
Minimizing local automata
Marie-Pierre Béal

Institut Gaspard-Monge
University of Marne-la-Vallée, CNRS

77454 Marne-la-Vallée Cedex 2, France
beal@univ-mlv.fr

Maxime Crochemore
Institut Gaspard-Monge

University of Marne-la-Vallée, CNRS
77454 Marne-la-Vallée Cedex 2, France

and King’s College London
mac@univ-mlv.fr

Abstract— We design an algorithm that minimizes irreducible
deterministic local automata by a sequence of state mergings. Two
states can be merged if they have exactly the same outputs. The
running time of the algorithm is O(min(m(n− r +1), m log n)),
where m is the number of edges,n the number of states of the
automaton, andr the number of states of the minimized automa-
ton. In particular, the algorithm is linear when the automaton
is already minimal and contrary to Hopcroft’s minimisation
algorithm that has a O(kn log n) running time in this case, where
k is the size of the alphabet, and that applies only to complete
automata. (Note that kn ≥ m.)

While Hopcroft’s algorithm relies on a “negative strategy”,
starting from a partition with a single class of all states, and
partitioning classes when it is discovered that two states cannot
belong to the sam class, our algorithm relies on a “positive
strategy”, starting from the trivial partition for which ea ch class
is a singleton. Two classes are then merged when their leaders
have the same outputs.

The algorithm applies to irreducible deterministic local au-
tomata, where all states are considered both initial and final.
These automata, also called covers, recognize symbolic dynamical
shifts of finite type. They serve to present a large class of
constrained channels, the class of finite memory systems, used
for channel coding purposes. The algorithm also applies to
irreducible deterministic automata that are left-closing and have
a synchronizing word. These automata present shifts that are
called almost of finite type. Almost-of-finite-type shifts make a
meaningful class of shifts, intermediate between finite type shifts
and sofic shifts.

I. I NTRODUCTION

Local automata, also called definite automata or definite
covers [16], present a large class of systems: the class of finite
memory systems used in coding for constrained channels [1].
These channels have a canonical minimal deterministic presen-
tation, called the Fischer cover, which can be computed from
an n-state local deterministic presentation using Hopcroft’s
minimisation algorithm that runs in timeO(kn log n) [9],
wherek is the alphabet size.

Hopcroft’s algorithm computes the Nerode partition of the
set of states with a “negative strategy”. It starts from a partition
with a single class of all states, and partitions classes when it
is discovered that two states cannot belong to a same class.
It applies to any complete finite-state automaton. For local
automata, as well as also for almost of finite type (AFT)
automata, the minimal presentation can be obtained with a
sequence of state mergings.

In this paper we design an algorithm to compute the minimal
automaton of a deterministic local automaton that relies ona

“positive strategy”. We start from the trivial partition for which
each class is a singleton. Two classes are then merged when
their leaders have the same outputs. The running time of this
algorithm isO(min(m(n− r + 1), m log n)), wherem is the
number of edges of the automaton. In particular, it is linear
when the automaton is already minimal contrary to Hopcroft’s
algorithm that has anO(kn log n) complexity in this case,
and that requires a complete automaton. Hence, it is faster
than Hopcroft’s algorithm when few states are to be merged,
which is a frequent situation. The algorithm consists first in
building a digital tree, called the signature trie, which stores
the lexicographically-sorted outputs of states. This technique,
called multiset discrimination in [15], [6] is used to avoid
hashing and to produce deterministic algorithms. In the second
step the tree is updated after each state merging.

Our algorithm applies to the class of almost-of-finite-type
automata, which includes finite memory automata. These are
deterministic irreducible automata that are also left-closing (or
co-deterministic with a finite delay), and synchronizing. The
automata present channels called almost of finite type (AFT).
They were introduced by Marcus [13] for coding purposes.
Indeed, the theory of modulation codes provides many natural
AFT examples. The AFT sofic shifts is a meaningful class,
intermediate between shifts of finite type and sofic shifts from
the point of view of symbolic dynamics. Indeed, it was shown
by Boyle, Kitchens and Marcus in [5] that the class of AFT
shifts is the unique class of shifts having a minimal cover in
the sense of symbolic dynamics. It is possible to encode an
unconstrained source into an AFT constrained channel having
a capacity not less that the entropy of the source with a sliding
block decoder [10], while it is not possible to build such a
code for a general finite-state constrained channel in the case
of equality of the capacity and entropy.

From the algorithmic point of view, our method is a solution
to multiset discrimination with updates.

Below we first introduce the type of automata considered
in the paper and then describe their minimisation algorithm.

II. L OCAL AND ALMOST-OF-FINITE-TYPE AUTOMATA

In this article, anautomaton(or cover) is a pairA = (Q, E),
whereQ is a finite set of states, andE is a finite set of edges
labeled by letters of a finite alphabetA. (Edges are triples
of the form (p, a, q), p, q ∈ Q, a ∈ A.) No initial nor final
states are specified in this notation. Actually, all states have to



be considered as both initial and final states. We say that an
automaton isirreducible if it has a strongly connected graph.
The set of bi-infinite words labeling a bi-infinite path inA is
called thesofic shift presented byA.

The automaton isdeterministicif two edges with the same
origin carry different labels.

The word w is said to be asynchronizing wordof A if
there are nonnegative integersm anda such that whenever two
paths((pi, ai, pi+1))0≤i<(m+a) and((p′i, ai, p

′
i+1))0≤i<(m+a)

of length m + a have the same labelw, then pm = p′m (m
stands for memory, anda for anticipation). An automaton is
synchronizingif it has at least one synchronizing word.

Let m and a be nonnegative integers. We say that the
automaton is(m, a)-local (or (m, a)-definite) if whenever two
paths((pi, ai, pi+1))0≤i<(m+a) and((p′i, ai, p

′
i+1))0≤i<(m+a)

of lengthm + a have the same label, thenpm = p′m. We say
that an automaton is local (or definite, or has finite memory)
if it is (m, a)-local for some integersm anda. An irreducible
automaton has finite-memory if and only two distinct cycles
carry different labels. Note that a deterministic and local
automaton is always(m, 0)-local for some integerm. A sofic
shift that can be presented by a local automaton is said to be
a shift of finite type.

Let m be a nonnegative integer. We say that an automaton is
m-right-closing if whenever two paths((pi, ai, pi+1))0≤i<m

and((p′i, ai, p
′
i+1))0≤i<m of lengthm have the same label and

the same origin then they share the same first edge. The notion
of an a-left-closingautomaton is defined similarly whena is
a nonnegative integer. Note that a deterministic automatonis
1-right-closing.

We say that an automaton isalmost of finite type(AFT) if it
is an irreducible and synchronizing automaton that ism-right-
closing anda-left-closing for some integersm and a. Note
that any irreducible local automaton is AFT. A deterministic
automaton is AFT if and only if it is left-closing and has a
synchronizing word. A sofic shift that can be presented by an
AFT automaton is said to bealmost of finite type.

Examples of a local automaton and of a non-AFT automaton
are given in Figure 1 and Figure 2.

1 2

a b
b

a

Fig. 1. A (0, 1)-local automaton.

1 2

a a
b

b

Fig. 2. A non-AFT automaton. It is both right-closing and left-closing but
it is not synchronizing.

III. M INIMISATION OF DETERMINISTIC AFT AUTOMATA

A. Minimisation by a sequence of state mergings

Let A = (Q, E) be a deterministic automaton. It is known
that, whenA is irreducible, the shift presented byA has a

minimal deterministic irreducible automaton called theright
Fischer coverof the shift (see for instance [12], [11], [4]). It
is unique up to a renumbering of its states. It can be obtained
from A by computing the Nerode partition of the states: two
statesp, q belong to the same class of this partition if and only
if they have the same future, i.e.,F (p) = F (q), whereF (s) =
{u ∈ A∗ | there is a path froms labeled byu in A}.

We say that two statesp and q of A can bemerged if
(p, a, r) ∈ E is equivalent to(q, a, r) ∈ E. A state merging
identifies two mergeable states.

In general, it is not true that a deterministic non-minimal au-
tomaton has mergeable states (see the automaton of Figure 2).
However, this property is true for the class of deterministic
AFT automata. As a consequence, it is possible to minimize
such automata by a sequence of state mergings.

The following lemma from [3, p.41] provides a efficient
characterization of a left-closing automata. Efficient charac-
terizations of AFT shifts where obtained by Boyle, Kitchens,
and Marcus [5] and by Nasu [14].

The lemma uses the notion of product of two automata
defined as follows. The product of the automatonA by itself
is the automatonA2 = A × A = (Q × Q, F ) where
((p, q), a, (r, s)) ∈ F if and only if both (p, a, r) ∈ E and
(q, a, s) ∈ E.

Lemma 1:The automatonA is left-closing if and only if
the automatonA2 has no cycle going through a state(p, q),
p 6= q, which is co-accessible from a state of the form(r, r).

The following proposition already appeared in [3, Proposi-
tion 2.16 p.60].

Proposition 2: If a deterministic AFT automatonA is not
minimal, then at least two of its states can be merged.

Proof: Assume that no two states ofA can be merged,
and letp andq be two distinct states having the same future.

Let C be the set of states ofA2 accessible from(p, q). Since
p and q have the same future, any statesr, s such that(r, s)
is in C also have the same future. We construct an infinite
sequence(pi, qi)i≥0 (pi 6= qi) of states inC defined as follows.
We choose(p0, q0) = (p, q). Hencep0 6= q0. For i ≥ 1, since
pi andqi cannot be merged, for some letterai, (pi−1, ai, r) and
(qi−1, ai, s) are edges withr 6= s. We choose(pi, qi) = (r, s).
HenceC contains a cycle of states(r, s) with r 6= s. Let (r, s)
be a state on this cycle.

SinceA is irreducible and synchronizing, there is a path
starting atr labeled byw, wherew is a synchronizing word.
SinceF (r) = F (s), there is a path inA2 starting from(r, s)
and labeled byw. This path ends in a state(t, t) sincew is
synchronizing. This contradicts the fact thatA is left-closing
by Lemma 1, which ends the proof.

B. First step of the algorithm: building a tree

We describe below a minimisation algorithm that applies
to deterministic AFT automata, and hence to irreducible de-
terministic local automata. The parameters of the algorithm
are the numbern of states of the automatonA = (Q, E), its
numberm of edges, the sizek of the underlying alphabet, and



the numberr of states of the minimal automaton. Of course,
m ≤ kn since the automaton is deterministic.

We assume thatA = {a1, a2, . . , ak} are that the letters are
ordered:a1 < a2 < · · · < ak. We associate with each state
p ∈ Q = {1, 2 . . , n} its signatureσ(p) = a1p1a2p2 . . alpl,
where(p, a1, p1), . . , (p, al, pl) are the edges starting fromp
in lexicographic order. Apartial signatureof statep is a prefix
a1p1a2p2 . . arpr of its signature.

In the first step of the algorithm we build a tree representing
the set of all signatures. Is is called thesignature trie.
Denoted byT , it is defined as follows. Each node represents
the set of states whose partial signature isa1p1a2p2 . . arpr.
The root of the tree represents the set of all states. Anarc
labeled byar+1pr+1 links the node associated with the partial
signaturea1p1a2p2 . . arpr to the node associated with the
partial signaturea1p1a2p2 . . ar+1pr+1. The leaves of the trie
are the nodes associated with a complete signature. Each leaf
contains the set of states having this signature.

The trie can be constructed after a lexicographical sort of
the signatures. This technique is analogue to the multiset
discrimination described in [15], [6], which avoids using
hashing. It is used in [17] to minimize acyclic automata.

The structure of a nodex of the trie is the following. It
contains the (non-sorted) listsucc(x) of the arcs leavingx.
The list is indexed by all(a, p) for which ap is the label
of some arc of the trie. We denote bysucc(x)(a, p) the arc
labeled byap originated fromx. It contains the address of
its target node. Thesizeof a node of the trie is the number
of states contained in the leaves of the subtree rooted at this
node.

In addition to the trieT , we also maintain a non-sorted list
arc, indexed by all(a, p) such thatap is the label of some
arc of the trie, and such thatarc(a, p) is the list of all arcs
labeled byap contained in some listsucc(x)1. We also assume
that each arc fromx labeled byap contains the address of the
element inarc(a, p) pointing to it. We denote bysize(a, p) the
size of the listarc(a, p). It is defined as the sum of sizes of all
the target nodes of arcs labeled byap. Hence it is the number
of states of the automaton with an outgoing edge labeled by
a and ending inp. The implementation of the listssucc(x),
arc, andarc(a, p) is described in Section III-D. A sparse list
implementation is used for the listssucc(x) and arc. All the
data structures lead to an efficient update of the trieT after
two states are merged, as described in the next section.

An example of a deterministic AFT-automatonA is given
in Figure 3. Its minimal automaton is displayed in Figure 4
and its initial signature trie is shown in Figure 5.

C. Second step of the algorithm: updating the tree

The second step of the algorithm can be shortly described
as follows. The signature trie allows one to detect easily a pair
(x, y) of states with the same signature (i.e. , with the same
outputs). Indeed,x andy belong to a same leaf in this case.
Then the statesx and y are merged. Hence the signatures

1Actually, in the implementation,arc(a, p) is the list of addresses of all
nodesx such thatsucc(x) contains an arc labeled byap.

3 5

2 4

1 6

b
a

b

b
a

d

b

d

c

a

a

a

c

a

Fig. 3. A deterministic AFT automaton.

2 4

5 6

1 3

b

a, b

d

a

a

c

Fig. 4. The minimal automaton corresponding to the automaton of Figure 3.

containingx or y have to be updated inside the trie. This
update is the delicate point of the algorithm.

For each lettera ∈ A, we denote byIm(a) the set of states
of A ending edges labeled bya. For each lettera, we maintain
the partition ofIm(a) for which two states ofIm(a) having
already been merged belong to a same class. Each class has
a leader. Assume that the statesx and y have to be merged
and both belong toIm(a). Let p (resp. q) be the leader of
the class ofx (resp.y). We keepq as the new leader of the
union class whenthe number of edges labeled bya and ending
in p is smaller than the number of edges labeled bya and
ending inq. This smaller-half strategy, applied for each letter,
will guarantee the overall running time of the algorithm. The
edges labeled bya and ending inp are then changed into
edges labeled bya and ending inq.

We update the edges ending inp for each letterai in the

1

2 3 4

5 6 7 8 9

10

3 6 1 5

2 4

a2
a4

a6

b4 d1 b2 d3 b2

c5

Fig. 5. The initial signature trie of the automaton of Figure3. It is rooted at
the node1. Only one leaf contains more than one state, namely states2, 4.
They have the same signaturea6b2c5.



decreasing order of theai. Once this update is done, the same
process is iterated until no more pair of states with the same
outputs is detected.

In order to change all edges labeled bya and ending in
p into edges labeled bya and ending inq, the procedure
MERGE(a, p, q) updates the nodesx having an outgoing arc
e labeled byap. Two cases may appear according to whether
x has no arc labeled byaq or it has an arcf labeled byaq.
In the former case, its arce becomes an arc labeled byaq

and the listsarc(a, p), arc(a, q) are changed accordingly. In
the latter case, the procedure FUSION(x1, x2), wherex1 (resp.
x2) is the target ofe (resp.f ), makes a fusion of the subtrees
rooted atx1 andx2 by insertingx1 into x2. The procedures
MERGE and FUSION are described below.

The main procedure is the procedure MINIMISATION -AFT-
AUTOMATON which starts with the initial trie construction and
sets up the listsarc. The leaves of the trie are then scanned. For
each leaf of size greater than one containing statesq1, . . . , ql,
each pair(qi, qi+1), 1 ≤ i ≤ l − 1, is pushed onto a stack
denotedtoMerge. This stack contains pairs of states to be
merged.

MERGE (a, p, q)
1. for each arce in arc(a, p) do
2. let x be the node origin ofe
3. if x has no arc labeled byaq then
4. change the label ofe into aq
5. transfer it fromarc(a, p) to arc(a, q)
6. else(x has an arcf labeled byaq)
7. let x1 be the target ofe andx2 be the target off
8. remove the arce from succ(x) and fromarc(a, p)

10. FUSION(x1, x2)

FUSION (nodex1, nodex2)
1. if x1 andx2 are leavesthen
2. let s be a state inx1 and t a state inx2

3. push(s, t) onto the stacktoMerge
4. concatenate the list of states inx1 to the one inx2

5. else
6. for each arce labeled byap in succ(x1) do
8. if x2 has no arc labeled byap do
9. transfer the arce from succ(x1) to succ(x2)

10. else(x2 has an arcf labeled byap)
11. let y1 (resp.y2) be the target ofe (resp.f )
12. FUSION(y1, y2)

In the minimisation procedure described below,
CLASS(a, x) denotes a call to the procedure computing
the leader of the class ofx for the lettera.

M INIMISATION -AFT-AUTOMATON (A = (Q, E),
A = {a1, . . , ak})
1. build the signature trieT and the listsarc
2. for each leaf(p1, p2, . . , pl) of T do
3. push(pi, pi+1) onto the stacktoMerge for 1 ≤ i ≤ l − 1
4. computesize(a, p) the size of each listarc(a, p)
5. while the stacktoMerge is non-emptydo
6. remove a pair(x, y) from toMerge
7. for i from k downto1 do
8. if x andy belong toIm(ai) then
9. let (p, q)←(CLASS(ai, x),CLASS(ai, y))

10. if size(ai, p) ≤size(ai, q) then
11. q becomes the leader of the union

12. of the classes ofp andq for the letterai

13. MERGE(ai, p, q)
14. else
15. p becomes the leader of the union
16. of the classes ofp andq for the letterai

17. MERGE(ai, q, p)
18. return T

D. Complexity of the algorithm

We analyze the complexity of the algorithm. The initial
signature trie and the listsarc are built in timeO(m) using
radix sort for sorting the list whose elements belong to
the integer interval[1, 2, . . . , n]. The implementation of lists
arc and succ(x) for all nodesx is done with a sparse list
implementation (see [2] Exercise 2.12 p. 71 and [8] Exercise
1.14 “Implantation de fonctions partielles” Chapter 1). These
lists are indexed by(a, p) whereap is the label of some arc
of the trie. As a consequence, it is possible to find, add, or
remove an arc in a listsucc(x) or in a list arc in time O(1).
Initialization is done in constant time too. The space required
for the implementation isO(kn2).

It remains to evaluate the time complexity of all updates.
Assume that the statesx andy in Im(a) have to be merged.
Classes of the partition ofIm(a) are implemented as trees
where the leader of the class is at the root of the tree. A se-
quence ofm Union-Find operations with path compression [7]
is performed in timeO(m min{α(m), log n}), whereα is the
inverse of the Ackermann function. Let us denote byp (resp.q)
the leader of the class ofx (resp. the class ofy). Assume that
the number of edges labeled bya and ending inp is smaller
than the number of edges labeled bya and ending inq. Then
q becomes the leader of the union of the two classes. The arcs
of the trie labeled byap are changed into arcs labeled byaq

through the procedure MERGE(a, p, q). The time complexity
of this call is proportional to the size of the subtrees rooted
at the targets of all arcs of the trie labeled byap. Up to a
multiplicative constant, it is at most the number of leaves of
these subtrees, that is,size(a, p), which is equal to the number
of edges labeled bya and ending inp in the automaton.
Sincesize(a, p) is no more thansize(a, q) before the merging
operation,size(a, q) after the merging has at least twice the
size ofsize(a, p) before the merging. Hence each edge labeled
by a is changed at mostlog n times. Furthermore, ifn− r is
the number of pairs of states being merged, each edge can be
changed also at mostn− r times. Hence the cost of all these
updates for all letters isO(min(m log n, m(n + 1 − r))). As
a consequence, we get the following proposition.

Proposition 3: The overall running time of the procedure
M INIMISATION is O(min(m log n, m(n + 1 − r))), wherer

is the number of states of the minimal automaton.
The execution of the algorithm on the automaton of Figure 3

is described in Figure 6. The forestsFa, Fb, Fc, and Fd

corresponding to the partitions ofIm(a), Im(b), Im(c), and
Im(d) respectively, are represented in Figure 8. The listsarc
are described in Figure 7.



(a)

1

2 3 4

5 6 7 8 9

10

3 6 1 5

2 4

a2
a4

a6

b2 d1 b2 d3 b2

c5

(b)

1

3 4

6 7 8 9

10

6 1, 3 5

2 4

a4 a6

d1 b2 d3 b2

c5

(c)

1

3 4

7 8 9

10

1, 3 5, 6

2 4

a4 a6

b2 d3 b2

c5

Fig. 6. Updates of the signature trie of Figure 5. The initialtrie is given in
Figure 5. (a) After updating arcs labeled byb. (b) After updating arcs labeled
by a. This is the result of merging2 and 4. (c) Result of merging1 and
3: update of the arcs labeled byd. The merging of states5 and 6 does not
change the trie. The leaves of the trie correspond to the states of the minimal
automaton of Figure 4.

arc step 1 step 2 step 3 step 4
a2 1(1) −
a4 1(3) 1(4)
a6 1(2) 1(2)
b2 3, 4(3) 3, 4, 2(4) 3, 4(4) 3, 4(4)
b4 2(1) −
c5 9(2)
d1 3(1) −
d3 3(1) 3(2)

Fig. 7. The listsarc during the four steps (step 1 corresponds to the initial
trie of Figure 5, step 2 to Figure 6 (a), step 3 to Figure 6 (b), and step 3 to
Figure 6 (c)). The size of each listarc(a, p) is given in parenthesis. Each list
arc(a, p) contains the addresses of the nodesx of the trie for whichsucc(x)
contains an arc labeled byap.

Fd Fc Fb Fa

3
↓
1

5
2
↓
4

4
↓
2

6

Fig. 8. The forestsFa, Fb, Fc andFd correspond to the partitions ofIm(a),
Im(b), Im(c), and Im(d) respectively at the end of the execution.

REFERENCES

[1] R. L. ADLER, D. COPPERSMITH, AND M. HASSNER, Algorithms for
sliding block codes, IEEE Trans. Inform. Theory, IT-29 (1983), pp. 5–
22.

[2] A. V. A HO, J. E. HOPCROFT, AND J. D. ULLMAN , The Design and
Analysis of Computer Algorithms, Addison Wesley, 1974.

[3] M.-P. BÉAL, Codage symbolique, Masson, 1993.
[4] M.-P. BÉAL AND D. PERRIN, Symbolic dynamics and finite automata, in

Handbook of formal languages, Vol. 2, Springer, Berlin, 1997, pp. 463–
505.

[5] M. B OYLE, B. P. KITCHENS, AND B. H. MARCUS, A note on minimal
covers for sofic shifts, Proc. Amer. Math. Soc., 95 (1985), pp. 403–411.

[6] J. CAI AND R. PAIGE, Using multiset discrimination to solve lan-
guage processing problems without hashing, Theoret. Comput. Sci., 145
(1995), pp. 189–228.

[7] T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN,
Introduction to algorithms, MIT Press, Cambridge, MA, second ed.,
2001.

[8] M. CROCHEMORE, C. HANCART, AND T. LECROQ, Algorithmique du
texte, Vuibert, 2001. 347 pages.

[9] J. E. HOPCROFT, An n log n algorithm for minimizing states in a finite
automaton, in Theory of Machines and Computations, Z. Kohavi, ed.,
Academic Press, New York, 1971, pp. 189–196.

[10] R. KARABED AND B. H. MARCUS, Sliding-block coding for input-
restricted channels, IEEE Trans. Inform. Theory, IT-34 (1988), pp. 2–26.

[11] B. P. KITCHENS, Symbolic Dynamics: one-sided, two-sided and count-
able state Markov shifts, Springer-Verlag, 1997.

[12] D. A. L IND AND B. H. MARCUS, An Introduction to Symbolic Dynam-
ics and Coding, Cambridge University Press, Cambridge, 1995.

[13] B. H. MARCUS, Sofic systems and encoding data, IEEE Trans. Inform.
Theory, 31 (1985), pp. 266–377.

[14] M. NASU, An invariant for bounded-to-one factor maps between transi-
tive sofic subshifts, Ergodic Theory Dynam. Systems, 5 (1985), pp. 89–
105.

[15] R. PAIGE AND R. E. TARJAN, Three partition refinement algorithms,
SIAM J. Comput., 16 (1987), pp. 973–989.

[16] M. PERLES, M. O. RABIN , AND E. SHAMIR , The theory of definite
automata, IEEE Trans. Electronic Computers, EC-12 (1963), pp. 233–
243.

[17] D. REVUZ, Minimisation of acyclic deterministic automata in linear
time, Theoret. Comput. Sci., 92 (1992), pp. 181–189. Combinatorial
Pattern Matching School (Paris, 1990).


