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Abstract— We design an algorithm that minimizes irreducible ~ “positive strategy”. We start from the trivial partitionfavhich
deterministic local automata by a sequence of state mergisgTwo  each class is a singleton. Two classes are then merged when
states can be merged if they have exactly the same outputs. &N ajr |eaders have the same outputs. The running time of this
running time of the algorithm is O(min(m(n —r+1), mlogn)), lgorithm isO(mi 1 ) h is th
where m is the number of edges; the number of states of the &/90MNM IS (min(m(n —r+1),mlogn)), wherem IS the
automaton, andr the number of states of the minimized automa- Number of edges of the automaton. In particular, it is linear
ton. In particular, the algorithm is linear when the automaton —when the automaton is already minimal contrary to Hopcsoft’
is already minimal and contrary to Hopcroft's minimisation  algorithm that has ar(knlogn) complexity in this case,
algorithm that has a O(kn log n) running time in this case, where 5,4 that requires a complete automaton. Hence, it is faster
k is the size of the alphabet, and that applies only to complete than H ft's algorith hen f tat t b d
automata. (Note that kn > m.) an Hopcroft's algorithm when few states are to be merged,

While Hopcrof[’s a|gorithm relies on a “negative Strategy”‘ which is a fl’equent situation. The a|g0l’|l‘hm consists first i
starting from a partition with a single class of all states, ad building a digital tree, called the signature trie, whicbrss
partitioning classes when it is discovered that two statesamnot  the lexicographically-sorted outputs of states. This bégphe,
belong to the sam class, our algorithm relies on a “positive .4j16q multiset discrimination in [15], [6] is used to avoid
strategy”, starting from the trivial partition for which ea ch class hashi d d d inistic alaorith In thesd
is a singleton. Two classes are then merged when their leader ashing an t(? produce deterministic algorit m§. n thesac
have the same outputs. step the tree is updated after each state merging.

The algorithm applies to irreducible deterministic local au- Our algorithm applies to the class of almost-of-finite-type
tomata, where all states are considered both initial and fink  automata, which includes finite memory automata. These are
These automata, also called covers, recognize symbolic @ymical yeterministic irreducible automata that are also lefsirig (or
shifts of finite type. They serve to present a large class of d L ith a finite del d hronizi T
constrained channels, the class of finite memory systems, ats co-deterministic with a finite delay), an Syn? _romzmtjne
for channel coding purposes. The algorithm also applies to automata present channels called almost of finite type (AFT)
irreducible deterministic automata that are left-closingand have They were introduced by Marcus [13] for coding purposes.
a synchronizing word. These automata present shifts that @& |ndeed, the theory of modulation codes provides many nlatura
called almost of finite type. Almost-of-finite-type shifts nake a AFT examples. The AFT sofic shifts is a meaningful class
meaningful class of shifts, intermediate between finite typ shifts . . : . _ . - ’
and sofic shifts. intermediate between shifts of finite type and sofic shifbsrr

the point of view of symbolic dynamics. Indeed, it was shown
|. INTRODUCTION by Boyle, Kitchens and Marcus in [5] that the class of AFT

Local automata, also called definite automata or definighifts is the unique class of shifts having a minimal cover in
covers [16], present a large class of systems: the classit# fithe sense of symbolic dynamics. It is possible to encode an
memory systems used in coding for constrained channels [@hconstrained source into an AFT constrained channel bavin
These channels have a canonical minimal deterministiepresa capacity not less that the entropy of the source with angjidi
tation, called the Fischer cover, which can be computed fraaock decoder [10], while it is not possible to build such a
an n-state local deterministic presentation using Hopcroftsode for a general finite-state constrained channel in tse ca
minimisation algorithm that runs in tim&®(knlogn) [9], of equality of the capacity and entropy.

wherek is the alphabet size. From the algorithmic point of view, our method is a solution
Hopcroft's algorithm computes the Nerode partition of théo multiset discrimination with updates.
set of states with a “negative strategy”. It starts from aipan Below we first introduce the type of automata considered

with a single class of all states, and partitions classeqwithe in the paper and then describe their minimisation algorithm
is discovered that two states cannot belong to a same class.
It applies to any complete finite-state automaton. For local /- L OCAL AND ALMOST-OF-FINITE-TYPE AUTOMATA
automata, as well as also for almost of finite type (AFT) In this article, arautomator(or covel) is a pairA = (Q, E),
automata, the minimal presentation can be obtained withwdoere@ is a finite set of states, anl is a finite set of edges
sequence of state mergings. labeled by letters of a finite alphabet (Edges are triples
In this paper we design an algorithm to compute the minimef the form (p, a,q), p,q € Q, a € A.) No initial nor final
automaton of a deterministic local automaton that reliemonstates are specified in this notation. Actually, all stat@gehto



be considered as both initial and final states. We say that mmimal deterministic irreducible automaton called thght
automaton idrreducible if it has a strongly connected graph.Fischer coverof the shift (see for instance [12], [11], [4]). It
The set of bi-infinite words labeling a bi-infinite path i is is unique up to a renumbering of its states. It can be obtained

called thesofic shift presented hy. from A by computing the Nerode partition of the states: two
The automaton isleterministicif two edges with the same stateg, ¢ belong to the same class of this partition if and only
origin carry different labels. if they have the same future, i.&(p) = F(q), whereF'(s) =

The wordw is said to be asynchronizing wordof A if {u € A* | there is a path frons labeled byu in A}.
there are nonnegative integersanda such that whenevertwo \We say that two statep and ¢ of A can bemergedif
paths((p;, ai, pit+1))o<i<(mta) ANA((D}; @iy Piy1))o<i<(m+a)  (p,a,7) € E is equivalent to(q,a,r) € E. A state merging
of lengthm + a have the same labed, thenp,, = p,, (m identifies two mergeable states.
stands for memory, and for anticipation). An automaton is  |n general, it is not true that a deterministic non-minimal a
synchronizingf it has at least one synchronizing word. tomaton has mergeable states (see the automaton of Figure 2)
Let m and a be nonnegative integers. We say that thgiowever, this property is true for the class of deterministi
automaton igm, a)-local (or (m, a)-definitg if whenever two AFT automata. As a consequence, it is possible to minimize
paths((pi, ai, pi+1))o<i<(m+ay @NA((D}, @i, Pit1))o<i<(m+a) such automata by a sequence of state mergings.
of lengthm + a have the same label, then, = p;,. We say  The following lemma from [3, p.41] provides a efficient
that an automaton is local (or definite, or has finite memorgharacterization of a left-closing automata. Efficient relca
ifitis (m, a)-local for some integers: anda. An irreducible terizations of AFT shifts where obtained by Boyle, Kitchens
automaton has finite-memory if and only two distinct cyclesnd Marcus [5] and by Nasu [14].
carry different labels. Note that a deterministic and local The |lemma uses the notion of product of two automata
automaton is alwayém, 0)-local for some integem. A sofic  gefined as follows. The product of the automatdrby itself
shift that can be presented by a local automaton is said tojgethe automatond? = A x A — (Q x Q,F) where

a shift of finite type o ((p,q),a,(r,s)) € F if and only if both (p,a,r) € E and
Letm be a nonnegative integer. We say that an automatoryjs , ‘s ¢ .

meright-closing if whenever two paths(p;, i, pi+1))o<i<m Lemma 1:The automatond is left-closing if and only if
and((p;, ai, piy1))o<i<m Of lengthm have the same label andy,o 5tomatond? has no cycle going through a state, q),
the same origin then they share the same first edge. The no%o;; ¢, which is co-accessible from a state of the fotrr).

of an a-left-plos_lngautomaton Is defined S'T"'_'a_”y when!s The following proposition already appeared in [3, Proposi-
a nonnegative integer. Note that a deterministic automaton, . 5 1 0.60]

1-right-closing.

We say that an automatonagmost of finite typ€AFT) if it
is an irreducible and synchronizing automaton thahisight-
closing anda-left-closing for some integers: and a. Note

Proposition 2: If a deterministic AFT automatom! is not
minimal, then at least two of its states can be merged.
Proof: Assume that no two states of can be merged,
that any irreducible local automaton is AFT. A determim:istiand letp andq be two d|st|nct25tates h_avmg the same_ future.
Let C be the set of states of* accessible frontp, ¢). Since

automaton is AFT if and only if it is left-closing and has a do h h : h th
synchronizing word. A sofic shift that can be presented by &n3ndq have the same future, any states such thal(r, s)

AFT automaton is said to baimost of finite type Is in C' also have the same future. We construct an infinite

Examples of a local automaton and of a non-AFT automatSfAUENCEr:, ¢i)izo (pi # ¢:) of states ir’ defineq as follows.
are given in Figure 1 and Figure 2. We choos&po, qo) = (p; q). Hencepo # go. Fori > 1, since
p; andg; cannot be merged, for some lettgr (p;—1, a;, ) and

a b b (gi—1,a:, s) are edges with £ s. We choosép;, ¢;) = (r, s).
HenceC contains a cycle of statés, s) with r = s. Let (r, s)
be a state on this cycle.

¢ Since A is irreducible and synchronizing, there is a path
Fig. 1. A (0, 1)-local automaton. starting atr labeled byw, wherew is a synchronizing word.
a a Since F(r) = F(s), there is a path in4? starting from(r, s)
8/2\_)8 and labeled byw. This path ends in a statg,t) sincew is
synchronizing. This contradicts the fact thdtis left-closing
b by Lemma 1, which ends the proof. [ ]
Fig. 2. A non-AFT automaton. It is both right-closing andtlefosing but
itis not synchronizing. B. First step of the algorithm: building a tree

We describe below a minimisation algorithm that applies
to deterministic AFT automata, and hence to irreducible de-
A. Minimisation by a sequence of state mergings terministic local automata. The parameters of the algorith

Let A = (Q, E) be a deterministic automaton. It is knowrare the number of states of the automatad = (Q, E), its
that, whenA is irreducible, the shift presented by has a numberm of edges, the siz& of the underlying alphabet, and
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the numben- of states of the minimal automaton. Of course,
m < kn since the automaton is deterministic.

We assume thatl = {a;,as,..,a;} are that the letters are
ordered:a; < ay < --- < ai. We associate with each state
p € @ = {1,2..,n} its signaturec(p) = a1prazps .. ap;,
where(p,a1,p1),.., (p,a;,p;) are the edges starting from
in lexicographic order. Apartial signatureof statep is a prefix
ai1prasps - . a-py Of its signature.

In the first step of the algorithm we build a tree representing
the set of all signatures. Is is called trsgnature trie
Denoted byT, it is defined as follows. Each node represents
the set of states whose partial signatureiip,asps .. a,p;.

The root of the tree represents the set of all states.afn
labeled bya,.;1p,+1 links the node associated with the partial
signaturea;piasps . . a,p,. to the node associated with the
partial signaturez;piasps .. a-+1p-1+1. The leaves of the trie
are the nodes associated with a complete signature. Eaich lea
contains the set of states having this signature.

The trie can be constructed after a lexicographical sort of
the signatures. This technique is analogue to the multiset
discrimination described in [15], [6], which avoids using
hashing. It is used in [17] to minimize acyclic automata.

The structure of a node of the frie is the following. It fig 4. The minimal automaton corresponding to the automafcFigure 3.
contains the (non-sorted) listucqz) of the arcs leavinge.

The list is indexed by all(a,p) for which ap is the label

of some arc of the trie. We denote Isyicdz)(a,p) the arc containingz or y have to be updated inside the trie. This
labeled byap originated from.. It contains the address of pqate is the delicate point of the algorithm.

its target node. Theaize of a node of the trie is the number For each letter, € A, we denote bym(a) the set of states
of states contained in the leaves of the subtree rooted st tgf A ending edges Iab,eled ly For each lettet, we maintain

node. . . _— __the partition oflm(a) for which two states ofm(a) having
In'addmon to the triel’, we also mamtam a non-sorted I'Stalready been merged belong to a same class. Each class has
arc, indexed by all(a,p) such thatap is the label of some

. , ) a leader. Assume that the statesandy have to be merged
arc of the trie, and such tharc(a,p) is the list of all arcs

X X X 1 and both belong tdm(a). Let p (resp.q) be the leader of
labeled byap contained in some ligtucgz)". We also assume y o ¢jass of: (resp.y). We keepg as the new leader of the

that each arc from: labeled byap contains the address of theunion class whethe number of edges labeled band ending

element inarc(a, p) pointing to it. We denote bgizea, p) the i, ) is smaller than the number of edges labeleddognd

size of the listarc(a, p). Itis defined as the sum of sizes of allning ing. This smaller-half strategy, applied for each letter,
the target nodes of arcs labeled &y. Hence it is the number

will guarantee the overall running time of the algorithm.eTh

of states of the automaton with an outgoing edge labeled BMges labeled by and ending inp are then changed into
a and ending inp. The implementation of the listsucqz), edges labeled by and ending iny.

arc, andarc(q,p)_ is described in_Section [lI-D. A sparse list We update the edges ending jinfor each lettera; in the
implementation is used for the lismicdz) andarc. All the
data structures lead to an efficient update of the Triafter
two states are merged, as described in the next section.

An example of a deterministic AFT-automatohis given
in Figure 3. Its minimal automaton is displayed in Figure 4
and its initial signature trie is shown in Figure 5.

C. Second step of the algorithm: updating the tree

The second step of the algorithm can be shortly described
as follows. The signature trie allows one to detect easilgia p
(z,y) of states with the same signatuiiee(, with the same
outputs). Indeedy andy belong to a same leaf in this case.

Then the states: and y are merged. Hence the signatures
Fig. 5. The initial signature trie of the automaton of Fig@rdt is rooted at
Actually, in the implementationarc(a, p) is the list of addresses of all the nodel. Only one leaf contains more than one state, namely statés
nodesz such thatsucdz) contains an arc labeled hyp. They have the same signatuséb2c5.




decreasing order of the;. Once this update is done, the same2. of the classes qf and g for the lettera;
process is iterated until no more pair of states with the sarh@ MERGE(ai, p, q)
outputs is detected. 14. else .
In order to change all edges labeled byand ending in 1. p becomes the leader of the union
X - X 16. of the classes qgf and g for the lettera;
p into edges labeled by, and ending ing, the procedure 17, MERGE(as, ¢, p)
MERGEa, p, q) updates the nodes having an outgoing arc 18. return T
e labeled byap. Two cases may appear according to whether
x has no arc labeled byq or it has an arcf labeled byag.
In the former case, its are becomes an arc labeled by, D- Complexity of the algorithm

and the listsarc(a, p), arc(a, g) are changed accordingly. In We analyze the complexity of the algorithm. The initial

the latter case, the procedurg$ioN(x1, x2), wherez; (resp. . . . L .
72 he trget of (esp ), makesa usion of e subreed 104 1 400 e o e Bl n fme () vong
rooted atz; andx, by insertingz; into x5. The procedures the inteqer interva 192 The implementation of I's%s
MERGE and RusION are described below. Integer 1 [1,2,...,n]. imp : !

The main procedure is the procedureNVMISATION -AFT- arc and succ.(x) for all nodes;' is done with a sparse “St.
X ) S . implementation (see [2] Exercise 2.12 p. 71 and [8] Exercise
AUTOMATON which starts with the initial trie construction and

sets up the listarc. The leaves of the trie are then scanned. F(%Irs 154 a::?:%gf;g%;; gf)(;nvflag?ja?)air:‘ilrllzslagglagftesroaggabrc

each leaf of size greater than one containing Stgies ., ¢ of the trie. As a consequence, it is possible to find, add, or

ir(g;, g <gi<l—1,i ; . ) . oo
Genotedtonerge. This stack contains pats of states to. pESTIOVE 8N aIC n a ISucd) or in alistarc in tme O(1)
meraed 9 P ?nitialization is done in constant time too. The space rezpli

ged. for the implementation i€ (kn?).

MEF;GE(GJ; a § It remains to evaluate the time complexity of all updates.
1. for each aree in arc(a, p) do Assume that the statesandy in Im(a) have to be merged.

2. let = be the node origin oé o :
3 if 2 has no arc labeled byg then Classes of the partition ofm(a) are implemented as trees
4. change the label of into ag where the leader of the class is at the root of the tree. A se-
5. transfer it fromarc(a, p) to arc(a, q) guence ofn Union-Find operations with path compression [7]
6. elsel(x hasban ﬁrff Iabeles bYSQ) be th . is performed in timeD(m min{a(m), logn}), wherea is the
;: fet rﬁéveet;eeatrzr?grﬁ sj‘cn c(;?an% tfrgnfg%?;% inverse of the Ackermann function. Let us denotepyesp.q)
10. FUSION(z1, Z2) the leader of the class af (resp. the class af). Assume that
the number of edges labeled byand ending inp is smaller
FUSION (nodez1, nodex:) than the number of edges labeled bwnd ending iny. Then
1. if z; andz, are leaveghen q becomes the leader of the union of the two classes. The arcs
let s be a state inz; and¢ a state inz; of the trie labeled by:p are changed into arcs labeled by

push(s,t) onto the stackoMerge

hr h the pr re BR . The tim mplexi
concatenate the list of statesan to the one inxs through the procedure ERGHa, p, q) e ime complexity

2

3

‘51. else of this call is proportional to the size of the subtrees rdote
6

8

9

for each arce labeled byap in sucdz;) do at the targets of all arcs of the trie labeled by. Up to a
if 2 has no arc labeled byp do multiplicative constant, it is at most the number of leavés o
: transfer the are from sucdz) to sucqz2) these subtrees, that iz a, p), which is equal to the number
10. else(z2 has an argf labeled byap) of edges labeled by, and ending inp in the automaton.
11. let y1 (resp.y2) be the target ot (resp. f) . . . harsi bef th .
12 FUSION(y1, o) Sincesiz€a, p) is no more tharsizga, q) before the merging

o . operation,sizda, ¢) after the merging has at least twice the
In the minimisation procedure described belowsize ofsizga, p) before the merging. Hence each edge labeled
CLASS(a,r) denotes a call to the procedure computingy q is changed at mogbg n times. Furthermore, ifi — r is

the leader of the class of for the lettera. the number of pairs of states being merged, each edge can be
MINIMISATION -AF T-AUTOMATON (A = (Q, E) changed also at most— r times. Hence the cost of all these
A={ar,..,ax}) updates for all letters i®)(min(mlogn, m(n+1 —r))). As

1. build the signature tri@" and the listsarc a consequence, we get the following proposition.

2. for each leaf(p1,p2,..,p:) of T do - . ; ;

3 push(pr. pis1) onto the stackoMergefor 1 < i < [ — 1 Proposition 3_. The qverall running time of the procedure
4. computesiz€a, p) the size of each lisarc(a, p) MINIMISATION is O(min(m log n,'m(n +1—r))), wherer

5. while the stacktoMergeis non-emptydo is the number of states of the minimal automaton.

g- ][emp;/e a ]Sa(;(ﬂa yt) flfoén toMerge The execution of the algorithm on the automaton of Figure 3

. or 2 Trom ownto (0] H : H H

8 if 2 andy belong tolm (a:) then is descrlbe_d in Figure 6..'The forestg,, Fy, F., and Fj,

9. let (p,q) —(CLASS(as, #),CLASS(as, 1) corresponding to the partitions @&fn(a), Im(b), Im(c), and

10. it sizda;, p) <sizdas,q) then Im(d) respectively, are represented in Figure 8. The lsts

11. q becomes the leader of the union are described in Figure 7.
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Fig. 6. Updates of the signature trie of Figure 5. The initié is given in
Figure 5. (a) After updating arcs labeled by(b) After updating arcs labeled [14]
by a. This is the result of mergin@ and 4. (c) Result of mergingl and
3: update of the arcs labeled ki The merging of states and 6 does not
change the trie. The leaves of the trie correspond to thesstEtthe minimal
automaton of Figure 4.

(15]

[16]

[17]
arc | step 1| step 2 step 3 | step 4
a2 | 1(1) —
ad | 1(3) 1(4)
a6 | 1(2) 1(2)
b2 | 3,4(3) | 3,4,2(4) | 3,4(4) | 3,4(4)
b4 | 2(1) —
c5 1 9(2)
dl | 3(1) —
d3 | 3(1) 3(2)

Fig. 7. The listsarc during the four steps (step 1 corresponds to the initial
trie of Figure 5, step 2 to Figure 6 (a), step 3 to Figure 6 (by atep 3 to
Figure 6 (c)). The size of each liatc(a, p) is given in parenthesis. Each list
arc(a, p) contains the addresses of the nodesf the trie for whichsucdz)
contains an arc labeled byp.

e ol T
e — o)
N — | T

Fig. 8. The forest¥y, Fy, F. and F, correspond to the partitions dfn(a),
Im(b), Im(c), andIm(d) respectively at the end of the execution.
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