On Finite Monoids Having Only Trivial Subgroups

M. P. Schützenberger

An alternative definition is given for a family of subsets of a free monoid that has been considered by Trahtenbrot and by McNaughton.

I. INTRODUCTION

Let X^* be the free monoid generated by a fixed set X and let Q be the least family of subsets of X^* that satisfies the following conditions (K1) and (K2):

(K1). $X^* \in Q$; $\{e\} \in Q$ (e is the neutral element of X^*); $X' \in Q$ for any $X' \subset X$.

(K2). If A_1 and A_2 belong to Q, then $A_1 \cup A_2$,

$A_1 \setminus A_2 = \{ f \in A_1 : f \notin A_2 \}$

and $A_1 \cdot A_2 = \{ f' \in X^* : f \in A_1 ; f' \in A_2 \}$ belong to Q.

With different notations, Q has been studied in Trahtenbrot (1958) and, within a wider context, in McNaughton (1960). According to Egan (1963), Q contains, for suitable X, sets of arbitrarily large star-height (cf. Section IV below).

For each natural number n, let $\Gamma(n)$ denote the family of all epimorphisms γ of X^* such that $\text{Card} \gamma X^* \leq n$ and that γX^* has only trivial subgroups (i.e., $\gamma f^n = \gamma f^{n+1}$ for all $f \in X^*$, cf. Miller and Clifford (1956)).

Main Property. Q is identical with the union Q' over all n of the families

$Q'(n) = \{ A \subset X^* : \gamma^{-1} \gamma A = A ; \gamma \in \Gamma(n) \}$

$= \{ \gamma^{-1} M' : M' \subset \gamma X^* ; \gamma \in \Gamma(n) \}$.

As an application, if $A, A' \subset X^*$ are such that for at least one triple $f, f', f'' \in X^*$, both $\{ n \in \mathbb{N} : f' f'' \in A \}$ and $\{ n \in \mathbb{N} : f' f'' \in A' \}$ are infinite sets of integers, we can conclude that no $B \in Q$ satisfies $A \subset B$ and $A' \subset X^* \setminus B$.
II. VERIFICATION OF $Q \subset Q'$

The next two remarks are reproduced from Petrone and Schützenberger (1963) for the sake of completeness.

Remark 1. Q' satisfies (K1).

Verification. Let the monoid $M = \{e', x', 0\}$ and the map $\gamma : X^* \to M$ be defined as follows: $\gamma e = e' = e''$; for each $x \in X'$, $\gamma x = x' = e' x' = x e'$; for each $f \in X^* \setminus \{\varepsilon\} \cup X'$, $\gamma f = 0 = e' 0 = 0 e' = 0'' = x' 0 = 0 x' = 0''$.

It is clear that $\gamma \in \Gamma(3)$ and, since $X^* = \gamma^{-1} M$; $\{\varepsilon\} = \gamma^{-1} e'$; $X' = \gamma^{-1} x'$, the remark is verified.

Remark 2. Q' satisfies (K2).

Verification. For $j = 1, 2$ let $\gamma_j : X^* \to M_j$ and $M'_j \subset M_j$ satisfy $\gamma_j \in \Gamma(n_j)$ and $A_j = \gamma_j^{-1} M'_j$. We consider the family R of all sets of pairs $(m_1, m_2) \in M_1 \times M_2$ and for $m_i \in M_i$, $m_2 \in M_2$, $r = \{(m_i, m_2) : i \in I\}$, we let $m r = \{(m m_1, m_2) : i \in I\}$ and $r m_2 = \{(m_1, m_2 m_2) : i \in I\}$. Finally, letting \bar{M} denote the direct product of sets $M_1 \times R \times M_2$, we define an associative product on \bar{M} and an epimorphism γ of X^* onto a subset M of \bar{M} by setting for all (m_1, r, m_2), $(m_1', r', m_2') \in \bar{M}$ and $f \in X^*$:

$$(n_1, r, m_2)(m_1', r', m_2') = (m_1 m_1', m_2 r, m_2 m_2');$$

$$\gamma f = (\gamma f', \gamma f'' : f', f'' \in X^*; f f'' = f, \gamma f').$$

It is clear that $A_1 \cup A_2$, $A_1 \cap A_2$ and $A_1 - A_2$ are images by γ^{-1} of suitable subsets of M. Since \bar{M} is finite, the remark will follow from the fact that any subgroup $G = \{(m_i, r, m_2) : i \in I\}$ of \bar{M} is isomorphic to a direct product $G_1 \times G_2$ where G_i is a suitable subgroup of $M_i (j = 1, 2)$.

Indeed, by construction $\{m_i : i \in I\}$ is a homomorphic image of G, hence a subgroup G_i of M_i. Let e_j denote the neutral element of $G_j (j = 1, 2)$ and let N be the intersection of G with the subset $\{(e_1, r, e_2) : r \in R\}$ of \bar{M}. Since G is finite N is a normal subgroup of G and G/N is isomorphic to a subgroup of $G_1 \times G_2$. Therefore it suffices to show that N reduces to the neutral element $e' = (e_1, r, e_2)$ of G. To see this, let $g = (e_1, s, e_2)$ and $h = (e_1, t, e_2)$ be elements of N inverse of each other. The relations $e' = e''$, $e' = gh$, and $g = e' g e'$ give, respectively, $r = e' r \cup r_2$, $r = e_1 r \cup e_2$, and $s = e' r \cup e_1 e_2 u \cup r_2$. From the second and the first of these equations we get $e_1 r \cup e_1 e_2 = e_2 r \subset r$. Thus, using the third equation, $s = r \cup e_1 e_2$ where, as we have just seen, $e_1 e_2 \subset r$. This gives $s = r$; hence $e' = g = h$, concluding the verification of the Remark.
and of \(Q \subset Q' \) since \(Q \) is defined as the least family to satisfy \((K1)\) and \((K2)\).

III. VERIFICATION OF \(Q' \subset Q \)

The family \(Q'(1) \) consists of \(X^* \) and of the empty set. Thus \(Q'(1) \subset Q \) and it will suffice to consider an arbitrary fixed \(\gamma \in \Gamma(n) \) and to show \(\gamma^{-1}M' \in Q \) for all \(M' \subset M = X^* \) under the induction hypothesis \(Q'(n-1) \subset Q \).

Remark 3. If \(W_{m'} = \{ m \in M : MmM \cap M' = \emptyset \} \) contains two elements or more, then \(\gamma^{-1}M' \notin Q \).

Verification. Let \(\beta \) be a map of \(M \) onto a set \(\hat{M} \) that has the following two properties: \(\beta \) sends \(W_{m'} \) on a distinguished element 0 of \(\hat{M} \); the restriction of \(\beta \) to \(M \setminus W_{m'} \) is a bijection onto \(\hat{M} \setminus \{0\} \).

Taking into account that, by definition, \(W_{m'} = M \cdot W_{m'} \cdot M \), a structure of monoid is defined on \(\hat{M} \) by letting \(\beta(m)(\beta m') = \beta(m'm) \) for all \(m, m' \in M \). Then, if \(\text{Card } W_{m'} \geq 2 \), we have \(\beta \gamma \in \Gamma(n-1) \) and, since \(\gamma^{-1}M' = (\beta \gamma)^{-1} \beta M' \), the Remark is verified.

Remark 4. If \(M' \) is an ideal (i.e., if \(M' = M'M \) or \(MM' \)), then \(\gamma^{-1}M' \notin Q \).

Verification. Because of left-right symmetry and of the finiteness of \(M \), it suffices to consider the two cases of \(M' = mmM \neq mmmM \) and of \(M' = MmmM \neq M \) where \(m \) is an arbitrary fixed element of \(M \).

Let \(A = \gamma^{-1}(mmM) \) (resp. \(A = \gamma^{-1}(MmmM) \)) and \(B = A \setminus A \cdot X \cdot X^* \) (resp. \(B = A \setminus (X^* \cdot A \cup A \cdot X \cdot X^* \cup X^* \cdot A \cdot X \cdot X^*) \)). By construction \(B \) is the least subset of \(X^* \) such that \(A = B \cdot X^* \) (resp. \(A = X^* \cdot B \cdot X^* \)) and the hypothesis \(M' \neq M \) is equivalent to \(e \in B \). Further, let \(M'' = \{ m' : \gamma^{-1}m' \cdot X \cap B \neq \emptyset \} \) (resp. \(M'' = \{ m' : \gamma^{-1}m' \cdot X \cap B \neq \emptyset \} \)). Since \(\gamma B \subset M' = M'M \) (resp. \(\gamma M'M \)) and \(e \in B \), we can find \(X_0 \subset X \) and, for each \(m' \in M'' \), one subset \(X_{m'} \) of \(X \) (resp. two subsets \(X_{m'} \) and \(X_{m'} \)) in such a way that \(A = X_0 \cdot X^* \cup \{ \gamma^{-1}m' \cdot X_{m'} \cdot X^*: m' \in M'' \} \) (resp. \(A = X_0 \cdot X^* \cup \{ \gamma^{-1}m' \cdot X_{m'} \cdot X^*: m' \in M'' \} \)) and we have only to check \(\text{Card } W_{m'} \geq 2 \) for all \(m' \in M'' \).

First, let us recall the following consequence of Green (1951). If \(P \) is a finite monoid and if \(u, u' \in P \) satisfy \(u' \in uP \) and either \(u' P \neq uP \) or \(Pu' P \neq Pu' P \), then \(Pu' P \subset W_{u'} \).

Indeed, assume \(u' \in uP \) and \(Pu' P \subset W_{u'} \), that is, assume \(u' = uu'' \) and \(u = au'a' \) for some \(a, a'; a' \in P \). We have \(u = a^nu(a'a')^n \) for \(n = 1 \), hence for all \(n \geq 1 \). Since \(P \) is finite there exist two positive integers \(r \) and
q such that $a'^q = a''a'^q$. It follows that $u = a''u(a''a')^q = a''a''u$.
$(a''a')^q = a''u$ from which we deduce $u = \gamma''u(a''a')^q = u(a''a')^q = u(a''a')^{q-1}$ showing $u \in u'P$, i.e., $uP \subseteq u'P$. Since by hypothesis $u'P \subseteq uP$ this gives the desired relations $u'P \subseteq uP$ and $Pu'P = PuP$.
(For later reference we note that if P has only trivial subgroups, i.e., if $q = 1$, the same hypothesis give $u = au$ hence $au' = aau'' = uu' = u'$ and, finally, $u = au' = u''a'$.)

Consider now $m' \in M''$ and take $f \in \gamma^{-1}m'$ and $x \in X$ such that $fx \in B$ (resp. $x'fx \in B$ for some $x' \in X$). We have $\gamma fx \in m'\gamma x \in m'M$.
(resp. $\gamma fx \in m'M$ and $\gamma x'fx \in (\gamma x' \cdot m') \cdot M$). Because of the minimal character of B, $\gamma x'fx \cdot M$ (resp. $\gamma x'fx \cdot M$) is not equal to $m'M$ (resp. $\gamma x'fx \cdot M$) is not equal to $m'M$, a fact which implies that, also, $\gamma x'fx \cdot M \neq m'M$. Thus $M \cdot M' \cdot M' \subseteq W_{[m']} \text{ and Card } W_{[m']} \geq 2$ because of the hypothesis $M' \neq M \cdot M' \cdot M$ (resp $M \cdot M' \cdot M \subseteq W_{[m]}$ and $M \cdot M' \cdot M \subseteq W_{[\gamma x'f]}$, hence, using symmetry, $\gamma x'fx, \gamma x'f, \gamma x'fx \in W_{[m']}$ with $\gamma x'fx \neq \gamma x'f$).

Remark 5. For all $m \in M$, the set $(mM \cap Mm) \setminus W_{[m]}$ reduces to $\{m\}$.

Verification. The hypothesis $m' \in W_{[m]}$, $m' \in M \cap Mm$ is equivalent to the existence of $a, a', a'' \in M$ such that $m = ma' \cdot a$; $m' = ma''$; $m' = ma''m$. As mentioned above the first two relations imply $m = m'a$ and $m' = am'$. This concludes the verification of Remark 5 and, in view of Remark 4, it also concludes the verification of $Q = Q'$.

IV. AN EXAMPLE OF EGGAN

Let $X = \{x_n\}_{n \in \mathbb{N}}$ and for each $k \in \mathbb{N}$ let λ_k be the endomorphism of X^* that sends each $x_n \in X$ onto x_{n+k}, where $n = 2^k - 1$ if $n < 2^k$ and $n = 0$, otherwise. Setting $B_1 = \{x_1\}$, we define inductively for $k > 1$, $B_k = B_{k-1} \cdot (\lambda_1 B_{k-1} \cdots \lambda_2 x_0)$ where for any $A \subseteq X^*$, A^* denotes the submonoid generated by A. In Eggan (1963), p. 389, it is shown that B_k^* (denoted by β_k^*) has exactly star-height k.

It is clear that $B_1 \in Q$ and, to verify $B_{k+1} \in Q$, it suffices to verify $B_k^* \in Q$ under the induction hypothesis that $\gamma^{-1} \gamma B_k = B_k$ for some epimorphism γ of X^* onto a finite monoid having only trivial subgroups.

Consider any element $f \in X^* \cdot B_k$. Induction on the number of times $\lambda_2 x_0$ appears in f shows that either $f \in B_k^* \cdot B_k$ or $f \in V_k = \{f' \in X^* : f' X^* \cap B_k^* = \emptyset\}$. Thus $B_k^* = \{v\} \cup X^* \cdot B_k \setminus V_k$ and since $V_k = \gamma^{-1} \gamma M'$ where $M' = \{m \in \gamma X^* : m \cdot \gamma X^* \cap \gamma B_k = \emptyset\}$ the result follows from the induction hypothesis.
It may not be too irrelevant to recall the following example which shows that sets of star-height one can have associated arbitrarily complex groups. Let x and y be two distinct elements of X and, for n > 3, let $C_n = \{x^n, x^{n-1}yx, x^{n-2}yx, yx^{n-1}, x^iyx^{n-i-1} : 1 \leq i \leq n - 3\}$. Applying the theorem of Teissier (1951) shows that if ρ is a homomorphism of X^* into a finite monoid such that the sets ρC_n^* and $\rho C_n \cdot \rho x$ are disjoint, then ρX^* contains at least one subgroup which admits the symmetric group S_n as a quotient group.

Received: March 20, 1964

References

McNaughton, R. (1960), Symbolic logic and automata. WADC Tech. Rept. 60-244.

