l ) xi’m)'

m

(5) The input word f belongs to the set F, of the words accepted by
a if and only if o;f € =’ and, then, if the vector v(f) = v, does not be-
long to V., .

As expected, this definition can be considerably simplified and in
Section I we verify that it is equivalent to the following one:

DeriNITION 1’. An automaton a € @ is given by a (homomorphic)
representation u of the monoid F in the ring Zy of the integral N X N
matrices (N, finite) together with the rule

Fa = {f € Fiufiny 5 0}

where uf,x denotes the (1, N) entry of the matrix uf.

It follows that the theory of Kleene (1956) can be applied and in
Scetion 111 we verify that the family R of all the sets I'o with o € @
has the following property
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If F" and F” belong to R the same is true of their intersection, union,
set product F'F” (i.e., of the set of all words f = f’f” with f* € F’ and
f” € F”), and formal inverse F”° (i.e., of the infinite union of all the
set products F’, F'F' F'F'F', --- ,F'F' --- F', -..).

However, because of the arbitrariness implied in the conditions (2)
and (5) of Definition 1, it is not necessarily true that the complement
F — F’ of an F’ from R also belongs to R. This, together with some
miscellaneous remarks of a negative character, is verified in Section 1I
by way of counterexamples.

Furthermore, I am unable to formulate for the family @ the deep
part of Kleene’s theory, namely to characterize R starting from a reason-
ably simple subfamily of sets in terms of meaningful set theoretical
operations.

In Section IV, the family Ry = {F.:a € @} of the regular events is
characterized in terms of our present notations and in the same section
we apply some elementary remarks from the theory of sequential ma-
chines (Moore, 1956) or transducers (Huffman, 1959) in order to obtain
a third definition of Q.

I am most indebted to Professor D. Arden from M.L.T. for many dis-
cussions of the content matter of this paper which have greatly con-
tributed to the development or to the clarification of several points.

A. PRELIMINARY REDUCTION

We shall say that the automaton « from @ is semi-reduced if there
exists a collection of finite integral matrices u(e, ) which are such that
the vector 5(v, ¢, x) is simply the product vu(s, ).

I1.A.1. To any a € Q@ there corresponds one equivalent semireduced
o' € @ which is such that for every input word f the vector v(f) is a pro-
Jjection on a subspace of the vector v'(f) of the automaton o'.

Proor. Let us consider a fixed triple (o, Z,7) and write in explicit
form the computing program giving the jth coordinate of the vector
7(v, 0, 7).

Since this program is assumed to be finite there exists a finite natural
number M[=M (o, z,j)] and a set of M quadruples of integers
(2, 1(9), 12(2), 0(2)) satisfying the conditions: (a) 1 = ¢ = M; (b) for
all values of 7, 71(2) and 7,(7) are nonegative numbers at most equal to
N +1; (¢) o(2) = 1,2,3 or 4.

We now define a sequence of 1 -+ N + M numbers a(z, v) by the
following conditions: (a) a(0,v) = 1; (b) a(s, v) is the th coordinate
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of v when 1 =7 = N; (¢) a(N + M,v) is the jth coordinate of
7(v, 0, x) which we try to compute; (d) for each #(1 <7 < M),
a(N 4 72,0) is the value of a(#(%),v), reduced modulo a(é(z), ),
when o(7) = 1 and, when o(z) = 2, 3 or 4, it is respectively the value
of the product, the sum, or the difference of a(7#,(¢), v) and a(é(7), v).
Here, as usual, by the value of a reduced modulo b we mean the smallest
nonnegative integer which is congruent to @ modulo b.

At the cost of some increase in the length of this program we can
assume that only multiplications by bounded nonegative factors are
used. Indeed, since by hypothesis | a(7:(7), v) | £ Ki(o, z,7) when
o(7) = 2, we can always replace this line of the program by a subroutine
which consists in a multiplication by the nonnegative number
Ky(o, z,j) 4+ a(i:(7), v) followed by Ki(7, x,j) subtractions of the
multiplicand.

Also, since there exist only finitely many triples (o, z, j) we can take
a fixed finite constant K which is larger than 2 and larger than any of
the numbers 2K, (¢, z, j) and 2K,(s, x, 7). We shall always denote by
a(7, v) the value of a(7, v) reduced modulo K! .

Let W, be the set of the vectors » which can occur when the finite
part of the automaton is in state o, i.e., the set of all » which are such
that v = v»(f) for at least one input word f satisfying o1f = o. Let I’
be the set of the addresses (0 < 7 < N + M) which are such that
for every v in W, , the value of a(%, v) is nonnegative and at most equal
to K.

Because of the hypothesis and of our convention that only multipli-
cations by nonnegative factors are allowed we have:

If o(2) = 1, thenz € I'.

If o(¢) = 1 or 2, then %(7) € I'.

Let us denote by o the vector whose coordinates are those of » reduced
modulo K! and verify the following statement: If v, »" € W, and
7 = 9 then, for all ¢, a(¢,v) = a(¢,v’), and for all 7 € I', a(z,v) =
a(z,v').

Indeed, because of our choice of K and I’, a(7, v) is always equal to
a(7,v) when v € W and ¢ € I'. Thus, since the statement is true by
hypothesis when 7 < N, we can apply induction and it is an elementary
consequence of the properties of the congruences that when a(4:(),v) =
a(4,(4), v') and a@(22(2), v) = a(e(z), ') we also have a(z, v) = a(s, v’)
for each of the four possible cases o(z) = 1, 2, 3, or 4.

Consequently, any a(z, v), and in particular a(N + M, »), depends
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only upon #. But, the set V of these reduced vectors contains only
(K!)¥ distinct elements and for all practical purposes here it may be
considered as an abstract finite set of states. Thus, we can replace a by
an automaton o’ for which the finite part o’ has the union of Vy and
2 as a set of states. Then, in o', the computing program for any triple
(¢’, x,j) admits the following simplifications: o(7) is never 1; when
o(7) = 2, the instruction consists in the multiplication of a(41 (%), v) by
a factor which does not depend upon the vector » but only upon 7, j, «
and the state ¢’ in which is the finite part of «'.

By a simple induction, it follows that we can find integers ¢; (o, 2, 7)
(0 = 7/ £ N) which are such that the jth coordinate of #(v, o, x) is the
linear function

00(0: l‘,]) + ,Z vi’cj’(a7 .’13,])
1257 <N

of the coordinates v, of v; since, at the cost of increasing N by one unit
we can always have a coordinate v, which is identically 1 for all f and,
since, consequently we can make the above relations homogeneous the
result is entirely proved.

Let us recall that a representation of the monoid F in the ring Zy
of the integral N X N matrices is a mapping u:¥ —> Zy which is such
that uff’ = ufuf forallf, f' € F. For any matrix m, Tr(m) denotes the
sum of the elements lying in the main diagonal of m.

1.A.2. To any a € Q there corresponds one representation u' in Zy
and a finite set P of matrices from the same ring that are such that

Fo=1{f€ F:Tr(pyf) #0 forall p € P}.

Proor. Let us assume that « is a semireduced automaton with M
states in its finite part and, for each x ¢ X, let u’x be the (M X N) X
(M X N) matrix defined by

Wi = (ulo,x))j;» if ox = ays; =0, otherwise.
Assuming that ¢; and v are respectively the initial state and the initial
vector of a, we define the M X N vector v’ by

vij=w0; if ¢=1;=0 if 43 1.

It is easily verified that u’ is a representation of F in Zy» (N’ = M X N)
and that for any input word f one has (v'u'f):; = (v(f)); if oof = o5
= 0, otherwise.
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Let us now revert to the condition (5) of Definition 1 and observe that
it implies that for each ¢ € 2’ a finite collection W (o) of N-vectorsis given
together with the rule that f € F, if and only if o;f € 2’ and v(f)w #
0 for all w in W (a1f). For each state ¢ € 2’ and, then, for each vector
win W(oy) let w’ be the M X N vector defined by w;; = w; if ¢ = ¢';
= 0 otherwise.

Because of the relations established above we have (v'u/f)w’ = 0
when a,f # o, . Thus if W’ denotes the set of all the vectors such as
w’ we have f € F, if and only if not all the products (v'u'f)w’ (w’ € W’)
are zero. This practically ends the proof because if p is the M X N
matrix defined by

Pijirgr = ('w::) X (U:'j')
the relation (v'u’f)w’ £ 0 is equivalent to Tr(pu'f) 5= 0.

B. EQuivALENCE OF DEFINITIONS 1 AND 1’

We recall that if m € Zy and m” € Zy., the kroneckerian product
m” = m ® m’ of m and m’ is a matrix from Zyy. whose entries are de-
fined by

Mair, gy = (mi,5) X (mr,30).
Then, identically, for any a, b € Zy and a’, b’ € Zy one has
(a®a)(b®Y) = (ab) ® (a'd’)
and
Tr(a ® a’) = Tr(a) Tr(a’).

I1.B.1. The Definitions 1 and 1’ of the family @ are equivalent.

Proor. On the one hand the statement is trivial because an automaton
as defined by 1’ is a special case of an automaton as defined by 1; in-
deed, given a representation u of F, we take as initial vector v, the first
row of ue. For any input word f the vector vuf is obtained by perform-
ing for each input letter a bounded number of additions and multiplica-
tions by bounded factors. Finally, f is accepted if and only if v,uf does
not belong to the linear subspace of the vectors whose last coordinate
is zero.

On the other hand the statement is also trivial. Because of I.A.1 and
1.A.2. we may assume that « is in reduced form, i.e., that « is given by
a representation u:F —> Zy together with a finite subset P of Zy . For
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eachf € F,let u'f = (uf) ® (uf) (€ Zxe) and let p be the sum of the
kroneckerian squares p ® p over all p € P. Because of the identities re-
called above, u’ is a representation and for any f € F, Tr(pu'f) is the
sum over all p € P of the square of Tr(pyf); thus, Tr(pp’f) 5% 0 if and
only if f € F, . It follows that without loss of generality we may reduce
the verification of the statement to that of the following:

If u is a representation of F in Zy and p a matrix from the same ring
there exists a representation u’ of F in Zy2,» which is such that for all f,
Tr(puf) = w'finesz. Indeed, for each f € F let p’f be the following
N’ X N’ matrix (N’ = N* + 2):

(i) p'fwr;j = w'fip1 = 0foralll £ j = N’; (i.e., the last row and the
first column of every u'f are identically zero).

(i) w'fr14 4w for each pair (7, k) (1 = j, k < N) is equal to the
(7, k) entry of the matrix puf; (i.e., for each k the subvector u'fi,14j+@-nn
(when 1 = j £ N) of the first row of u'f is equal to the kth row vector
of the matrix puf).

(ii") w'fieira_nwn- for each pair (4, k) (1 = 5,k £ N) is equal to the
(7, k) entry of uf.

(iii) u'f1,~ is equal to Tr(puf).

(iv) The restriction of u'f to the set of indices (7, j) strictly larger
than 1 and strictly less than N’ is the direct sum of N matrices identical
to the matrix uf.

The verification that u’ is a representation is a straightforward com-
putation and the result is proved because of the condition (iii).

As a simple consequence of these constructions we have:

I.B.2. The family R of all F, (a € Q) 1s closed under finite intersections
and unions.

Proor. Let F’ and F” be defined respectively by u':F — Zy and
uw’:F —> Zyr . If for every f we define u;f as the kroneckerian product
(W'f) ® (u”f) we have w;fina» ¥ 0 if and only if both p'f; - and
u"fi.n» are different from zero; thus u; defines the intersection of F’ and
F”.

If for every f we define u,f as the direct sum of the kroneckerian squares
of u/f and p”f, m. is still a representation and we can easily find a
(N”? + N”®) X (N + N”?) matrix p which is such that for all f,
Tr(pw.f) is the sum of the square of u'fix» and p”fix- ; thus, by our
last reduction u, can be used for defining the union of F’ and F”. D.
Arden has pointed out to me that by using the kroneckerian product of
w'f and u”f one can obtain more economically the same result.
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II. COUNTER EXAMPLES

I11.1. If X has a single letter, R reduces to Ry (= the set of all regular
events).

Proor. Let a be defined by the representation u:F — Zy and con-
sider the following integral power series in the variate ¢:

a(t) = ao+ 2 t"(ua")in -
n>0

By definition, Fa is the set of those words =™ which are such that
(px™)1,x # 0; however, as a function of ¢, a(t) is the Taylor series of a
rational function whose denominator is a factor of det(1 — ¢ ux). Thus
according to the theorem of Skolem (1934), there exists a finite set of
finite integers m, p, di, d2, - -+, dr which have the property that for
any n larger than m, the coefficient of t" in a(t) (i.e., (ux")1,») is zero
if and only if » is congruent modulo p to one of the d;’s. Consequently
F, reduces to a regular event when X has a single letter and there
exist quite simple sets (as, e.g., the set of the words 2" where n runs
over all integers) which do not belong to R. It can be observed that
Skolem’s theorem shows that for any F., € R and f € F, the intersec-
tion of F, with the infinite set f, /%, f°, ---, f*, --- also reduces to a
regular event.

I1.2. When X has two letters or more there exists at least one F, € R
which has the following properties: F . does not belong to Ry ; the comple-
ment F — F, of F does not belong to R.

Proor. Let X = {z,9}; 2 = {oi},2=1,2,3,4,5,and (Z,X) > 2
defined by

o1X = 0k = 02, O3 = 04T = 034, o5l = 0p
a1y = o3y = o4y = o5y = 05 ; oY = 03.

Let u(o;, ) be the following matrices

u(or, ) = ploz,2) = ((1) }):

plos, ) = plos,z) = ((1) -i);

u(oz, y) = the identity matrix; u(s, x) = the zero matrix in all other
cases.
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The initial state is o1 and the initial vector v = (1, 0). =’ is T itself
and f is accepted in all cases except if a;f = o4 and then if the second
coordinate of v(f) is zero.

By looking at the diagram (Fig. 1) one easily sees that o1f = a4 if
and only if f = 2" "y2z'™ and that, then, »(f) = (1, n — n').

Thus F, consists of all words except those which have the form
&' "yx'™™; and, according to a metamathematical proof of Calvin Elgot
(1960), F, is not a regular event.

Let us verify that F/ = F — Fa does not belong to R; indeed, let us
assume that there exists a representation u':F — Zy which has the
property that u'fi,v 0 if and only if f does not belong to, F, .

Since p'z is a N X N matrix it satisfies an equation of degree at most
N and for every pair (7, j) and matrix m from Zy there exists a linear
relationship between the (7, ) entries of the N 4+ 1 matrices m, mux,
mpax’, --- , mux". Since, by hypothesis, for every finite n the (1, N)
entry of the matrix u'z' "yz" (= w2 "yu'z" ) is zero for 0 £ n’ < n
and different from zero for n’ = n + 1, we have shown that N’ must be
at least equal to every finite integer n. Consequently, the representation
x’ is an infinite representation, i.e., F — F, does not belong to R. Some
elementary properties of this type of sets have been described in
Schiitzenberger (1959).

I1.3. The family R = {F — Fa:a € @} is closed under (finite) union
and intersection but not under set multiplication.

Proor. By definition, F, € R if and only if there exists a representa-
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tion p:F —> Zy (with N finite), that is, such that Fo={f € Fiufix = 0}.
Thus the closure properties of R for the union and the intersection are

a simple consequence of 1.3.2.
Let X = {z, y};

o, (1 1Y), (1 -1\ (1 =2
#x—'l'l'x_()l’ M?J—O 1) ”’y"o 1'

The sets

Fo={f€Fiufa=0 ={f € F:|fl. = |1}

It
It

and

Fo ={fCF:ipfia=00 ={f€F:|fl.=2|fls

(where | f |. denotes the number of times the letter z appears in f) both
belong to R and we shall verify that F” = F,F, does not belong to R.

Let us define W(f) as the set of the words f’ which are such that
ff' € F”. We have (i) For allf € F and f” € F., W(f) is contained in
W (f”f). Indeed, ff’ € F” meansthat ff’ = fif, where f; € F,andf, € F,. .
Thus f”ff’ = f”f.f. belongs to F” since by hypothesis f”f; € F,. (ii) If
both f and f” belong to F., W(f”f) = W(f) implies that f” = e (the
empty word of F'). Indeed, let f’f € F,., thatis | f’f|. = |f"f|, = F,
say. The product f”fz* satisfies the relations |f”fz*|. = 2k and
| /7f2* |, = k and, consequently, it belongs to F, ; thus, since Fo is a
subset of F” (because e € F,) the word z* belongs to W (f”f) and we
shall show that it does not belong to W (f).

Assume for the sake of contradiction that f2* = fife with f; € F, and
fy € Fo ; this implies that f = fifs with f; € F, and, consequently,
|fa* o = |fsla 4+ % = 2[fsly 5| fsls = | fsly - It follows that | fs |, = k
and finally that | f”f |, = | f"fifsl. = k,i.e,f” = e.

Thus, using (i) and (ii), we can find at least one strictly increasing
infinite sequence of sets W, viz., W(f), W{{"f), W{"f), ---,
W ("), -+ .

Let us assume now that F” = {f € F:u"fix» = 0}; we observe that
for given f the set W (f) of the vectors consisting of the N”th row of the
matrices p”f’ where f’ € W(f) form a linear space whose dimension is at
most N”. Since we can build an infinite strictly increasing sequence
W (f”™f) of such spaces it follows that N” is infinite, i.e., that FoF o = F”
does not belong to R.
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11.4. If X contains two letters or more, there corresponds to any subset
F’ of F one automaton satisfying the conditions (1), (3), and (4) of Defini-
tion 1 and having F’ as its set of accepted words.

Proovr. This is a trivial consequence of the existence of isomorphic,
integral, finite dimensional representations of the monoid F.

Let first X = {z, y};

(1 1Y\, _ (1 0).
ﬂx—()l) #y—‘ll;

and take v = (1, 1) as initial vector. According to a theorem of Harring-
ton (1951), the relation vuf = wvuf’ implies f = f’; thus for any subset
F’ of F if the subset V' of V. is defined by V' = {v/ = wuf:f € F'}, we
have reciprocally F’ = {f € F:vuf € V'}. Clearly, this algorithm satisfies
the conditions (1), (3), and (4) but not necessarily (2) and (5).

When X contains n = 3 letters z; , the same result subsists because we
can associate to each z; the matrix pf; where fi = z, f, = ¥ and
fi=y 'zwhen2 <i=<n— 1.

III. KLEENE’S THEOREM

Although this part could be written without explicitly using the
notion of the ring A of the formal integral power series in the noncom-
mutative variates x € X, it seems more natural to do so and we recall
here, without proofs, a few definitions and results on A. These are very
special and shallow cases of theorems used by many authors in the
study of other problems. An especially valuable reference is Lazard
(1955).

DxrFINITION 2. A is the ring of all formal infinite sums

a= 2. f(a,f)
feF

with integral coefficients (a, f). )
The addition and multiplication in A are defined respectively by:

a+a = 2,f((a,f) + (af); ad’ = 2 f( 2 (a,f)(a,f"))
feF feF f'f"=f

where, as always in this section, > —y means a summation over all
factorizations f = f’f” of f.

It may be easier to visualize any element of A as a generating function
in which every word f has a (positive or negative) integral coefficient
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(@, f). Thus, in particular, to each subset F’ of F' there corresponds the
formal sum (its characteristic function)

2 =2 fxe(f)
fEF feF

with x#(f) = 1 or 0 according to f € F’ or not.

The multiplication is simply the ordinary multiplication of series using

infinite distributivity, that is aa’ can also be formally expressed as
2 fa,fa = 2 af(a, ) = 2 ff'(a, ) (d, f).
jeF jer SI7EF

It may not be unnecessary to stress that this product is not the
Hadamard product =f(a, f) (a’, f) to which we were led by the construc-
tion of the kroneckerian product of matrices in Section I.

We shall always denote the empty word by e and by A* the subset of
all @ € A in which (a, e), the coefficient of e, is zero. The elements of
A* are usually called quasi regular and we denote by a* the mapping
A — A* defined by a — (a, e)e. If and only if a is quasi regular (i.e.,
a = a¥), it has a quasi inverse a’ = an L a” which satisfies aa® + a =
a’a + a = a’. In a perfectly equivalent manner an element a € A has
an inverse a (¢ 'a = a 'a = e) if and only if it belongs to the group
G C A of the elements a’ which are the sum of e and of the quasi regular
element a'*; then ' = ¢ + (—a'*)° because

da "l = (e + a'*)(e + (—a,’*)o)
=e+4 a*4 (—a™*)’ + a*(—a*)°
=e+a*—a*=ce.

We shall find it more convenient to deal with the quas: notions because
if @ has nonnegative coefficients the same is true of (a*)" but not neces-
sarily of (e + a*) 7.

All the above operations are legitimate because A* is a continuous
topological algebra with continuous inverse when the distance between
a and d@’(a 5# a’) is defined as the supremum of the inverse of the length
of those f for which (a, f) = (d/, f).

A. Tue SuBrIiNG R oF THE RATIONAL ELEMENTS

DEerFiniTION 3. The subset R of A is the subset of the formal power
series 7 which have the form r = Zfe r fufi,n for some representation u
of F in Zy (N finite) which is said to produce r.
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We shall verify that R is in fact the smallest subring of A that con-
tains all the generators € X of A and is such that its intersection with
G is a subgroup; this last restriction is not trivial because, for an arbi-
trary subring A’ of A it may well happen that some a belongs to the
intersection of G and A’ but that ™' does not belong to A’. If the vari-
ates x were commutative, B’ would be the ring of the ordinary rational
functions with integral coefficients and it seems natural to extend this
terminology to the noncommutative case. A slightly different definition
of R is given below.

III.A.1. R s a submodule of A.

Proor. If

a= 2 f(u)iv, a = D f(uf)iw
feF feF

we take the direct sum u”:F — Zy,n of p and p’ and we apply the re-
marks of 1.3.1. for reducing to the desired form.

IIT.A.2. R is a subring.

Proor. We have to prove that if a is produced by u and a’ by ' we
can construct some u” which produces aa’. It will be simpler to prove
the result under the additional assumption that a, @’ € A* and to ob-
serve that the general case follows from III.A.1 because aa’ = a*a’* 4
(a,e)a’* 4+ a*(d,e) + (a,e)(a’,e)e. We can also assume that ue and e
are the identity matrices of Zy and Zy' respectively. After these pre-
liminaries we proceed to the actual construction.

For each x € X we define u”x € Zy, 5 as the matrix

(ux (/w)U)
0 w'z

where by (ur)u we mean the N X N’ matrix in which all columns are
zero except for the first one which is equal to the Nth one of ux. Then,
after taking u”e as the identity matrix of Zy,»+ , we extend u” to a repre-
sentation p”:F —> Zy,n in the usual manner.

Because of our assumptions the following relations are surely true if
f=eorx:

M”fl,i = Ilf1,i when1l £ ¢ = N;
Wit = Zf uft.wu’fi; whenl <4 < N
1=

Let us verify now that if they hold for f they also hold for fz. Indeed we
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haveforl1 <7 =< N:

N -
Wiz = 2, wfuatii= 2, anx,]-uxj.i = ufxi;

1<j<N+N' 1<5<

and for1 £ ¢ < N’:

Y hY
Wiziwre = 2o phi(e)w) e + 2. wfunen'®ie
N 1<7=N

1=j=

The first sum is just pfz;,» when 7z = 1 and zero otherwise. By the induc-
tion hypothesis the second sum is
/ Y4 /
Z wfy v, = E wf1'f @
F7=F1STEN 7 =1
When 7' 5 1 this can also be written as
N ’ ,o”
24 MG1,NM 1,5
g'9"=fz
since p'e1,+ = 0. On the contrary when 7/ = 1 we have
Al ’ ” A ! ”
v v = wfriy + Z pg1,NK 11 = Z ug1,Np g1
g'9"=fz g'9"=fz
g"#e
and the above relations are true for all cases. Since they imply that

Zf(ﬂ”f)l,sz' = Zf( Z (uf")1,w(Wf")1,00) = aa’
JEF JEF  f'f"=f

the result is proved.
I11.A.3. R contains the quasi inverse of each of its quasi-regular elements.
Proor. As above we assume that ue is the identity matrix and we de-
fine e as pe. For each z € X, we take gz equal to the sum of uz and of
a matrix (uzx)u € Zy which has all columns zero except for the first one
which is equal to the Nth column of px. For f = e or z we have

Bfi,i = wh + f’f’Zf ﬁf{,Nﬂf{’,‘L .

As in the last proof above:

W = Q. Efayeire: + NZ Do Bfiwufl Rz, .

1<i/2N —f 1SV <N
Thus:if 7 = 1,
.
By = iy + oy + N}_,f ﬂf{,Nl-‘f”x],l -+ ; Z:, ﬁf{,zv#f”%.zv .
rfn— 1=
Ifz 1,

ufrys = ufry: + Z ﬁg{,;\mg;/,; .
9'9"=g




M.-P. Schiitzenberger: (Euvres completes, Tome 5 page #63 7-7-2009

Année 1961 1961-4. On the definition of a family of automata

DEFINITION OF A FAMILY OF AUTOMATA 259

Consequently, the initial relation is valid in all cases. Let us now
compute d; . We have

@i = 2 fafui = 2 fufui + 2. (Fafiw) (Fufls).
jer jer er

In particular, for © = N, we have ay = a + @va, that is, e = (¢ + ax)
(e — a) and, since a is assumed to be quasi regular, ay =
(e —a)" —e=a

III.A.4. Reciprocally, any element @ = 2 scrf(uf)1n, of R, can be
obtained from the generators x € X by a finite number of ring operations
and formation of the quast inverse (of quasi-regular elements).

Proor. It is convenient to verify first the following statement: If s
is a N X N matrix whose entries s;; are N° distinct noncommutative
variates, any entry of the quasi inverse u of s is a rational element with
integral coeflicients in the ring of the formal power series in the vari-
ates s;; .

When N = 1, the statement is trivial because, then, u reduces to uy
which is equal to the quasi inverse of s;; ; when N = 2 we shall use in-
duction and base the verification upon the popular fact that any entry
u;; can be interpreted as the sum of all paths from 7 to 7 on the complete
graph with vertices 1,2, --- , N. Since any such path can be decom-
posed in a unique manner described below with respect to the return of
the vertex 1, the verification is a straightforward clerical operation.

Let us assume that the result is already proved for N — 1 and con-
sider the (N — 1) X (N — 1) matrix ¢ obtained from s by replacing by
zero all the entries s;;and s;;(1 = 7 < N) of s; by the induction hypothe-
sis the quasi inverse v of ¢ does exist and its entries v,;;(2 < 7,7 < N)
have the desired properties. We define a N X N matrix u by the follow-
ing relations below and we shall verify later that it is the quasi inverse
of s by showing that us = u — s.

un = (81 + EN 8138 + \ Z . sh-v,,-s,-l)o

2<is <igs
Ifi 5 1,
U = Uy + Unty ; Uy = Ug + Wi + Uaun

where, as an abbreviation,

- ™ - ~

W o= s+ D, Syi; W = sa o+ D visa.

2<7EN 2<TEN

If 4,7 = 1,

Ui; = Vi + Uale + un) ;.

o7
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By the induction hypothesis, all the u;;’s can be obtained from gener-
ators by the specified operations and we verify that us = u — s. We
have to examine four cases:

Case 1.
<~ _
(us) = unsn + D, Si = Unsu + D, Sp 4 un QO S
2SJEN 2SIEN 2SJEN
= upsy + (e 4+ un)( Z 815851 + Z 8107 38ir1)
2SJEN 2<j,i<N

= unsu + (e + uu)(e — sn — (e + ua)” ) = Un — Su.
Case 2.If2 <7< N
(us)n = uUusi; + (8 + un) Z U158 s

2<j<N

= uys, + (e + uu)( Z -5‘11»5‘;1 + Z 815073853

2<5,5' SN

= Uns. + (8 + uu)( Z 8385 + Z Su'(vj'; - Sj'i))
2<IEN 2<j'EN

= unsu + (e + un(@: — 81:)
Ui — Sui -
Case 3. 1f2 <t <N
(us)ia = uasu + Z UijSi1
2<TEN

= %iSu + @aUnsu + vule + Z uzl(e + Un) WS
25 7

III\

= uu[Sn + upsny + e + Z (6 + ull)unsn] — Sa

2<jEN

= dale + (e +un)(su + 2 sysa+ 2, suywpsa)l — sa

2<TEN 2<7i <N
@ale + (e + un) (e — (e + uu)™)] — sa
= Ui(e + un) — 81 = Ua — Sa.
Case 4. Finally, if 7,7 # 1
(us)sj = UisSij + D UipSy;

2<5 <N

WiiS1; + UaluSi; + Vij — Sij + Z Ui (e + Un) U855
<i<N

= v;; — 8; + uu(e + un)ls; + Z WjrSirj] = Uij — Sij
257N

Il

and the statement is verified.
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We now revert to the proof of III.A.4 and we consider an element
r € R produced by the representation u:F —> Zy . Without loss of gener-
ality we may assume that r is quasi regular and we consider the formal
sum s = D .cx xpx, that is a N X N matrix whose entries s;; are the
elements ) zx zux:; from R. The sum s can be interpreted as a quasi-
regular element of the ring of the power series in the variates € X with
coefficients in Zy . Let us observe that for any two elements of this ring
having the form fuf and f'uf’ the product (fuf) (f'uf’) is equal to ff'uff’.
Consequently, the quasi inverse u of s is equal to the sum of fuf extended
of all the elements of F except e and the entry wu;; is the sum of fuf;; ex-
tended to the same set. Since we have seen previously that u;; is a rational
element in the entries of s, the same is true in particular of u;y = @ and
the result is verified.

As a point of marginal interest in the applications of probabilities to
regular events, we consider the homomorphism (of ring) N which sends
every r € R with finitely many nonzero coefficients onto the correspond-
ing ordinary polynomial in the commutative variates & = Ax; A extends
in a natural fashion to R and we have

III.A.5. For each r € R, \r is a power series, converging in some open
domain around zero and representing there an ordinary rational function in
the commutative variates T = Azx.

Proo¥. Let 7 = D scrfufi.y . We consider the matrix D eex Fux = 8
and the ordinary polynomial equal to det(I — s) in the commutative
variates £ = Az. For small enough e, det(I — As) has its value arbi-
trarily close to 1 when all the & are less than e. Under this condition the
matrix I 4 D ns18" = (I — s)7' = [det(I — s)]" Adj(I — s) exists
and its (1, N) entry, that is, Ar, is a rational function of the ordinary
variates Z.

B. RepuctioN TO STANDARD FoRM

In this section, we apply classical algebraic techniques to obtain a
minimal representation producing a given element r of E; at variance
with the other parts of this paper we deal here with arbitrary (not
necessarily integral) numbers.

II1.B.1. To any element r € R, there corresponds a unique integer N and
a representation & of F by N X N rational matrices that has the following
properties:

(i) There exists two sets T and S of N words each, a finite integer K and
N? matrices w(t, s) from Zy which are such that for all f € F the matrix gf
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is identically equal to the sum ZK(r,tfs)w(t, s) extended to all the pairs
(t,s) € T X 8.

(i1) The representation G produces r in that sense that gfiy = (r,f) if r
is quasi regular and that ify, = (r,f)(r,e) " if (r,e) = 0 (that is, w(e,e)
has a single nonzero entry).

(iii) If u 2s any representation of F by N X N matrices that produces r,
then N = N and there exists a pair of matrices (1, W) which is such that
(aufa')s; = pmfij,if 1 = 4,5, = N and = 0, otherwise (z.e. fi s a projec-
tion of u).

Proor. In the first steps of the proof we start from a given N-dimen-
sional representation u of F' that produces r and we construct by itera-
tion of the procedure described in 1 below the N-dimensional repre-
sentation @ which has the properties (i), (ii), and (iii) with respect to
w; in the last step we verify that this representation does not depend
upon u but only upon 7.

1. Let I be a fixed one to one mapping of F' onto the natural numbers
that satisfies the inequality If < Iff’, for all words f and f/, and let v be
the vector equal to the first row of ue. We construct a set of words 7"
by the two following rules: (a) I '1 (that is, e) belongs to 7”; (b) in-
ductively, I = f belongs to T” if and only if f = f'z where f’ € T" and
x € X and if vuf is (linearily) independent of the vectors vuf” where
f? € T'and If" < If.

By construction, 7’ contains N’ < N elements and, without loss of
generality, it may be assumed that 77 = {f:If < N’} since ff’ € 71"
implies f € T".

Let xf be the N’ X N matrix whose jth row is the vector vuf’f where
If’ = j; by construction xf = xeuf identically.

Observe that for any ¢ € 7" and x € X either tx € T’ or, else, the
vector vutx is a linear combination of the vectors vut’ (¢’ € T’), that is,
of the rows of xe; in other words, the matrix xx is equal to the product
w'zrxe where p/z is a certain N’ X N’ matrix. For any word
f = i, -+ @, we define u'f as p'z; pw'z;, - - p'z;, and we verify by
induction that the representation u, the associated representation u’, and
the interwinning matrix xe are linked by the identity

xf = xeuf = wfxe.

In fact, since the rank of xe is by construction equal to the number
N’ of its rows, there exists a pair (a, b) of nonsingular matrices which is
such that (axeb);; = 1if 1 <7 =35 £ N’; = 0, otherwise.
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The identity (axed) (b ufb) = (au'fa™")(axeb) shows that
(b ufb)i; = (aw'fa iy if 1=4,j<N
=0 if 17N and N <j=N.

Thus, there exists a pair (u, u’) of matrices which are such that the
restriction of uufu’ to the indices less than N’ is equal to uf and that
any other entry of uufu’ is zero, that is, 4’ is a projection of w.

Finally, we point out that the construction of u’ implies that any
vector vuf(f € F) is a linear combination of the N’ independent vectors
vut(t € T') and that consequently N’ can be defined, without reference
to I, as the rank of the vector space spanned by the vectors vuf(f € F).

2. Let I be a one to one mapping of ¥ onto the natural numbers that
satisfies If < If’f for all words f and f’, and let »’ be the (column) vector
equal to the Nth column of xe. It is clear that by replacing I by I and
by exchanging everywhere left and right multiplications we obtain a set
S analogous to 7" and that we can associate to the representation u’ a
third representation i of dimension N < N’ and an interwinning matrix
xe that satisfies the identity:

xf = w'fxe = xeif.

Again, reverting to 7 and taking a basic vector 7 equal to the first row
of Xe, we can apply the same construction once more and obtain a set T,
a representation i of dimension N < N associated to i, and an inter-
twinning matrix xe.

However, by definition, (%f):; = (r, tfs) where It = ¢ and Is = j.
Consequently 7' is a subset of 7" and xf is obtained from %f by deleting
a certain subset of N — N rows. Let us observe that the rank of ke is
equal to NV, its number of columns and that, by construction, T is a set
of words corresponding to a maximal set of independent rows of xe.
Thus, N = N and we conclude that ke is a nonsingular matrix.

3. Let us consider the intertwinning identity

Xf = xeaf = ifxe.
Since xe is nonsingular, we have identically af = (xe) '%f and i has the
property ¢ of the statement.

Since the (1, 1) entry of xf is exactly (r, f) we have Tr(qaf) = (r,f)
where ¢ is obtained from xe by replacing by zero every row except the

first one; thus, depending upon (r, ¢) = 0 or not we can find a nonsingu-
lar matrix m which is such that mgm™ is a matrix in which all the entries
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are zero except for the (1, 1) entry or for the (N, 1) entry, and the repre-
sentation if = mafm " has the properties (i) and (ii).

We have already seen that ' is a projection of x and, by the same
argument, it is easily verified that g is a projection of u’, that is, finally,
of u.

4. Let us say that the set of words F’ is (right) independent if the
only linear relation

2 ep(r,ff") =0
f'eF’

which is valid for all f € F is the trivial one in which all the coefficients
¢y are zero.

It results instantly from the construction of & and i that for given
r € R and I, the set S can be defined intrinsically as the maximal (right)
independent set which is such that f € S implies that the set union of
f and of the words s € S with Is < If is not (right) independent. In
similar manner 7' can be defined intrinsically in terms of r and I only.

Consequently, if v is any N”-dimensional representation of F, that is,
such that (r, f) = vfix» identically, we can apply to » the construction
described in 1 and 2 for x and, although the first set 7” may be dif-
ferent from 7”, we are sure to obtain at the second and third steps
the same sets S and 7. Thus, f is also a projection of » and, conse-
quently, N” = N;in particular, if N7 = N, this implies that avfa™ = af
identically for some nonsingular matrix ¢ and this concludes the proof.

This, of course, does not preclude the possibility that (r, f) = Tr(pv’f)
for some representation » of dimension less than N and matrix p or
sufficient rank.

However, the complete discussion of this case, i.e., of the algebra asso-
ciated to r would take us too far away from the strictly linear techniques
used in this note and it will be given elsewhere.

Since we have not proved that the matrices gz(x € X) are integral
matrices, it may be worthwhile verifying that the following definition of
R is equivalent to our previous one (cf. Fatou, 1904).

DEFINITION 3’. An element a € A (i.e., a formal sum with integral co-
efficients) belongs to R if and only if there exists a representation v of F by
arbitrary finite dimensional matrices which is such that (a, f) = Tr(pyf)
for some fixed matrizx p.

Proor. By using the construction given in I.B.1. and then the con-
struction of III.B.1, we may assume without loss of generality that, in
fact, (a, f) isequal to the (1, N) entry of the matrix gf divided by a con-
stant factor. Consequently, because of the intertwining identity xf =
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xem 'gfm, i.e., gf = m(xe) 'xfm ", each entry of uf is a rational frac-
tion in which the denominator K is an integer independent of f.

Thus, if »(f) is the vector equal to the first row of gf, we can write
o(f) = v'(f) + K" (f) where v'(f) has integral coordinates and where
the bounded vector v” (f) is equal to Kv(f) reduced modulo K. It follows
that for any x € X the 2N-dimensional vector (v'(fz),p”(fx)) is en-
tirely determined by z and the 2N-dimensional vector (v’'(f)»”(f)) in
the sense of Definition 1 and this concludes the proof via the reduction
procedure of Section I.

Incidentally, it shows that if all the coefficients (r, f) of some r € R
are divisible by K, the element K 'r also belongs to E.

C. APPLICATIONS TO THE THEORY OF KLEENE

IIT.C.1.IfFo,Fo € R then F.Fo € R.

Proor. Let F, = {fiufiv 5= 0}; For = {f:u'fi,x» 5% 0}. We can assume
that for all f,ufi,» and p'fix. are both nonnegative (cf. Section I1.B).
Then, if

r= 2 f(u)w and 1 = 3 fufi,
JeF fer

we have
(' f) = 2 (M rw(Wf)iw
R

that is, (7', f) # 0 if and only if there exists at least one factorization
f = f'f” for which pfiy # 0 and p'fix % 0. Thus F F. =
{f:(rr',f) 5~ 0}. Since we know by III.A.2 how to construct u” :F — Zy n
such that (rr',f) = w”f1,y4n the result is proved.

II1.C.2.If F. € Rthen F.' € R.

Proor. Let F, = f:(2,f) = wfi,y 5 0with (2,f) = 0forall f, as above.
We can write F,) = {e} u (F. — {¢})° and, consequently, we can assume
that F, does not contain e. Then, as in IT1.B.3, it is easily checked that
F = {f:(+,f) s 0} and the result follows from III.A.3.

There exists another type of invariance of the family of regular events
which carries over to the family R; in order to describe it we still need
the following definition.

DeriniTION 4. A restricted right transducer 7 is given by the following
structure:

(1) A finite automaton with a (finite) input alphabet Y, a (finite)
set of states £ and a mapping (2,Y) — 2.

(2) A mapping 5:(Z, Y) — F where F is the monoid generated by
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the (finite) alphabet X ; n is extended in a natural fashion to a mapping
(2, Fy) — F (where FYy is the monoid generated by Y) by the following
rules:

For any state o; € Z, 76 = e (e: the empty word).

For any state ¢; € = and input word ¢ = y4,vs, - -+ ¥i, ,

n9 = 7](0'1'0 ) yil) 77(01’1 ) yzz) e 77(0'1'"_1 ) yin)
where o;, = o, and, inductively, ¢, = (04,,_, , Yi,)-

(3) The two mappings (2, Y) — 2 and 5 satisfy the condition that
if the state o; is such that ;9 = ¢; and 5,9 = ¢ for some g # e, then
n;9' = e for all input words ¢’ € Fy (we say then that o, is a sink).

Given a restricted right transducer # and an initial state ¢; , we shall
define an element a € A (the sum produced by ) according to the fol-
lowing rule: For each f € F, (a,f) is equal to the number of distinct
words g € Fy which are such that o1g is not a sink and that mg = f.

II1.C.3. If the subset F' of Fy belongs to Ry (defined for Y as R was de-
fined for X) then, for any state o; of =, the set Fo = n;F' = {9;9:9 € F';
oig 18 not a sink} belongs to R.

Proor. The result is true if every state of = is a sink; let 2’ be the set
of the states of £ which are not a sink and assume that 2’ contains
M = 1 elements.

For each finite N we shall consider the ring By of the N X N matrices
whose entries belong to the ring A of the formal power series in the
letters from X. To any y € Y we associate the matrix vy from B, with
entries

iy = n(e;,y) if oy = e ; = 0, otherwise.

The matrices »g form a representation of Fy in By and for any g € Fy
and ¢;, o5 € 2’ we have

vgii = mig if o9 = oo ; =0, otherwise.

Let us now assume that F' = {g € Fy:pgiv % 0} where u is a repre-
sentation of Fy in Zy ; for the sake of simplicity we assume that r =
> e ry gugiv 1S quasi regular. By applying the construction described in
1.B.2. we can also assume that ugix = 0 for all ¢ € Fy . Finally, for any
y € Y, let @y denote the matrix from Bxy obtained by replacing in
wy each entry uy. by a submatrix identical to (uy.:/) vy. Again this gives
us a representation of Fy which has the property that for any g € Fy
and o; , ¢ € 2 the (15,N;5’) entry of g is equal to (ugiv) 1;91if 0,9 = o
and to 0 otherwise.
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Because of the condition (3) and of the hypothesis that r is quasi
regular, the matrix s = 2 ¢y fiy is also quasi regular and the (15,Nj’)
entry of the quasi inverse u of s is equal to the sum b;;» of (ugiv) ;9
extended to all the words g from Fy which send ¢; onto o; . According
to the remark ITI.A.4 and to the fact that every entry of s belongs to
R, this sum is also an element of B. Consequently the sum b; of all b;;
(where ¢, € Z') also belongs to R and this proves the statement since
Fo={f € F:(b;,f) # 0} because of our hypothesis that ug; » is always
nonnegative.

IV. AN ELEMENTARY CHARACTERIZATION OF REGULAR EVENTS

We begin by verifying two remarks that are needed later.

DEerFiNITION 5. Let B be the smallest subset (in fact, the smallest
semiring) of A which satisfies the following conditions:

(i) = € R for any z € X and e € Rvos.

(ii) If a, @’ € R** then a + a’ and aa’ also belong to Rros,

(iii) If @ € Rros, then a*° € Rwos,

IV.1. A necessary and sufficient condition that a € R®* is that a =
D ser fufiy where u:F —> Z%° and where Z%* denotes the subset (in fact,
the semiring) of the integral N X N matrices with nonnegative entries.

Proor. It is sufficient to revert to 1.B, IT1.A.2, and ITI.A.3 and to ob-
serve that if a, a’ are produced by representations into Zy* the same is
true of @ - @/, aa’ and a’; also, trivially, ue and all the matrices uz belong
to Z¥". The construction performed in I1I.A.4. does not use subtraction
either, and consequently = fufy » € Rros.

IV .2. R is the smallest submodule of A that contains B> and any r € R
can be written under the form r = ' — v” with v’, " € Rvos,

Proor. Since every » € R can be obtained from the generators z by a
finite number of additions, subtractions, multiplications, and formation
of inverses it is sufficient to prove that if the result is true for r, , 7, € R
it is still true for r3 = 7 + r; ra = rn — 1o rs = mr: and
76 = (e — r*)”". Let us assume that 7, = r’ — n”; 7, = 7/ — r,” where
r, rr” and r” belongs to R™*. We have:

rg= (' +r)— (" +nrn"); ra= (' +1r") — (1" +r);
7.5 —_ (7'1/7‘2' _I__ 7,1/17.2”) —_— (7.]/7.2” + 1'1”1‘2/)

where again all the elements between brackets belong to K since this
set is a semiring.
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With respect to s we observe first that m* = 71* — 7/* and that
r € Rros implies (e — r*)™" — e = s € R»* and, then, r* € R®* since
™* = (e — 8)7 — e

Now, for any a, b € R with a = a* b = b* we have

e—a+b=(e—a)e+ (e —a)"'d)
= (e—a)(e+ (e —a)b)(e — (e — a)7'b)
(e — (e —a)"p)™
= (e—a)(e— ((e —a)7b)")(e — (e — a)7')™".
From this we get the identity

(e—a+b)"=(e— (¢—a)'d)

(e — (e —a)ble —a) ) (e — a)™

= [(e — (e —a)b(e — a)"B) (e — a)7]

— [(e —a)b(e — (e — @) b(e — a)7B) (e — a)7.
Thus, taking, @ = 7i* and b = r7'*, we can display (e — ri* 4+ r{*) ™" as
the difference of two elements from R and the result is proved.

IV3. A necessary and sufficient condition that Fo € Ry s that there exists
some r € R which s such that

Fo={f€F:(r,f) # 0}.

Proor. The condition is necessary because, if a € @ is defined by a
set = of N states, a mapping (Z, X) — Z, an initial state o, , a distin-
guished subset =’ of 2 we can associate to every f the N X N matrix
ufir = 1if o;f = ¢ ; = 0, otherwise, which gives a representation of
F in Z%*. Trivially, if p is defined by p.» = 1if 7/ = 1 and o; § 2’;
= 0, otherwise, we have Tr(puf) = 1 or 0 according to f € F, or not.

Thus, using the construction described in I.B.1 we can find a repre-
sentation u’ of F in Z%" which is such that the sum

r= ,%,:rf#'fw' = 2/ Tr(puf)

JeF

has the desired properties.

For proving the sufficiency we start with any u:F — Z3° and we con-
sider the mapping 8 which sends 0 onto 0 and every positive integer onto
1 where 0 and 1 are boolean elements. (i.e.,00=01=10=0=0+4+0
and11=1=14+0=0+4+1=1+4 1); 8is an homomorphism of

pos

semiring and it can be naturally extended to Zy" by defining fm when
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m € Zy" as the matrix whose entries are 8(m;;) € 0,1. Trivially, for any
m,m’ € Z¥* we have Bmm’ = BmpBm’ and BZZ* has at most 2% < oo
distinct elements. Thus, the set gmf:f € F is a finite monoid M and
Fo = {fiufv #£ 0} = {f:Bufir 5 0} is the inverse image by the homo-
morphism Bu:¥ — M of a subset of M. In other words, F, satisfies the
condition that F, = g '8F, where 8 is a homomorphism of the free
monoid F into a finite monoid and, according to the theorem 6 of Bar-
Hillel and Shamir, this is a necessary and sufficient condition that F,
belongs to Ry .

IV .4. A necessary and sufficient condition that F. € Ry ts that there
exists an element r € R which is such that | (r, f) | is bounded for all f € F
and that Fo. = {f € F:(r,f) = 0}.

Proor. The construction indicated in the proof of IV.3 shows that the
condition is necessary. In order to prove that it is sufficient, it is enough
to take any prime number p at least equal to twice the upper bound of
| (r, f) | and to observe that the homomorphism y which sends every
integer upon its residue modulo p extends naturally to an homomorphism
of Zx onto the finite algebra of the N X N matrices over the Galois field
of characteristic p; thus F, = {f € F:ufix 5% 0} = {f € Fiyufix % 0}
and our remark is again a simple consequence of the theorem of Bar-
Hillel and Shamir.

A. AN INTUITIVE DESCRIPTION OF Q&

IV.A.1. A necessary and sufficient condition that the element a from A
belongs to Rrs is that it be produced by a restricted right transducer.

Proor. It is trivial that 0, ¢ and each letter  from X can be produced
by a (restricted, right) transducer; let us assume that the elements r and
7' of RP® are produced by the transducers (4, Y, =) and (4, Y, ') re-
spectively where, without loss of generality, we may assume that the
two input alphabets ¥ and Y’ and the two sets of states = and 2’ are
disjoint. We consider new transducers ” whose input alphabet Y” is the
union of ¥ and ¥’ and whose set of states =” is the union of 2, 2’, a new
initial state o1” and a new sink ¢,”; for any such %” we shall have the
following rules:

(i) i"y” = o and 1”(e1”,y") = n(or,y) fy’ =y € YV; "y" =
a,llyl and ,'7//(01”’ y//) — "7,('71’; y/) if yll — yl €Y.

(il) o”y” = oy andn”(¢”,y”) = (o, y)f¢” = € Zandy” =y € Y
and, similarly, ¢”y” = ¢'y’ and 9" (¢”,y”) = 9'(d'y’) if ¢” = ¢’ € Z
and if y” = ¢y € Y.

S
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1. Let now 7,” be defined by the supplementary rule

(iii) ¢”"y” = o¢” when ¢” = ¢/ € 2’ and y” = y € Y when ¢ =
c€EZandy” =y €Y.

By construction 5,” produces the sum r + #.

2. Let n,” be defined by the rule (iii) when ¢” = ¢’ € 2’ and y” =
y € Y and the rule

(iv) ¢”y” = oy and 9”(¢”, y”) = 7'(s/, ') wheno” = ¢ € 2 and
yll — yl E Y/.

By construction, 1,,” produces rr’.

3. Let us assume that r is quasi regular and take for (%, Y/, 2’) a
copy of (n, Y, 2);if »,” is defined by (iv) and the rule (iv’) obtained
by exchanging in (iv) the alphabets ¥ and Y’ and the sets £ and 2’ we
obtain a transducer which produces the quasi inverse of r. According to
Definition 5 this proves the necessity of the condition IV.A.1; that this
condition is sufficient is a simple consequence of the construction indi-
cated in the verification of ITI.B.3.

Since it has been remarked in IV.2 that any element of B can be ex-
pressed as the difference of two elements of RP* we have at the same
time verified that the definition 1 of @ is equivalent with the following:

DEeFINITION 17. AN automaton a of @ consists of a pair of restricted right
transducers together with the rule that a word f € F 1is accepted if and only
if (r,f) & (v',f) wherer and ' are the formal sums produced by the two
transducers.

REece1veD: April 3, 1961
Revisep: June 7, 1961
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ON A FAMILY OF SUBMONOIDS

by
M. P. SCHUTZENBERGER!

§ 1. Introduction

As it is well known, only few of the properties of the subgroups of a group
are still enjoyed by all the submonoids of a monoid [1] and in the applications
it is sometimes useful to consider more restricted families of stable subsets
(i. e. of subsets A which are such that 42 C 4).

In remote connection with a problem in communication theory (Cf.
[12]) one encounters a family ®(F) of submonoids of a monoid F that is
characterized by extremal properties and that, consequently, admits several
slightly different definitions. When F is a group, &(F') reduces to the lattice
of the subgroups of F ; in the general case, it is not necessarily a lattice and its
simplest definition is the following one.

Definition. The submonoid 4 of a monoid F belongs to &(F) if and only
if it satisfies the following three conditions :

1. There exists at least one homomorphism y of F, compatible with 4
(i. e. 1y A = A) which is such that y4 is isomorphic to a monoid admitting
minimal left and right ideals ;

2. (N,) : 4 intersects every right and every left ideal of F ;

3. 4 is maximal among the submonoids of F that have the same inter-
sectoin with an arbitrarily small two-sided ideal of F'.

Let us abbreviate by Ny (N,, N, N,) the condition that A4 intersects
every two sided (right, left, right and left) ideal of F (i. e. that A4 is “'net” in
P. Duereir’s theory [5]), by M (M,, M, M,) the condition that yF admits
minimal two-sided (right, left, right and left) ideals for some homomorphism
y compatible with A.

We shall verify that §(F) can also be defined by the following set of
three conditions : A satisfies

1. M,;

2'. Ny;

3’. There exists some right representation of F by mappings of a set
into itself that is such that A4 is submonoid which lets invariant one element
from the set.

1 Cambridge (Mass).
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Let us recall that LEvY’s condition [8] that a stable subset 4 of a free
monoid F is isomorphic to a free monoid can be expressed in the form (Cf. [12]).

Uy: fANAiN A=+ @ only if f€A
which remains meaningful even when F is not a free monoid.

We shall also verify that R(F) is characterized by the following set of
conditions on 4 :

1. M, ;
2". Ny
3”- Ud .

When F is finite, the conditions 1, 1’ or 1” become vacuous. Then {(F)
can be characterized by 3, 3’ or 3” and the requirement that A contains at least
one positive power of each element from F.

In § 2, as a preliminary step, we apply the classical theory of SuscHKE-
wirscH [18] and Regs [11] for obtaining a direct characterization of {(F)
when F admits minimal left and right ideals. In §§ 3 and 4 respectively we
discuss the sets of conditions (1”7, 27, 8”) and (1’, 2, 3’). In order to make the
paper self contained several results which are special cases of theorems due
to other authors are given complete proofs.

Applications of the remarks developed here to the less restricted family
of the submonoids which satisfy U, only will be considered in another paper.

§ 2. A direct definition of R(F)

Let us verify first the following

Remark 2.1. If the stable subset 4 of a monoid F satisfies N, and admits
minimal right ideals, then, F also admits minimal right ideals.

Proof. Let us consider any a € 4 such that a4 is a minimal right ideal of
A; by definition this is equivalent to the statement that, for any a’ € 4, there
exists at least one a”€ A which is such that aa’a” = a since, unless, the right
ideal aa’A would be a proper subset of aA.

Trivially, if @4 is minimal, the sameis true ofanya’’’4 wherea’’’' € Aa A.

Let us show that if A satisfies N,, a®F is a minimal right ideal of F.
Indeed, for any f€F, N,implies that ANafF = @, i. e. that aff’ =a, €A for
some f'€F ; multiplying on the left by a, we obtain a@?f = aa,. By our
previous remark, there exists at least one a;€A4 which satisfies aa,a; = a.
Thus, a?ff aja = a? and the result is verified.

We observe that when the homomorphism y is compatible with 4 any
of the conditions M,, N, or U (x = d, r, I, k) defined in the introduction (or
later) is true for y4 in y F if and only if it is true for 4 in F. Since we have seen
that when A4 satisfies N, the condition 1 implies M, there will be no loss in
generality for the description of a given 4 from §(F) in assuming that F itself
admits minimal ideals.

This convention will be kept in the §§ 2 and 3 and we shall use the follow-
ing standing notations :
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The monoid F admits the minimal right ideals R; (i € I) and the minimal
left ideals L; (j € J). The minimal two-sided ideal of F is denoted by .D and the
following facts are classical (Cf. [18], [3], [16])

1. D=UR=UL
i€l ieJ

2. every quasiideal K, ; =: R, N L; i is isomorphic to a certain group @,
the SUSCHKEWITSCH group of F. (A quasy ideal is the intersection of a left and
of a right ideal [16]).

3. The idempotent e, ; of K, ; is such that de; ; = d and e, ;d’ = d’ for
any dEL and d' €R; ; thus 1dentlcally, K, =¢;Fe¢,;

We select a fixed arbitrary quasi ideal K , and 1somorph1sm c:K;; >G
and we introduce the following standlng notations : g = oleg;e ,1)(_ G,
the neutral element of G when i or j is equal to 1 since ¢; ;¢;;€;; = ¢, , iden-
tically).

Go : the subgroup of & generated by the elements g,

g’ the mapping D — G which is defined by ¢'d = cr(e1 . dey 1) where
jis the index of the left ideal L; containing d.

7;,; = the mapping G—->K ; which is defmed by 7, ;g=-€;1-07Ygjg)- e

Tt'is classmal that 7; ;and the restriction of o’ to K; jare mutually i mverse
isomorphisms (onto) (Cf [11], [2], [10]). Indeed, 7;; is a homomorphlsm
because of the following more general formula valid for any g, g’ €G

(71 9) (T j ') = €1-07XgGjl g)-eqj-ery 07N G §) €1 =
=€ a—l(gf,,lig”) cey,jr = T g9’

N

where
9" =9;:9}99;97% 9 ; thus, when ¢=1¢ and j= j/, we have
simply
(Ti,jg)(fi',jg'):“Ti,j(gg’)-
Because of the formula
0’79 =0 (el,j (a0 (g5t 9) el,j) e,1) =
= 0(ey,; €1) 9j}g-oles;e11) = ¢,

we see that 7; ; is a monomorphism (i. e. isomor phism into). Finally, it is proved
that 7; (and consequently the restriction of ¢') is an isomorphism (onto) by
the formula valid for any d€K, ;

o’d = e, 071 (gﬁil o(e,; d 91,1))""1.1' =
=: (e,-,l-or"1 (g5t ec)-e1)) d-ey; = e de ;= d.
We still need to recall the following simple statement. (Cf. [15], [17]).

Theorem 2.2. For any non empty stable subset B of D the three follo-
wing conditions are equivalent

(i) For at least one K,;; having a non empty intersection @ with B the
subset o'Q of G contains the inverse of each of its elements;
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(il) There exist nonempty subsets Iy of I and Jg of J and a subgroup

G’ of G that have the following properties: G' contains every g;,;{(i,5) €1g X Jg},
= {d€D: o'd€G and d€K,;[(i,)) EIgXJIp]}
(iii) B admits minimal right (and left) ideals.

Proof. (i) implies (ii). Because of the fact that the restriction of ¢’ to
K, ; is an isomorphism, there is no loss in generality in taking (¢,j) = (1,1)
in éhe condition (i) which then, (because B is stable) becomes equivalent to
the condition that G’ == oQisa subgroup of G.Thus e, ; == 0~ ¢; belongs to B.

Trivially, if b€ R;N B and b’ €L; N B, we have bb’ EK ;N B and, thus,
K,;NB # ¢ if and only if (¢,j)€lp X Jp where I and Jg ‘are subsets of J
and J respectively.

Let b be any element from K, ;N B; we have o(e,,b%¢,,) = g’ €G"
and, since G’ is a group, b’ = bo~(g"" 1) b belongs to K; ;N B. A straightforward
computatlon shows that bb’ = ¢; a.nd thus, we have e, € Bandy; i€ Q' for all
(4,j) € Ip X J g. Consequently, for any such pair (i, §), the mappings 7;; and ¢’
can be carried out by using multiplications by elements from B only. 1t follows
1nstantly that for any such (¢, §) and g € G (rspectively, d € K, ;) one has 7, ;g€ B
(resp. ¢’ d € G')if and only if g € G’ (vesp. d € B) and this is premsely the formula
given in (ii).

(ii) ¢mplies (iii). Let 15 and Jz be any non empty subsets of I and J
and @' any subgroup of G containing all the elements g;; (i,7) € Ip X Jp.
In order to prove that B as defined in (ii) admits right and left ideals it is
enough to show that for any (7, j) € (I X Jpg) one has

(7 @) B(-r,.,j G')=1,;G".

This again is a straightforward computation, which also shows that B2
is contained in B, i. e. that B is stable.

(iii) #mplies (i). Let us assume only that the stable subset B admits mi-
nimal right ideals and, for simplicity, that b € K, ; N B is such that bB is mini-
mal. This 1mphes in particular that, toany &’ €K1 1N B, there corresponds at
least one b’ in some suitable K, that is such that bb'6" — b; wrltmg g =
= ob, ¢’ = ob’, 9" = 0'b’, it follows that gg'g” = g, i. e. that g = g"‘1
Thus, since b b"b"eK1 b the set G’ = o(K,,; N B) contains o(b'0"b") =
whenever it contains g’. Consequently, G’ is a subgroup of @ and the proof
is concluded.

It is useful to observe that the apparently weaker conditions (iii)’ below
is in fact equivalent to (iii).

(iii)’. There exists a homomorphism y of F which s such that
D\yy=1y B = B and that y B admits minimal right ideals.

Indeed, since K,, FKL1 = K;,, any homomorphism y of F sends
K, , onto a minimal quasi-ideal of yF = F' and, consequently, y induces an
eplmorphlsm y’ (homomorphism onto) of G onto the SUSCHKEWITSCH group G
of F.

Let us assume now that yB admits minimal right ideals ; because of
theorem 2.2, y B admits minimal quasi- -ideals and, since (K, N B) B(K,;N B)
is contained in K, 1N B, at least one of these minimal quasi ideals, @, say,

is contained in K, ; = yK, ;. Thus »’ @, , is a subgroup @’ of G and the stable
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subset G” =y’ y(K,;NB) of & satisfies the conditions ¢’ G" @ = & and
G'cq’. -

From this we conclude that G’ = G”, that is, @, ; = y(K;,N B).

This ends the proof because, when DNy~!yB = B, it shows that the
stable subset K, ,NB = DNy~ 1Q,, is equal to 61’1 G' where p'~1 Q" is
a subgroup of G, and that, consequently, the condition (i) is satisfied.

Let us define a mapping y from F to the set of right cosets of @ over G,
by the rule

1f =G, 0(91,:' fel,l)-
We have
Remark 2.3. (i) If f€D, yf = Gyo'd ;
(i) for any f, f'€F, x(ff')(xf) (xf')

Proof. We verify first that for any f€ F and j€J, o(e,,;fe;,;) belongs to xf.
Indeed, fe,,; belongs to a well defined K, and, using, 7;,;, we obtain

fery = e 07 Hgil o' (fer1)) €11 = €11- 07U (fer,1)) -

Thus, for any e,;,
"(91,]' fer1) = "(6’1,]' €1) “'(fel,l) €Gy1f.

This proves the statement (i).
Let now f, f' € . The product e, ; f belongs to a well defined K, ; and
we have

oleg1 [/ e1) = ol fei,; I e11) = a(ey ferq) o(ey,; f e1)s

that is,
1(ff') = (xf) o(es,; f' e1,1) and the statement (ii) follows from our initial
remark.

Theorem 2.4. A necessary and sufficient condition that A belongs to
K(F) s that

A=A{feF: 2f € G’}

where Q' is any subgroup of G that contains G,.

Proof. The condition is necessary because, if A belongs to R(F), its
intersection B with any K ; is not empty (condition 2) and, according to the
condition 1, it satisfies the condition (iii)’ of theorem 2.2. Thus, by theorem
2.2 and remark 2.3 (i), we have B =: AND =: {deD : ydC@'} where @' is
a subgroup containing G,. Since remark 2.3 (ii) shows trivially that BfB is
contained in B if and only if xf is contained in G the condition 3 of the intro-
duction implies that 4 is precisely the set of those elements from F'.

The condition is sufficient because, if 4 = {f : yfCG"}, remark 2.3 (i)
and (ii) show that A2C A4, and that A D =: Bis a stable subset which satisfies
the conditions of theorem 2.2 and BAB =: B. Thus the conditions 1 and 2
are satisfied and since, as above, BfB is contained in B only if yfC@’, the
maximality condition 3 is also verified.

As a consequence we have
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Corollary 2.5. If 4 belongs to ®(F) and if the index m in @ of the subgroup
G’ defined above is finite, at least one positive power f™, m’ < m of each f
belongs to A.

Proof. Let us observe that, for any f, /'€ F, one has G'¢(ff') = Q'«f’
if and only if G'yf" == G, that is, by theorem 2.4, if and only if f belongs to A.

Since, by hypothesis, not all the m -}- 1 cosets

GG, Gyf? ..., Gy f"

are distinct, one must have Q'yfm” = @'yfm'+m” i, e. f7 € A for some positive m’
at the most equal to m.

§ 3. The conditions U, .

In this § we use the following conditions U, (x = d, r, {, k) for charac-
terizing K(F). We recall that U, is defined by

(Ug): fTANAfN A+ @ only if feA.

Thus, if 4 is a nonempty stable subset satisfying U,, it is a submonoid
(i. e. it contains the neutral element e of F) because eANAdenN4 + . It is
readily verified that, when 4 is stable, equivalent forms of U, are

fANA+@and AfN A=+ oonlyif f€A4;

(because @, af =: a; €A, and a’, fa’ = a} € A imply (a] a) f = f(a’ a;) =

a, af, fae A only if f ¢ A.
We define U, by

(U,): Afn A+ @only if f¢A.

Then, U, (or the symmetric condition U, fANA 5~ @ only if f€ A4)
implies U,. As it is easily checked (Cf. the beginning of 4 below), U, is equi-
valent to the condition 2’ of the introduction.

When A4 is a submonoid, the conjunction U, of the conditions U, and
U, is more expeditiously written as

Uy): ANAfA - o only if f€ A.

A theory of the subsets, which satisfy U, (x = r, I, k) ("’les complexes
unitaires”) is due to P. DuBrEIL [6].
We first verify the following

Remark 3.1. When the submonoid A of F satisfies M, N; and U,, the
condition N, (respectively N,) is a necessary and sufficient condition
that it satisfies U, (respectively U,).

Proof. Because of M, we can assume without loss of generality that ¥
itself admits minimal right and left ideals and we use freely the notations of
§ 2. The condition N, can be taken as the hypothesis that ANK,, is not
empty.

Let us first verify that B =: A D satisfies the condition (i) of theorem
2.2 (i. e. &' = o(4 N K,,) is a subgroup of @). Indeed, if g = oa € G’, for some
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a€ ANK,;, the element b =: 0~ g1 satifies the relation ba® = a% = a, that is,
bA nAbnA =+ @. Thus, by U, b€ A4 and, finally, g7 = ob € Q.

(Reciprocally if F reduces to the union of D and a neutral element e,
it is easily checked that for any B satisfying the conditions of theorem 2.2
the submonoid union of B and e, satisfies the condition U,. Indeed, for any
deD,

dBN B+ @ and Bin B+ @ imply d €K, with (5, §) €I X Jp

and, then b, db € B implies ¢'d € Q).
Now we have :

N, implies U,.

Because of our hypothesis, N, is equivalent to the requirement that
every e;, (i €I) belongs to 4, or, in the notations of theorem 2. 2, that I = I.
It follows that for any d€D, 1f bd € A for some b EB then d belongs to A ; indeed,
bd € A implies d € L;, where j €Jg and ¢'d €@’ since @' is a subgroup which
contains all the elements g;,; With (¢, ) € IXJ .

This practically ends ‘the proof because if @, af € 4, the element d = fe, ,
from D satisfies the condition bd € A with b = e, ;a € B. Thus we have, a, af,
€11, fe;1 €4 and, by U,, we conclude that a, afEA only if f€ A4, that is, U,.

he reciprocal statement (U, implies N,) is contained in the followmg
slightly less special implication which will be needed later :

When M,, N; and U, imply N,.

We assume that ¥ itself contains an element » which is such that the ideal
rF is minimal ; thus, because of N,, A contains at least one element b € FrF N A
which is such that bF is a minimal right ideal.

Let us show that ANfF # o for all / €F, (i. e.,, N,); indeed since bF
is minimal, there exists at least one f’ which is such that b — bff’. Because of U,
the products ff’ belongs to A and this concluedes the proof.

Theorem 3.2. If the submonoid A satisfies M,, necessary and sufficient
conditions that it belongs to R(F) are Uy and N, or U, and N, or U, and N,,.

Proof. Let us assume that 4 belongs to ®(F) and use the notations of
theorem 2.4 ; by corollary 2.5 every idempotent of F belongs to A, and con-
sequently 4 ‘satisfies N «; the fact that 4fANA < & onlyif f€ 4 (i. e. Uy)
has already been verified in the proof of theorem 2.4.

Reciprocally, we observe that, according to remark 3.1, the three con-
ditions U, and N,,” are equivalent to U, and N,” when A satisfies M,.
Using the notations of remark 3.1, the condition N, imposes that B = 4 no
intersects every K, ; and consequently B = {d€D:ydC G’} where G' is a
subgroup containing @, ; once more, since BfB C B only if xf is contained
in G’ we finally obtain 4 = {f : xf 9’ G’} and the result is entirely proved.

§ 4. The set of conditions (1’, 2/, 3’)

In order to make the proof clearer we recall first the following well
known result (Cf. [19]) :

Theorem 4.1. To any nonempty subset X of F there corresponds one
quotient monoid yx F which is characterized by the following properties
(i) The homomorphism yy is compatible with X ;
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(i) If v’ is any homomorphism of F compatible with X,yx F is a
homomorphic image of y'F.

Proof. Let us consider the mapping 1y of F' to the subsets of F that is
defined by

Axf={f€F:ff X}
(Cf. [5]).

We have

1. ifz€ X, Ax f= Axz only if f € X (because 14 f contains e if and only if
feX);
2. if Ay f = Ax f', then Ay (ff") = Ax(f'f") forallf" € F.

Consequently, if S denotes the set of all 1y f(f € F), we can define a
répresentation (S, F) - 8 by

(Ax N 1" = Ax(ff’) for any Axf€ S and f € F.

We denote the corresponding homomorphism of F by y and we observe
that the congruence relation yyf = pxf (. e. Ax(f'f) = Axf(f’f’) for all
f" € F) can be expressed in the symmetrical form:

for all f,, f, € F, fiff, € X if and only if f,f'f, € X.

This shows instantly that y is compatible with X since efe € X if and
only if f€ X.

Let now p' : F — F be any homomorphism and define X =y’ X ;
we can construct in the same manner as above a quotient monoid y% F and
for any f, /' € F we have y3 y' f = yx »’ f' only when for all f,, f, € F

v’ ffs € X if and only if 3" ff'f, €7' X.

Consequently, when p'~1y’ X = X, we have yx y'f = yx y'f’ only if
vxf = vx[ and the result is proved.

Incidentally, the notations introduced provide the formal verification
that U, is equivalent to the condition 2’ of the introduction, because on the
one hand, if 4 is stable and if it satisfies U,, we have e€ A and 1,0 = 4
forany a € A ; thus A, e = 1, fifand only if f € 4 and A4 is precisely the sub-
monoid which lets 1, e invariant in the representation (S, F) — 8 described
above. On the other hand, if S’ is any set and (S8’, ') -8’ a representation,
for any given s € §’, the submonoid A" = {f € F : sf = s} satisfies U, because
of the associativity.

Theorem 4.2. If the stable subset A of F satisfies M,, N, and U,, it
belongs to S(F).

Proof. Since N, is stronger than N,, we already know by the last part
of the proof of remark 3.1 that 4 satisfies N, and we shall repeatedly use this
fact.

Without loss of generality we shall assume that F =:y, F; conse-
quently, because of theorem 2.1 and M,, the monoid F itself admits minimal
right ideals ; it will be enough to verify that it admits also minimal left ideals,
because, then, by remark 3.1, U, is a simple consequence of M,;, N, and U,.

The verification involves three steps.

i. Let b € A be a fixed element such that bF is a minimal right ideal (such
an element exists because of N,). We verify that for any f € F' there exists
at least one f' € F which is such that A, fb =: 2, f'b%
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Indeed, by N,, fbf; € A for some f, ; by N,, f'b%f, € A for some f'; by
the hypothesis that F is minimal, bf,f, = b for some f;’. Thus

A fbfy = s f'02fy = A
because of the hypothesis that 4 satisfies U,. Finally, multiplying by f; we get
Iafbo=Axfbfyfi = 2af B fifi= 2a [ B

and our remark is proved. B _
ii. Let us keep the same notations and define b by the condition that & b =:b.

From the relation 1, fb = A, f'62, we deduce by multiplication by bb that
Apfbbb = A, f b2bb = A, b2 = A, fb.

Since this holds for each f € F, it follows from the hypothesis y , ¥ =: F
that 5bb =: b. Consequently b6 is an idempotent.

The last step is classical (cf. [3], [15], [16]) but we include its pioof
here for the sake of completeness :
iii. If F contains an idempotent ¢ which is such that c¢F is a minimal right
ideal, then, Fc is a minimal left ideal.

Indeed, for any f, € F, we have cf,cf, = ¢ for some f, and cfycfs =: ¢
for some f, because of the minimal character of c¢F. Multiplying the last
equality by cf; we get

cf, cfscfs = cfie, that is ccfse = cfc.

Conscquently, cf,cfic =: ¢ =: ¢ and the result is proved since we have
shown that ¢ belongs to any left ideal Ff,c.

Remark. Counter examples (cf. [13]) show that it is not possible to
dispense entirely with some requirement on the minimal ideals in the various
implications between the conditions N, and U,, described here.

For example, let F' be the monoid of permutations of the set of integers
generated by the translation n —n 4- 1, and n — n — 1 and the permutation
which lets invariant the negative integers and which consists of the cycles

(1,2) (3,4,5) (6,7,8,9) ... [* "1 2on=d g mendl )
.2 2 2

Let 4 be the submonoid of F that lets 0 invariant. It is easily checked
that y ,F' =: F, that F has no minimal ideals and that 4 satisfies N, and U,.

We conclude by giving a simple characterization of y , F' for any 4 from
S(F) (cf. [14]).

The notations are that of §§ 2 and 3.

Remark. 4.3. If 4 belongs to ®(F), a necessary and sufficient condition
that y ,F = F is that f = f' if and only if

7wo(ey,; fe;1) = moley; e 1)

for all (¢, ) € I xJ where m is a homomorphism of G whose kernel, E, is the
largest normal subgroup of G' contained in G".

9 A Matematikai Kutaté Intézet Kozleményei VI. A3,
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Proof. Let us observe that because of U, and N, the relation f,ff, € 4 is.
equivalent to e, f; ff €11 € 4 for any three elements f;, f and f, of F. With.
the help of the mapping 7, ; (cf. § 1) can we write e,,f, and fye;; as (671 gy)ey;
ande; (071 g,) respectively, for suitable g;,g, € ¢ and idempotents e;,; and e;;.

Thus, f,ff, € 4 is equivalent to g,o(e, fe;,)g. € G' where gy, g, and (3, j)
do not depend upon f. It follows from the definitions of y , that y ,f' if and only
if for each (¢,j) € I xJ and, then, for all g,, g, € G, one has g,0(e,,fe;,)g, € G
when and only when g,0(e,,f’e;;)g, € G'. Since for each (4,5) this relation bet-
ween g =: a(ey,fe;;) and g’ =: o(ey,f’e;;) is precisely yg g = ygrg’ and since
E is, trivially, the kernel of yg- the result is proved.

It follows that a set of necessary and sufficient conditions that D =:
=:yg D is:

i. the only normal subgroup of @ contained in G’ is {eg} ;

ii. the J xI matrix (g;;) has all its rows and columns distinct.

As an application we can display the following example which shows
that, even if F is finitely generated, the condition that for some fixed finite
m, f™ belongs to A4 for all f € F does not insure that y 4 I has only finitely many
minimal quasi ideals.

Example. Let F consist of e, all the powers a™ of a certain element «
and of a minimal two-sided ideal D of the type described in § 1. The group G
will be the symmetric group on three elements generated by a and f satisfying
the relations a2 =: 83 = («p)? =: ¢; ; I, and J will be the set of positive in-
tegers.

The element a is entirely defined by the rules :

R (W (eg) if § is not a power of 2,
LI 7,541 (@) if j is a power of 2.

We define the right ideals R; by R, =: e, F, R,y =: aR; and, accordingly,
the matrix (g;,) has all its entries in the subgroup Gg = {eg, a}.

Finally, 4 =: {f € F : yf =: G} contains the sixth power of every element.
of F and it belongs to &(F).

By considering for each value of m > 0 the sub-block of the matrix
(9,) determined by 1 < ¢ < 2™, 1 4- 2™ < § < 2™+, one easily checks that
no two rows of this matrix are the same and that consequently, it also contains
infinitely many distinct columns.

Thus y 4 F is not finite and, since F is generated by a and b = 7,,,(8),
the example has all the properties stated.

(Received May 28, 1961.)
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05 OJHOM CEMEMCTBE NnOJMOHOH 0B
M. P. SCHUTZENBERGER
Pe3iome

B 9roit 3ameTKe omuchiBaeTcsl HeKoTopoe cemeiicteo K(F') moamoHOUIOB
moHouia F, umeowux cBoiicTBa, BO3MOXKHO OJIM3KME K CBOHCTBaM HOArpYNI
Hexoropoit rpynnsl. Ecin F — cBoOOAHBI MOHOMA, TOrAA IIOAMOHOM/BI CeMeii-
crBa K(F) uMeoT NpWIOXKEHHMSI K HEKOTOPBIM BOMpOCaM KOAMPOBAHUSI KaK
ocoGoMy ciyyaro CBOGOJHBIX MOAMOHOMAOB MOHompa F. XapakrepHo, u4ro eciu
A npunagnexxur K(F), To st Karoro f € F naiinercst Xors1 661 04uH [ TaKo#,
uro ff'f € A (cymecrBoBanue cnaboro oGparHoro 3jementa) ¥, Haob6opoT, eciu
f u fff npunapnexar A4, To f ToKe mnpuHAmIeNHUT A (Kakaplii crnabbif
oGpaTHblit HEKOTOPOro 3aeMeHTa noamoHouna A € K(F') npunaanexur A).

Bosbinast yacTp CTaThbM NOCBSIllEHAa AUCCKYCCHH TOTO 3aCiy)KHBAIOLIEro
BHUMaHusl (aKra, yTo NpU OOBIMHBIX OTPAHMYEHHSIX OTHOCHTENILHO CYLIEeCTBO-
BaHMSI MUHUMAJbHBIX WJEAJ0B 3T [ABYXCTODOHHUE YCJIOBUSI COfepIKarcs B
eme Oosee cnabbiX aHAJIOTMUYHBIX OJHOCTOPOHHBIX YCJIOBHSX.
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REPORT ON MATHEMATICS IN THE MEDICAL SCIENCES*

Davip D. RursteiN, M.D.,t MUrray EpEN, Pu.D.;f AND MARCEL P. SCHUTZENBERGER, M.D.§

BOSTON

'HIS conference on “Mathematics in the Medical

Sciences” was called because medical scientists
have begun to ask questions that entail the develop-
ment of new mathematical theory and the applica-
tion of more complex mathematical reasoning than
has been the case in the past. Also, the effective
use of new instruments now becoming available to
medicine demands an understanding of their under-
lying physical theory and its mathematical applica-
tion. The meeting was concerned with both the
nature of mathematics and the technics for its ap-
plication that have been useful to biology and medi-
cine in the past or may be applicable in the near
future. In this report — which is not a complete
summary of the meeting — the lectures and discus-
sions are focused on the principles governing the
interrelation of mathematical theery and the biologic
and medical sciences. After the summary there is a
general statement by Professor William G. Cochran
that epitomizes the present status of “The Role of
Mathematics in the Medical Sciences.”

For the purposes of this report, biomathematics is
defined as the development of new mathematical
theories or technics under the stimulus of unsolved
biologic problems and the application of existing
mathematical theory and technics for describing and
interpreting biologic and medical phenomena.

There is considerable overlap between the fields
of biomathematics and statistics. To identify bio-
mathematics more clearly, the field of statistics is
briefly discussed, and relations to biomathematics are
indicated. Biomathematics as considered at the Con-
ference will then be presented, with particular refer-
ence to the construction of hypotheses or “model

*Based on a conference held under the auspices of the Depart-
ment of Preventive Medicine, Harvard Medical School, Boston, January
16 and 17, 1961. Program titles and participants were as follows: ‘““Order
of Amino Acids in a Protgin": Si(!ney”Ac Bernhard, |N:lati131:al Inlstitute

of Mental Health; ‘“Genetic yrus
Insti hnol “M: 1 Models for Muscular Contrac-

o 3

tion,” Richard Podolsky, United States Naval Medical Research Insti-
tute; “Mathematical Models for the Study of Physiological Systems,””
Norman Z. Shapiro, National Institutes of Health; “The Role of
Mathematics in the Medical Sciences,” William G. ran, Harvard
University; ‘“Mathematical els and Computational Technics for
the Analysis of Neuroelectric Activity,” Walter A. Rosenblith, Massa-
h i of hnology; “‘Collecti: Storage, Analysis and
Use of Electrocardiographic Data,” H. V. Pipberger, Georgetown Uni-
versity School of Medicine and United States Veterans Admimstrationi
“‘Potential Applicati of Math ics to the Di is of Illness,”
Murray Eden, Massachusetts Institute of Technology; and ““Use of
Mathematics in the Study of Biologic Transport Systems,” John L.
Stephenson, National Heart Institute.

e are grateful to Professor Norman F. Ramsey, of Harvard Univer-
sity, Professor John R. Pappenheimer, of Harvard Medical School, and
Dr. James A. Shannon, o? the National Institutes of Health, for their
contributi to the Conf as chai of the sessions.

$Professor of preventive medicine and head, Department of Preventive
Medicine, Harvard Medical School.

IA prof of electrical ;, Center for Communica-
tions Sci R h Lak y of Elec M. husetts T
of Technology; lecturer on p d Harvard Medical School.

§Maitre_de conférences, Faculty of Sciences, University of Poitiers,
Poitiers, France; visiting professor, Department of Statistics, University
of North Carolina.

building.”
StaTisTics

Much of the statistical work in the medical sciences
in the recent past has been concerned with the
systematic application of logical reasoning to the
solution of particular quantitative problems. Well
known are such applications as drug assays, testing
of laboratory procedures and sample and mass sur-
veys. As this area of statistics has developed in rela-
tion to medical research, there has been increasing
interest in the principles governing the design and
analysis of experiments. An appropriate design
appears to be crucially important, especially in prob-
lems involving large numbers of investigators. More-
over, precise analysis and interpretation of the data
are the last important steps of a successful experi-
ment. This kind of statistics has become classic and
was intentionally omitted from the program.

But before this use of statistics is dismissed, one
relation to biomathematics is worth mentioning.
The use of human subjects imposes limitations on
the design of experiments or makes human experi-
mentation impossible. Sometimes questions can be
restated so that controlled experiments involving
human beings can be done. For instance, it may be
impossible to perform such an experiment to deter-
mine whether a new drug is better than no treatment
in a disease like rheumatic fever, but it is possible
to perform a controlled experiment on whether the
new drug is better than the generally accepted treat-
ment. But when human experiments dependent
upon classic statistics cannot be performed, as in
experiments involving human genetics, mathematical
elaborations of Mendelian theory may make it pos-
sible to predict human genetic distributions.

Another relation between statistics and biomathe-
matics is concerned with the application of statistics
in the exploration of a new field of investigation or
a new set of problems. In this sense, statistics has a
use analogous to that of the microscope or dye per-
mitting the visualization of details not perceptible
to the naked eye. Three speakers at the Conference
presented illustrations of this use of statistics. Pip-
berger described a method of principal component
analysis of electrocardiographic tracings and a pro-
cedure for discriminating between tracings accord-
ing to some particular property. Thus, with the
help of time integrals and spatial rotations, it was
possible to identify the elements of the electrocardio-
gram that correlated independently with such abnor-
malities as ventricular hypertrophies and myocardial

Reprinted from the New England Journal of Medicine
9RR.179.17R (Tulv 97\ 10R1
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infarction, and eliminate those that were dependent
and introduced no new evidence of such involvement.

Rosenblith, in a problem of pattern recognition,
described the use of the statistical theory of com-
munication as a means of exhibiting regularities in
electroencephalographic tracings and in recordings
of electrical events observed in the nervous system.

Eden presented a third application of this use of
statistics. This concerned the striking of a proper
balance between information retrieval and the auto-
mation of various aspects of medical diagnosis and
treatment. Thus, methods exist for the retrieval of
such items of information as laboratory reports and
other quantitative data, whereas the defining, storing
and retrieving of descriptive data such as that found
in the history and physical examination are as yet
unsolved. Eden emphasized the fact that, in the
final analysis, machine diagnosis of illness will depend
on information concerning the probability of specific
symptoms, signs or laboratory tests appearing in cer-
tain diseases, and that to be applicable, these data
will have to be collected in many kinds of population
groups.

These newer applications of statistics would be pro-
hibitively time consuming were it not for recent tech-
nologic development in the computation art. First
of all, very large amounts of data can be processed
rapidly. Secondly, it may be possible to build a
simple, special-purpose computer that will perform
the preliminary processing of the data for the
clinician. If further analysis is desirable, this first
step will have been helpful in preparing the data for
introduction into a large, general-purpose computer.

It was made clear throughout the Conference that
computers can be helpful only when the investigator
has carefully defined his terms, meticulously planned
the design of his experiments, established a logical
method of classification and collected his information
in consistent fashion.

Tue CoNsTRUCTION OF HYPOTHMESES OR
“MobEeL BuiLpinG”

Much of the time of the Conference was devoted
to the use of mathematics in the construction of
hypotheses useful in medical and biologic research.
This involves the analysis of existing data with the
help of mathematical theory so that more useful
hypotheses may be created than would otherwise be
the case. This use of mathematics in constructing
biologic or medical hypotheses is often referred to as
model building. Indeed, the creation of mathe-
matical models has been implicit in all the statistical
applications mentioned above because the particular
probability theory upon which the statistics are based
in itself represents a mathematical model.

Mathematical models are particularly useful when
the investigator by intuitive means cannot see the
relation between two or more facts or sets of data.
In such a situation the mathematician may establish
a deductive relation through a mathematical equa-

tion that can then be tested by experiment. An ex-
ample in a physical system is Kundt’s deduction
that the velocity of sound in a gas is related to its
specific heats. This was later verified by experiment.
An example in biology proposed by Shapiro concerns
the use of labeled compounds in the study of metabo-
lism. If one uses a mathematical model involving
simultaneous linear differential equations with con-
stant coefficients for a description of the kinetics of a
labeled system, one can mathematically deduce the
form of relation between amounts of labeled com-
pounds measured and time —- a form that is subject
to empirical verification.

Puysicar. MobEers

Mathematicians may also be helpful by pointing
out that certain well studied physical systems may be
useful in the investigation of particular biologic
systems. The extensive use of physical models is
supported by the ideas that physicists have been
successful in explaining nature, that alternatives to
the vitalist approach must be physical ones and that
the mathematical knowledge of the average biologist
is limited to that used in simple physical systems.
Where a physical system is applicable, this approach
may be successful. Thus, the Hodgkin—Huxley model
of nerve transmission is based on electromagnetic
theory and that of the transmission of electric power
through cables.

There are, however, limitations to the use of physi-
cal systems in biologic research. Biologic measure-
ments often cannot be made with the great precision
of physical ones. Moreover, the clearly defined
conditions of equilibrium in physical systems often
cannot be approximated in biology, even when static
measurements are precise. Thus, the Russians could
calculate the movements of the Earth and Venus,
the trajectory of the carrier rocket and the point,
direction and time of firing of the interplanetary
rocket on its way to Venus. In biologic research, the
chloride concentration of the blood may be measured
with some precision at a particular time, but because
of the many known and unknown factors that may
influence it, it may not be possible to predict its
value from moment to moment, or in different com-
partments of the body.

Furthermore, physical systems can often be simpli-
fied without disturbing the realistic relation of the
simplified to the original system. In contrast, it may
be very difficult in biology to simplify a system with-
out making it totally artificial. Thus, the Donnan
equilibrium may be measured precisely in a simplified
physical system, but its direct application to the
formation of cerebrospinal fluid might be unrealistic.

Where it is impossible to find a simple physical
model that is directly applicable to a biologic system,
mathematical theory may be helpful. Thus, Stephen-
son showed that all the kinds of data needed on the
basis of a physical model to study the complex prob-
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lem of fat absorption cannot be collected in a human
subject. But it was possible with fatty acid tracer
data and the use of integral equations to work out
the absorption, splitting and recirculation of fatty
acids and of triglycerides. This approach may be
very useful in the study of metabolism and in other
biologic and medical problems. In this connection,
it is instructive that the type of equation used by
Stephenson is known to mathematicians as the
Volterra equation and has a broad range of applica-
tion to biologic and physical systems. Actually,
Volterra was a mathematician who developed this
equation for the study of another biologic problem
—- that concerned with the competition of species.

Monte CArRLO METHODS

Until recently, mathematical models of complex
biologic systems could not be verified because the
mathematics required to get to the experimental
implementations of the models is remarkably com-
plicated and the computations inordinately long.
Such a model was presented by Podolsky with refer-
ence to the kinetics of muscular contraction. He
could study his model because the large, general-
purpose digital computer can by reason of its great
speed do what a human computer would find pro-
hibitively time consuming. But even this approach
is limited. Some biomathematical models, although
made up of simple elements, become complex be-
cause they have so many interactions that even the
largest computer cannot by analytic methods pro-
duce a specific answer for the entire model. Thus,
when Podolsky’s model simulated the transition from
one steady state of muscular contraction to another,
a new approach was necessary. Here, Podolsky and
Shapiro used Monte Carlo methods, by which, in
terms of a statement of probability, they ran a series
of mathematical experiments on a digital computer
and were able to converge on a numerical solution
to the entire problem. Monte Carlo methods are
presently under study by a number of mathemati-
cians, and are applicable to many biologic and medi-
cal problems.

StocHAsTIC PROCESSES

In many biologic systems there is no present possi-
bility of making a physical model, however com-
plicated. Instead, certain factors must be regarded
as having values controlled by chance. Processes of
this kind are referred to as stochastic. Stochastic
mathematical models are models in which the be-
havior of the system under study is modified by the
addition of a variable with a known probability of
occurrence and distribution. At the Conference,
Rosenblith demonstrated the use of such a model by
the effect of a repetitive standardized auditory stimu-
lus on the neuroelectric activity of the human brain.
Such models have also been used in many kinds of

biologic studies, including epidemiology by Bailey,
in cancer induction by Neyman and evolutionary
genetics assessing a long-range possibility of eugenics
by Dahlberg. This approach, supported by computer
facilities, will enormously broaden the opportunities
of the application of mathematics to the study of
biologic and medical phenomena.

Finirte MATHEMATICS

In applying mathematics to biology, biologists must
not limit their conception of mathematics to a kind
of glorified arithmetic concerned only with the rela-
tion between quantities of things. Actually, as illus-
trated at the Conference, a good deal of modern
mathematics is concerned with the relations be-
tween objects rather than with numerical values.
Bernhard applied this kind of mathematics to the
sequencing of amino acids in a protein. In collabora-
tion with Duda, he developed a logical procedure
for determining the sequence by digital computation.
This approach has come to be called finite mathe-
matics and has been used in other biologic research
—- for example, by McCulloch and Pitts in their
hypothesis of the random nerve net to explain the
mechanism of the nervous system. This procedure
can also be used for other than biologic problems,
as was demonstrated by Eden at the Conference in
his synthesis of human handwriting by mathematical
methods. The stress in finite mathematics is on com-
binatorial technics. Levinthal discussed the com-
binatorial procedures involved in genetic mapping
and posed certain unanswered questions relating to
the verification of the assumption of the linearity
of the genetic map. This same mathematical ap-
proach has been used by the team of Levi-Strauss, a
biologist, and Weil, a mathematician, in studying
laws governing marriage relations in primitive so-
cieties, and illustrates the application of this method
to the study of anthropology.

Seecrricity oF HYPOTHESES

Shapiro made a significant point when he declared
that a mathematical model (hypothesis) to be useful
had to be stated in specific and restrictive terms. I1f
the hypothesis when tested by experiment can be
satisfied by many different sets of data, it is too
general and has little differential or predictive value.
As an example Shapiro showed that the multilinear
receptor theory of color vision* was satisfied by many
sets of data collected when observers matched lights
in the entire range of the visible spectrum.

INFORMATION THEORY AND CYBERNETICS

Except for a brief reference on neuraclectric
phenomena by Rosenblith, the application to biology
of the mathematics concerned with information

*This theory states that color vision in the human eye depends upon
a finite number (three?) of receptors, each of which follows Beer’s law.
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theory and cybernetics was not covered in the Con-
ference but should be mentioned briefly here. At a
time when biologists, attempting to bring rigor into
their field of interest, felt obliged to adhere to quanti-
tative physical models, it remained for the mathema-
tician Norbert Wiener to point out that the way the
organism processes energy may be much less im-
portant than the mechanisms by which these proc-
esses are controlled. The concept of information
theory and the feedback of cybernetics have also
been applied to the study of perception by Reichardt
in the vision of the bee, and by Stark in studies of
muscular and pupillary contractions.

APPLICATION OF STANDARD MODELS

Because of limitations of time, the program and
the meeting were devoted almost entirely to questions
requiring both biologic and mathematical research.
Only brief mention was made of the application of
standard mathematical methods to problems in
biology, in medicine and in medical care. If more
time had been available, presently unexploited appli-
cations of standard mathematical methods would
have been discussed. For example, scientists in the
Department of Statistics of the University of North
Carolina have recently applied mathematical tech-
nics used in the “inventory control problem” to the
operation of a blood bank —- that is, the minimum
number of units of blood in a bank required to meet
all essential needs.

EPILOGUE

Some of the ways in which the life sciences and
mathematics can interact were outlined at the Con-
ference. The notions that mathematics can only be
used as a service tool in biology or that biology was
either too vague or too trivial to engage the interest
of the mathematician were dispelled. It also became
obvious that most medical and biologic investigators
know too little mathematics of either the classical
or modern variety to work productively with the
mathematician. On the other hand, it became evi-
dent that mathematical theory and technics need
extensive development for the effective study of bio-
logic problems. Ideally, prospective life scientists
should be well grounded in both biology and in
mathematics, but such persons will always be rare.
In spite of this, fruitful collaboration can go on
between the two disciplines if biologic and medical
investigators will learn enough mathematics, elec-
trical engineering and physics to be able to ask the
proper questions of the mathematician, and if the
mathematician will learn enough biology to be able
to develop the mathematical theory and technics
necessary to the solution of important biologic and
medical problems.
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Finite Counting Automata

M. P. SCHUTZENBERGER"

Harvard Medical School, Boston, M assachusetts

I. INTRODUCTION

The purpose of this note is to define a family R« of sets of words that
is, in some sense, the simplest natural generalization of the family ®o’ of
Kleene’s (1956) regular events (cf, also, Bar-Hillel and Shamir (1960)
and Shepherdson (1959) and below for an abstract definition). However,
even if this point of view constitutes the main motivation and if it
suggests the terminology, our treatment of the question will be entirely
algebraic. In fact this paper can be considered as an attempt towards a
classification of the (infinite) monoids of finite dimensional rational
matrices which are the semidirect sum of finite monoids. A discussion
of these points is to be found in Schiitzenberger (1962).

The set of F of the so-called tnput words (that is, the free monoid F
generated by the finite set X = {z}) is assumed to be fixed. We recall
that according to Bar-Hillel and Shamir (1960) a regular event F' is a
subset F’ of F such that ¢ 'oF’ = F’ for some homomorphism ¢ of ¥
into a finite monoid and our construction hinges upon the algorithm
described in the following definition.

DEFINITION. A finite counting automation 8 of order ¢ is the integral
valued function of F that is given by:

(i) A finite set of (¢; + 1)-tuples (a;) = (Fi1, Fia, -+, Fj441) of
regular events F; ; (1 S S M;qu, ¢, -+, qu < q).

(ii) A polynomial B (with integral coefficients) in the variates
ar,Q, ", 0.

For each word f of F, Bf = B(asf, oof, « -+, anf) where for each j, a,f
denotes the number of factorizations f = fife - - fg;41 of finto ¢; + 1
words such that fi € Fji, fs € Fiay -, fajor € Firgya-

(*) This work was done in part at the Department of Statistics of the Uni-
versity of North Carolina, under Contract AF 49 (638)-213 of the United States
Air Force, and supported in part by a grant from the Commonwealth Fund.
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The functions «; themselves will be called counters and we shall say
that B8 is a linear finite counting automaton if B reduces to a linear combi-
nation of the a;’s.

For instance, a counter a of order zero is defined by a single regular
event F' and by the rule of = 1if f € F', of = 0, otherwise. Hence,
here « is, in fact, the characteristic function of F’.

Reciprocally, we define the support F’(B) of the finite counting auto-
maton 8 as the set of words F'(8) = {f € F:8f = 0}.

It is easily verified that any finite counting automaton is equal to a
linear one of sufficiently higher order and, denoting by ®, the family of
the supports of the linear finite counting automata of order ¢, we shall
finally define R« as the union Ugze ®, .

Clearly ®¢’ (the family of regular events) is a subset of ®« and it can
be shown without difficulty that ®¢’ = ®,. In order to show that the
finite counting automata allow operations exceeding the power of the
conventional one way one tape automata of Rabin and Scott (1959) it
suffices to consider the following example (cf. Elgot (1956)):

Let the regular event F., be defined by the condition that the word
S belongs to F,, if and only if its last letter isz; . The counter of order
one a;, defined by the pair (F,, , F'), enumerates the number of times
z; appears in the input word f. Taking, for instance, 8 = a; — oz, the
corresponding linear counting automaton B is such that f belongs to
F’(B) if and only if it does not contain as many z;'s as x.'s. Obviously
with the same type of counters, but with a polynomial 8’ of order three
or more, the problem of deciding if F’(g") is or is not equal to ¥ (or if
it is or is not the complement of a finite set of words) leads to the classical
difficulties of diophantine analysis. Hence, there is some interest in
obtaining an independent characterization of the parameter ¢. For this
purpose let us say that deg 8 = ¢’ if ¢’ is the least integer such that for
all nonempty words f the absolute value of f is bounded by a constant
multiple of the ¢’th power | f| ¢ of the length | f| of f. It is trivial that
deg 8 is finite for any finite counting automaton because for any ¢” > 0
the total number of factorizations of a word f into ¢” + 1 factors is
itself bounded by a constant multiple of | f| *.

Our main result (to be proved in Section II) is that for any finite
counting automaton B: (i) deg B is equal to the greatest lower
bound of the (not necessarily integral) numbers r = 0 such that
lim ;50 | f7|8f| = 0. (ii) There exists a linear finite counting
automaton identically equal to 8 whose order is precisely deg 8.
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In fact each linear finite counting automaton 8 with deg8 = ¢ > 0
is closely associated with an extension by a finite monoid of a free
nilpotent group of class at most ¢ (of a free abelian group if ¢ = 1).
We intend to examine the special case of ®; and ®; in another paper.

In the last section of this paper we verify that ®« is closed with respect
to the operations of union, intersection, and set product and, by way of
counterexamples, we show that nothing more of Klecne’s (1956) theorem
remains valid for Ry .

It may be mentioned that the family R« is a special case of the more
general family of sets of words defined in Schiitzenberger (1961) and
that it could be partially characterized by adding the following re-
striction to (a), (b), - -+ (e) of Schiitzenberger (1961, p. 245).

(f). The ratio of the amount of information stored in the internal
memory to the amount brought to the machine tends to zero with the
length of the input word.

In the remainder of this section we reduce our original definition to a
simpler form and we prove a few elementary results needed in Section II.

1.1. Every finite counting automaton s equal to a linear one.

Proor. It is sufficient to prove that if « and o’ are two counters, the
function g defined by the identity 8f = ofa’f is equal to a linear finite
automaton, and to use induction on the degree of the polynomial 8.

Let us recall first that to any finite family {F;} of regular events
F there corresponds an homomorphism ¢ of the monoid F onto a finite
quotient monoid H = ¢F, and a collection {H;} of subsets of H such
that f € F; if and only if of € H; (Bar-Hillel and Shamir (1960)).

Hence to any counter o« defined by a (¢ + 1)-tuple (Fy, Fo/, -,
Fo.1) of regular events contained in the family {F,}, we can associate
the finite set of all the (¢ + 1)-tuples (a;) = (ks , hey, =+, Riy,,) of
elements of H which are such that

hiy € H, hiy € Hy, --- , h

’
Tg41

€ H

ig41
Then « is equal to the linear finite counting automaton D .;a;, where

for each 7 and input word f the counter a; enumerates the number of
distinet factorizations f = fife - -+ fy41 such that

’
efi = hiy,0fs = hiy, o, @f g1 = hig,,

Iet us say that this factorization is proper if none of the words f;
is the empty word. For any (¢ -+ 1)-tuple (hi, he, + -, hgt1) of ele-
ments of H = F, we say that the function @ of F is a ¢-counter if it
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enumerates the number of proper factorizations with

‘Pf1=hly¢f2=hzy"')¢fq+1=hq+l

or, as we shall say, if it enumerates the number of a-factorizations of
the input word. It is clear that any of the counters a; above is equal to
the sum of the g-counters defined by the same (¢ 4+ 1)-tuple and of all
the (297" — 2) p-counters defined by the (¢’ 4 1)-tuples (¢’ < q) which
result from the deletion of one or of several hi’sin (hy , hiyy oo+ hig,,).

Consequently, it suffices to prove the statement for the special case
in which both o and & are ¢-counters. Then, in fact, the function 8
enumerates for each word f the number of pairs consisting of a a- and
of a o'-factorization of f.

Let us consider an arbitrary monoid G, a (¢ + 1)-tuple (d) =

(91,92, ger1) and a (¢ + 1)-tuple (d') = (¢', ¢’ , -* , gor1)
of elements of G.
We say that (d”) = (¢1”, ¢2”, - , gar +1) is & refinement of (d) and

(d’) if it has the following properties:

Every g: of (d) is equal to a product g; = gi” or gx”gess - - - g, Of
consecutive elements of (d”); the same is true for every ¢, of (d’);
every gi» of (d”) is the first factor of a product corresponding to an
element of (d) or of (d').

Because of this last condition ¢ £ ¢ + ¢’ and, consequently, (d)
and (d’) have only finitely many distinct refinements when G is finite.
The same is true when G = F, a free monoid, because, e.g., any relation
of the form f = f’f” uniquely determines f” for given f, f'€F.

For instance, if (d) = (g1, g2) and (d’) = (g/, ¢2’), the set {(d”)}
of their refinements is empty unless gige = ¢1'¢g2’. If this condition is
met, { (d”)} consists of the triples (g1, g2”, g2") with gig2" = g1, ¢2"¢2" = ¢»
and of the triples (g1, g2”, g2) with gi'g2” = g1, ¢2"¢g> = ¢’ f g1 = ¢/
and g» = go/, the set {(d”)} contains also the pair (g1, gz).

This definition concludes the proof because 8 enumerates all the
a”-factorizations of f where («”) is a refinement of (a) and («’) and,
consequently, 8 = D a” where the summation is over all the p-counters
corresponding to these refinements.

We shall have to consider now and in the following section matrix-
valued functions of F. It will always be assumed that the matrices under
consideration are finite dimensional matrices with rational entries. The
matrix-valued function u is a representation of F if the square matrices
uf are such that uff’ = wfuf’ identically for all words f and f’; it is a
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finite representation if the set {uf:f € F} is finite; it is a representation
with bounded denominator if puf is an integral matrix for some integer
p and all words f.

Any entry »; of a matrix-valued function determines a numerical
function Bf = (»f):s of F, and the quantity deg » will be defined as the
supremum of the same symbol over all functions determined by the
entries of ».

1.2. To every finite counting automaton B there corresponds at least one
representation u such that B is determined by one of its entries.

Proor: According to I.1 it is sufficient to prove the statement for a
linear finite automaton 3 of order gq.

Let ¢ be a fixed homomorphism of F onto a finite monoid H, and con-
sider the set a; (1 < 7 = N) of all the g-counters of order at most gq.
Let the jth coordinate at the vector v(f) be equal to «;f for each 7 and
f € F. We verify that for each letter x of X there existsa N X N integral
matrix uzx such that »(fz) = v(f)ux identically.

This is trivial if ¢ = 0 and we consider a fixed counter « of order
g > 0 with (&) = (b1, ks, -+, hey1). We denote by o' the p-counter
(hi, h2y -+ ,hy) of order ¢ — 1 and by o” (1 £ k £ K) the set of
all the p-counters a;” of order ¢ with (ax”) = (hi, he, -+, hy, A”)
where h” satisfies the condition h”gx = hqys . Since afr = o'f + D i oi”f
or aft = D _a”f according to ¢ = hgyy OF @& 5% hgy1 , Our preliminary
result is proved.

Since B is a linear combination of the a,’s, this shows that, in fact,
B is determined by an automaton of the family @ described in the
definition 1 of Schiitzenberger (1961) and the complete result follows
from an elementary construction explained in detail in the same paper.

Let u be a given representation of F. A representation z of the same
dimension will be called a finite part of order q of p if it is a finite repre-
sentation and if for any (2¢ — 1)-tuple of words (fi, fo, -+, fog—1)
the product

afwfelifs - - - Afeiaufeifeina - - - wfoofif2e

where gf; = uf: — @f:, is identically zero. Thus the hypothesis that
i is a finite part of u implies that every matrix g belongs to the radical
of the algebra generated by the matrices uz (z € X). We define Ord p
as the lowest possible order of a finite part of u with the convention
that Ord p is infinite if x has no finite part of finite order.

1.3. If Ord p s finite, every function of F determined by an entry of u
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s equal up to a constant factor to a linear finite counting automaton whose
order is at most Ord u.

Proor: If Ord u = 0, the statement is trivial because the hypothesis
amounts to the assumption that u itself is finite and we can assume now
that 0 < ¢ = Ord .

We consider an homomorphism ¢ of F onto the quotient monoid H
that is defined by the following conditions:

(1) ¢f # e if fis not the empty word e.

(ii) For all f, f' € F and z, 2’ € X, ofr = of'2’ = h, say if and only
if afur = Bf'ua’ and gfr = pf'z’.

By hypothesis H is a finite monoid. We define a representation u
(with finite part @) of H = {h} by setting uh = gfux and gh = jfx.
To every (¢ + 1)-tuple ()= (h1, h2, - - -, he'41) of elements of H we
associate the matrix

pa = ghighy - - - fhi - -+ fhg'Ehy 41

where, of course, i = 0and @e = the unit matrix. Let now f = zyx2 - - -z,
be an arbitrary word expressed as a product of the generators. Since
uw = @& -+ @ we have

uf = (Bxy + fx:) (Bxe + Are) - -+ (BT, + A%a).

Developing this expression and observing that on the one hand g
is a representation and on the other hand any product containing ¢ + 1
matrices g is zero, we obtain uf as a sum of terms of the form

BfiBTafofis - - - Bfg'fi%e' Bfg' 41
with ¢ < ¢. Clearly each of these terms is equal to some matrix pa as
defined above and, more accurately, we have the identity uf = 2 ofpa
where the summation is over all the counters « of order at most ¢ defined
above.

Since the set of all these matrices ua is finite, it is trivial that Kuf
is an integral matrix for all f of F and some fixed integer K and the
result is proved.

If ¢ is any homomorphism of ¥ onto a finite monoid we say that the
(2p + 1)-tuple (s) = (fi, fe, -+, fept1) of elements of F is ¢-special
if foreachz =1,2,---,p

(Of%—]f?i = ‘Pf2i—l ) ¢f§i = S0f2i , ¢f2if2i+l = f2i+l .

Since ¢f is finite, there corresponds to any (s') = (A, f/, -+, frps1)
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a finite positive inter a such that

/b / /b b 7 J, J /
(8) = (ffe’s 1o, [ A58, 1%, -+ ) fop o fonfepr)

is ¢-special for all large enough b.

Also we shall use the abbreviation s* for denoting the word
SISl - aafapia -

I1.4. If Ord p = q 1s finite and of (s) is p-special, there exists ¢ + 1

matrices ous, 1S, * - , uS such that for all k
#S(k) = Z kjjlés
0<75q

Proor. By straightforward computation using the development of
us® as a product of matrices & and 4.

I15.If0 < Ord u < o, u s equivalent to a representation of the form

’

0
Ord u” = Ord p — 1.
Reciprocally, if the representation p s in the semireduced form

(¥ v
M= 0 u

thenOrd p < Ord w' + Ord u” + 1.

Proor: Let V denote the set of all the vectors v such that for all
words [, faf uf"v = 0.

Because of the hypothesis that u admits a finite part @ of order
¢ = Ord p < =, V is not empty and, after performing a suitable linear
transformation, we can assume that V consists of all the vectors having
their M last coordinates zero. Then, since for all f, f” € Fandv € V
one has uf”v € V and ff'v = 0, u and u have, respectively, the forms

’ - 0 ’
M= (g ‘::/) and M = (0 ;__:I/)

where u’ and u” are representations and where dim p” = M.
It follows that @ = u — g has the form

7 7’
(u v — v
0 “Il _ ﬁ”)
and, since it is a finite representation, the same is true of u'.
Observe now that the module V* spanned by all the row vectors of

<“ t,)where k' s a finite representation and u” a representation with
"
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all the matrices gf'uf” (f’, f” € F) consists of the vectors having their
first N—M coordinates zero where N = dim u is strictly larger than M
because of the hypothesis that 0 < Ord p.

Direct computation shows that any product afiufodfs - - - ufeq—2ifoq—
has the form (g
A" fau” Gfs"fs -+ - u"fag—2"fif2g—s . Because of our remark above on V*, the
condition that n = m = 0 identically, which is implied by Ord u = ¢,
implies itself that m’ = O identically, that is, finally, that Ord u” =
g — 1 and the direct part of the statement if proved.

With respect to the second part of the statement, it suffices to prove
it for Ord ' = 0 and to apply induction on Ord x. However, if Ord u’ = 0
we can use the notations introduced above and the hypothesis that
Ord p” = ¢ — 1 implies that the matrix m’ is identically zero. Hence,
the matrices m and n are also identically zero and consequently
Ord u = g¢. This concludes the proof of 1.5.

n
m) where n = Vfiu”fom’, m = @”fi/fom’ and m’ =

II. VERIFICATION OF THE MAIN PROPERTY
Let » be any matrix valued function of F. If
lim e s®[ | vs® | = 0
for any (2p 4+ 1)-tuple (s) (and s defined as in 1.4), we write
deg v = 0. If it is not so, there exists a largest integer ¢ (possibly ¢ = )
such that there exists an integer p and a (2p + 1)-tuple (s) for which
liMiae | 8% |79 »s® | 2 0. Then we write deg » = ¢ and we say that
(s) is effective for v. Necessarily deg » < deg » and, if these two param-
eters are equal, their common values is the greatest lower bound of

the numbers 7 = 0 such that lim |; .. | f |7 | »f| = O.

As for the symbols deg and Ord, it is trivial that deg u = deg u’
for any representation u’ equivalent to u.

Finally, let it be observed that (with the notations of 1.4) deg u can be
defined as the largest ¢’ such that ,us 5 0 for some g-special (2p + 1)-
tuple (s). Indeed, under these last conditions lim.. | 8% |7 | us® |
is proportional to g us. Reciprocally, given any effective (2p + 1)-
tuple (s’) we can choose the integers a and b in such a way that (s) =
(f', fo, fo - -+ fob ) foifopsr) is both effective and ¢-special for any
fixed ¢ and in particular for ¢ = f.
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In order to simplify the proof of the main property I1.4, we verify it
separately in the special case of deg u = 0, 1. Our first and fundamental
preliminary result is a modified version of a classical theorem of Burn-
side (1911, note j).

I1.1. The three following conditions on a rationally irreducible repre-
sentation u with bounded denominator are equivalent:

(1) Ord p = 0.

(ii) For all f, f', f” € F and ¢ > 0, limpw(l — &)* | uf'f'f” | = 0.

(iii) The set {Tr uf:f € F} is finite.

Proor: (i)=»(ii). The condition (i) is equivalent to the condition
that u is a finite representation. Hence, it implies that deg u = deg u = 0.
Since, trivially, deg p = 0 implies (ii) the result is proved.

(ii)=>(iii). For any f € F and k, Tr uf* is the sum of the kth powers
of the characteristic roots p; of uf. Hence, (ii) implies that for all
e > 0, limiew 2.;p,(1 — €)* = 0 and, consequently, that |p,;| < 1
for every root p; . It follows that | Truf | < X_;| pj | < dim u, a bounded
quantity. Since by hypothesis Tr uf is a rational number with bounded
denominator, the implication (ii)=>(iii) is proved.

(iii)=>(i). Let {f}(1 < j < N’ < N”) be a basis of the module 91
over the rationals spanned by all the matrices uf(f € F) and write
f' = f"ifandonlyifforallj = 1,2, --- , N’ one has Tr uf'f; = Tr uf’f; .
The condition (iii) implies that the equivalence = has only finitely
many classes and it suffices to verify that in fact f/ = f” only if
uf — uf” = 0.

Indeed, let 9" be the module of all matrices m’ of M, such that for
all m € N, Tr m'm = 0. By definition, for any m’ € ', m € M and k,
Tr m™m = 0 and, consequently, all the characteristic roots of m'm are
zero. Hence, for given m’ € 9, there exists no m € I such that the
first row of m'm is the vector (1,0, 0, -- -, 0). Since the representation
u is assumed to be irreducible, this shows that the first row of m’ is the
zero vector. The same remark applies to any row of any matrix of 9’
and it shows that this set reduces to the zero matrix. By definition,
= f" only if wf’ — wf” € M’ and the proof of (iii)=>(i) (and, conse-
quently, of I.1) is completed.

! 7
Let us consider a representation u = (g :;;) such that g = (8 ”9,)

is a finite representation. If v is any vector, it follows from 1.5 that the
vector valued function wv (defined as ufv for each f of F) satisfies the
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inequality deg uv

< deg w = Ord p = 0 or = 1. There is no loss in

generality in assuming that after a suitable linear transformation
V = {v:deg w = 0} consists of the vectors having their last M coordi-

nates zero where, possibly,
form.
I11.2. Under the hypothesis stated

” ”'0” w”
uoo= < ) and u =
0 wm

M = 0. We say then that u is in standard

’ ’
vw n
” ”
w”  w
0 wm

’ ’
where both py = (g ;:”’) and py are finite representations with dim uyy=M.

Proor. By hypothesis the monoid gF =
H of elements. If the triple of words (¢) =

{af:f € F} has a finite number
(f",f,f”) is such that gf’f =gf’,

ff” = gf”, | f| > 0 we write (t) € T (or € T;).

Trivially, any word g of F of length | g | > H® admits at least one
factorization g = ¢ige.gs with (g1, g2, g3) € T. Direct computation shows
that if (¢) = (f, f, f’) € T, the matrix ut® = uf’f*f” is equal to

w® = uf’f” plus k times the matrix (0 0) where, by definition, vt =

”lflvf#”fll .

It follows that either »¢’ = O for all (¢') of 7" and, then, the monoid
uF contains at most H® distinct elements or, otherwise, »t’ # 0 for at

least one (') € T (which is an effective triple) and Lieg_ U

Ord x = 1. More generally, for any fixed vector w, either <g 13) w=20
for all (¢) of T and then the set {ufw:f € F} contains at most H* distinct

vectors, or, otherwise, deg uw = 1.

Thus, we can assume now that M > 0 and, trivially, M

< dim p”

since u’ is a finite representation. According to the definition of V, it

follows that u has the form

’ ’ ’
" Vo 151
0 “0// v
0 ll-” i

where the following conditions are satisfied:

(i) dim m = M;

(ii) The module spanned by all the row vectors of all the matrices
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vt ((t) € T) has rank equal to its dimension M

(iii) wo't = O for all (¢) of 7.

Observe now that for any f”/€ F and (¢) = (f, f, f”) € T the
triple (f') = (', f, f”f"") also belongs to 7. Consequently, since »'t’ =
v'tu’’f""" = 0 by (iii), it follows from (ii) that u’’’ is identically zero.
Since we have seen that {»/f:f € F} is a finite set, the proof of II.2
is completed.

11.3. Let the representation

MO V1 V3
p={0 m »
0 0

be in the standard form of I1.2 with:

4 ’ ’

13 Vo V1
— v —> 1> U1
Ko <0 m)ﬂ) ’ (y(’//) y M I

and satisfy the conditions:

po v\ _ o vy _ 4, N AV
(_leg(o m)—Ord(O m) 1; gegu2<§eg_(0 m)( g < o).

Then deg p 2 ¢ + 1.
Proor: According to the remarks made at the beginning of this

section, (i) implies that <Sl :2) admits at least one effective (2 p + 1)-
3

tuple (s) = (fi,f2, - -, fop+1) which is g-special. Thus, Qeg_u =9+ 1
unless jus = 0for all j = 0 as we shall assume now. Then, by hypothesis,

0 n/ ny
ws=[0 0 mny
0O 0 O

Mo
0

exists at least one triple (t') = (g1, g2/, g3) satisfying the conditions of
I1.2 which is such that »t'n, # 0. By taking ¢ large enough we can
deduce from (t') a triple (£) = (g1, g2 = ¢’°, g3) which is g-special

with ng 5 0.

Because of the hypothesis that ( ;l) is in standard form, there
1
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and for which we have

0 m ng
wt=10 0 mn
0 0 m;

with nin, = cv/tn, = 0.

We claim that by a suitable choice of a, b > 0 the (2p + 3)-tuple
(u) = (gl ’ g2a7 g3f1 ’ f2b) f3 » T fgi ) f2p+1) which is ﬁ-special by
construction, satisfies the inequality ,uu # 0 from which the result
instantly follows.

Indeed, we have wu® = Zoé k(D4 jmin a'd” jutious) and,
because of the linear independence of the monomials a’b”, it suffices
to show that jut; us # O for at least one pair (7, 7') such that ¢ + 1 =
j + 7. Since forj = 1 and j/ = ¢ we have

0 0 nmn,
wlus =10 0 0 # 0,
0 0 O

the statement I1.3 is proved.

I1.4. If u is a representation with bounded denominator, then deg u =
deg u = Ord p. Furthermore, if ¢ = Ord u 1is finite, u has an effective
(2q + 1)-tuple which vs p-special for some finite part g of order q of p.

Proor: Since deg < deg < Ord, trivially, we have only to prove that
deg = deg and deg = Ord. The proof is by induction on dim g, the
initial case being trivial.

If u is irreducible, the result has already been proved in II.1 since
this remark shows that deg u = deg u = Ord u = 0 or = infinity. In the
latter case, the condition (ii) of II.1 shows that there exists an effective
triple.

Consequently, we can assume now that p = <'6° ;°> with dim gy > 0
1

where o is irreducible and where (by 1.5 and the induction hypothesis)
deg pu; = deg py = Ord u; = deg uor = deg u — 1. Again the result is
trivial unless ¢ = deg u is finite as we shall always assume it now.

If w is a finite representation (in particular if it is irreducible), the
result is already proved by II.2 which shows that deg u = deg u =
Ord p = 1 or = 0 according as there exists or not an effective triple.
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Consequently, we can assume that Ord y; = ¢ > 0 and, by L.5, that

— (Mlo V11>
K 0 un
where Ord ujo = 0 and Ord upy = ¢1 — 1.
Then, u has the form
MO Voo VoL
0 wmo wvu

0 0 un

m) into standard form.

M10

and, by applying II.2, we can bring (‘3’
Thus, finally, p has the form

MO V00O  Voor Vo1l

7 ’
{0 o wvieo wvio| _ (moe  wo

= = ’
w 0 0 wa »n 0 m

0 O 0 upn

where dim wo = 0 if and only if deg (go :60) is 0. In any case, we
- 10
have u' = (#0 mo) = a finite representation, u’ = (“ 101 V“‘) =
0 100 0 K100

a representation with Ord u’ = gror ¢z — 1.
Let us distinguish the two possibilities:

(1) m’ admits a finite part i’ of order ¢ — 1. Then (ﬁ(()) ﬁo,) isa
1

finite part of order ¢; of p. Since Ord p 2 deg u = g, this shows that
@1 = q. Hence, trivially, Ord ¢ = deg u and by the induction hypothesis
deg w1 = ¢ with an effective (2 ¢ + 1)-tuple of the required type. Since

equality is proved.

(ii)) Ord u’ = ¢ . Since Ord py = ¢ — 1, by construction, we have
surely dim wo # 0 and we can apply I1.3 with the correspondence
wo' — mo, por —> e and wpy —> wsz . This shows that deg u = ¢ + 1 and

consequently, ¢ = ¢ — 1. It follows that deg u = deg u = ¢ with the

required type of effective (2¢ -+ 1)-tuple. Furthermore, y; admits a

finite part g of order ¢ — 1 and, consequently, <8° 2 > is a finite part
1
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of u of order at most ¢q. This proves the double equality in the second
case and it concludes the proof of the main property.

III. TWO COUNTEREXAMPLES

It has been seen in 1.1 that any finite counting automaton is equal to
a linear one of sufficiently higher order. Our first counter example is
intended to show that, of course, the converse proposition is not true.

II1.1. There exists at least one linear counting automaton of order
two such that its support cannot be the support of any finite counting
automaton of order one.

Proor: Let the regular events Fz; and z;F be defined by the condition
that f belongs to Fz; (respectively to z;F) if and only if its last letter
(respectively its first letter) is x; . Assume for simplicity that X = {y, 2}
and define 8 = a — o where (a) = (Fy, F, 2F) and (a’) = (Fz, F,
yF). Direct computation shows that if f; = y'z, f; = y’%, i # j there
exists for every p > 0 at least one word f’ and integer k such that
BIFE71f = O and Bff5°1f i # 0.

Let now B’ be a finite counting automaton of order one defined by
a polynomial function of the linear finite counting automata B;(z =
1, 2, ---, M) of order one. Using the notations of I1.2, we assume
that each 8; is determined by an entry of a representation u; admitting
a finite part @; of order one. Hence, there exists an homomorphism ¢
such that ¢f = ¢f if and only if g;f = gf forz = 1,2, ---, M and
oF is a finite monoid.

Trivially, if of = ¢f’, there exists a finite p such that for each 7, u;f* is
idempotent and direct computation shows that uff*?f*?f" = uff*2f2f,
hence Bff**"*?f" = Bff’**f**s’, for every k.

However, the words f; considered above constitute an infinite family
of words which, pairwise, do not satisfy this relation whence the con-
clusion follows instantly.

We now prove the closure properties of Rx.

I11.2. The family of the supports of the finite counting automata of
order at most q is closed under intersection and union.

Proor: Let 8 and 8’ be two finite counting automata of order at most
g. According to the very definition of this algorithm, the function 8”
and B’ of F defined respectively by the identities 8”f = Bf8f and
B"f = (Bf) + (B'f) are also finite counting automata of order at
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most ¢ and we have
F'(B”) = {f € F:8f8F # 0} = F'(8) N F'(B')
F'(8") = {f € F:(8)" + (B)" # 0} = F'(8) U F'(8").
I111.8. The family R« is closed under set product.

Proor: Observe that if (o) = (Fy, Fo,---, Fy) and (a”) =
(Fy”, Fy, -+, Fy.) define the two counters o’ and o”, the (¢’ + ¢”)-
tuple (a’”’) of regular events (a’”’) = (Fy, Fy,---, Fo , F\”, F,,

4
.-+, Fy) defines a counter o'’

all’f = Z {alfla”fll :flfll — f} .

Since the convolution product is distributive over the addition, we can
associate to any pair of finite counting automata 8’ and 8” a third finite
counting automaton B’ such that 8”f = > {(87)(8"f")*:f'f" = f},
identically, and the result is proved since, by construction, F'(g""") =
F'(B")F'(B").

It has been shown elsewhere (Schiitzenberger (1961, counterexamples
11.2 and 11.3)) that the family of the sets of the form

F(8) = F — F'(B) = {f € F:6f = 0}
is distinet from ®4 and that it is not closed under the formation of set
products.

II1.4. For each ¢ > 0, ®Rq_1 # ®R, and, consequently, Rs s not closed
under Kleene’s star operation .

Proor: Let again X = {y, 2} and define the following regular events:
Y*={y,y2,"'7y","‘}, Z*={Z)227°"7zn7°°'}

G, = (Y*Z*)? (with G, = {¢}).

Hence, f € G, if and only if f = y*"" ... fp?" ... yrgbd = ¢,
say, where all the coordinates k; , ki, - - - , kq, k; of the vector K are
positive integers.

If (e,) denotes the pair (G,(Y*U{e}), G,—p) of regular events, it
is clear that the corresponding counter o, of order one is such that
apf = kyif p € Gy, apf = 0, otherwise. A similar construction holds
for k,’ and it follows that the following function B, is a linear finite
counting automata of order g:

B.f = 0if fis not in G, ;
Bof = (ky — k') by — k') -+ (kg — k') if f = g™,

which satisfies the convolution identity
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Hence, f belongs to F’(8,) in all cases except if f € G, and if k, = k,/
for some pair of coordinates of K. We show that F’(8) does not belong
to (Rq_.l .

Indeed, by I1.4 any linear finite counting automaton g’ of order ¢’
is determined by some entry of a matrix representation u of F' admitting
a finite part @ of order ¢'.

For suitable integers a and b the (4¢g + 1)-tuple (s) = (¢, ¥°, 4’2,
&2, ybzb,_ 2, 2) is p-special and for any vector K the word
s = gekRrek L Bbeke Btk is equal to g™ where K = 2bU +
aK with U = (1,1, --- 1).

Consequently, according to 1.3, 8 is a polynomial, say b'(K), of
degree at most Ord 8 in the coordinate of K. Now, if F(8') = F(8,)
they have the same intersection with the set {s®} and, consequently,
b’(K) must be zero whenever k; = k; for some 7 < ¢q. Hence b'(K) has
degree at least g since it admits the product (&, — &)(ks — &) - -
(ky — k) as a factor.

This concludes the proof that if F(8') = F(B,) then F(B') is not
contained in ®Rq_;.

We have seen that G; = Y*Z* belongs to ® and by definition
G = U{G.:q > 0}.

By the same argument as above it follows that F(8’) cannot be equal
to Gy* if B’ has a finite order since this would imply that & (K) has
infinite degree. Thus, R« is not closed under Kleene’s star operation.

Of course for any set F’ of R4 it is possible to construct a finite di-
mensional integral representation p of F such that a word f belongs to
F"™* if and only if some fixed entry of uf is not zero [cf. Schiitzenberger
(1961), p. 258 and 265]. Thus, as a byproduct, we have obtained the
result that ®s is a proper subfamily of the family of the sets words ac-
cepted by the automata of Q.

/S(K)
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