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Abstract— We study the class of periodic-finite-type (PFT) shift
spaces, which can be used to model time-varying constrained
codes used in digital magnetic recording systems. A PFT shift is
determined by a finite list of periodically forbidden words. We
show that the class of PFT shifts properly contains all finite-type
(FT) shifts, and the class of almost finite-type (AFT) shifts prop-
erly contains all PFT shifts. We establish several basic properties
of PFT shift spaces of a given period T, and provide a charac-
terization of such a shift in terms of properties of its Shannon
cover (i.e., its unique minimal, deterministic, irreducible graph
presentation). We present an algorithm that, given the Shannon
cover G of an irreducible sofic shift X, decides whether or not
X is PFT in time that is quadratic in the number of states of
G . From any periodic irreducible presentation of a given period,
we define a periodic forbidden list, unique up to conjugacy (a
circular permutation) for that period, that satisfies certain mini-
mality properties. We show that an irreducible sofic shift is PFT
if and only if the list corresponding to its Shannon cover G and
its period is finite. Finally, we discuss methods for computing
the capacity of a PFT shift from a periodic forbidden list, either
by construction of a corresponding graph or in a combinatorial
manner directly from the list itself.

Index Terms— Shift spaces, sofic system, constrained code,
finite-type, capacity of constrained system, periodic constraint.

I. INTRODUCTION

D IGITAL data storage systems based upon magnetic and
optical recording typically use constrained modulation

codes designed to efficiently avoid sequences that are prob-
lematic to data recording and retrieval [1].

The family of (d, k)-constrained run-length limited (RLL)
codes over the binary alphabet {0, 1} is a well known exam-
ple. The code sequences satisfy the constraint that the number
of 0s between consecutive 1s in a sequence is at least d and no
more than k. The purpose of these constraints is to aid in tim-
ing recovery and to limit intersymbol interference. The (d, k)-
RLL constraint is characterized by a finite list of forbidden
words. For example, the (1, 3)-RLL sequences are precisely
those in which neither of the words {11, 0000} appears. Such
constraints are called finite-type (FT).

Another widely used family of codes are the c-charge con-
strained codes over the bipolar alphabet {±1}. Here, the code
sequences limit the running-digital-sums of subsequences to a
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range of c > 2 consecutive integer values. These codes, of-
ten called dc-free, ensure that the average power spectral den-
sity of code sequences vanishes at zero frequency. In contrast
to the (d, k)-RLL constraint, the c-charge constraint cannot
be characterized by a finite list of forbidden words. However,
these constraints can be specified by a countably infinite set of
forbidden words. They are representative of constraints called
almost finite-type (AFT).

During the past decade, advances in digital recording have
led to the introduction of constrained codes that are described
by time-varying constraints. An important example is the fam-
ily of Time-varying Maximum Transition Run codes with pa-
rameters ( j, j + 1), denoted TMTR( j, j + 1). These codes con-
strain the run-lengths of 1s to be at most j starting at odd
time indices and j + 1 beginning at even time indices [2],
[3], [4], [5]. These codes were developed for systems employ-
ing higher-order partial-response equalization and maximum-
likelihood sequence detection. For selected partial-response
target channels, they are distance-enhancing codes; that is,
they eliminate bit patterns occurring in the dominant error
events of the target-matched sequence detector [6], [7], [8]. Re-
cently, generalized TMTR codes, which limit maximum run-
lengths of 1s beginning at more than two phases, have also
been studied [9].

Time-varying constraints also arise in the context of con-
strained codes with unconstrained positions, introduced in [10]
and further studied in [11], [12], [13]. These codes permit
the insertion of parity bits generated by a systematic error-
correcting code into specified bit locations in a constrained
code sequence, thereby efficiently combining the modulation
and error correction functions of the two codes.

In general, these time-varying constraints are not FT, but
they all have the property that they can be specified by a finite
list of periodically forbidden words. The study of such time-
varying constrained systems was initiated in [14], [15], where
they were called periodic-finite-type (PFT). The purpose of
this paper is to present a detailed analysis of their properties.

Section II reviews necessary concepts, terminology, and no-
tation for use in the rest of the paper.

In Section III, we formulate the definition of PFT constraints
in terms of shift spaces, and address their characteristics within
the framework of symbolic dynamics. We study basic prop-
erties of PFT shifts that are characterized by a finite periodic
list of forbidden words for a given period T. We refer to such
shifts as PFT(T) shifts, and we say that a shift is PFT if, for
some period T > 0, it is PFT(T). We show that PFT shifts
are sofic, and we demonstrate that the family of PFT shifts
properly contains the family of FT shifts and is properly con-
tained within the family of AFT shifts [16]. We also explore
the periods T for which a PFT shift can be PFT(T).

Section IV gives several characterizations of an irreducible
PFT shift in terms of its graph presentations. In particular,
we give a necessary and sufficient condition for an irreducible
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sofic shift to be a PFT(T) shift, based upon properties of its
Shannon cover (i.e., its unique minimal, deterministic, irre-
ducible graph presentation) [17]. This leads to an algorithm
that, when presented with the Shannon cover G of an irre-
ducible sofic shift, decides in time quadratic in the number of
states of G if the shift is PFT.

In Section V, we study periodic forbidden lists that offer a
concise description of a PFT shift. From an irreducible pre-
sentation with period T, we derive a periodic forbidden list
that satisfies a minimality property for the chosen period T.
We prove that the list, up to a permutation of the time indices,
is unique and independent of the choice of the presentation
with period T. The notion of minimality, as well as the defini-
tion of the list, are directly inspired by the construction of the
set of first offenders of a FT shift [18], [16], so we refer to
the periodic forbidden list as the set of periodic first offenders
for the period. We then consider the periodic first offenders
corresponding to the Shannon cover and the period of its un-
derlying graph. We prove that an irreducible sofic shift is PFT
if and only if this list is finite.

We define the size of a periodic forbidden list to be the sum
of the lengths of its words. We prove that the minimum size
over all periodic forbidden lists for all periods is attained by a
periodic forbidden list for a period dividing the period of the
graph underlying the Shannon cover.

Finally, in Section VI we discuss methods for computing the
capacity of a PFT shift from a periodic forbidden list descrip-
tion of the shift. The conventional method for computing the
capacity of a sofic shift is based upon determining the largest
real eigenvalue of the adjacency matrix of a lossless presenta-
tion of the system. We review a number of techniques, several
of which are formulated in terms of the theory of finite au-
tomata, for constructing such a presentation from a finite list
of periodically forbidden words.

We then present a quite different method which relies upon
the Inclusion-Exclusion Principle [19], [20] from enumerative
combinatorics. It extends to PFT shifts the technique presented
by Pimentel and Uchôa-Filho in [21] for computing the ca-
pacity of FT shifts from a finite list of forbidden words. It
appears to be quite effective when the size of the periodic for-
bidden blocks is large compared to the number of blocks in
the list, as is the case for some TMTR constraints.

Section VII concludes the paper.

II. BACKGROUND AND TERMINOLOGY

In this section we review terminology and background re-
sults to be used in the remainder of the paper. The notation in
Sections II-A and II-B follows that found in the text by Lind
and Marcus [16], and a thorough presentation may be found
there. Section II-C contains terminology on finite automata rel-
evant to the construction procedures in Section VI-A. A more
detailed exposition on automata may be found in [22].

A. Shift Spaces

Let ΣZ denote the set of bi-infinite sequences

x = . . . x−3x−2x−1x0x1x2 . . .

whose symbols are drawn from a finite alphabet Σ,

ΣZ def= {x|xi ∈ Σ, ∀i ∈Z}.

A word or block w∈Σn, for some integer n, is a finite string
of consecutive symbols. We say that w is a subword, subblock,
or factor of the sequence x, or equivalently that x contains w,
if w = xixi+1 . . . xi+n−1 for some index i. We denote this
fact by w ≺i x. To conveniently specify the position of a
word within a sequence, we write

x[i, j]
def= xixi+1 · · · x j,

where i � j. We sometimes write x[i] to denote xi. When
the context is clear, we will use similar concepts and notation
when x denotes a word.

Let Σ∗ be the collection of words over Σ, including the
empty word, and let Σ+ denote the subset of non-empty words
in Σ∗. The length of a word, |w|, is the number of symbols in
w, and we refer to a block of length n as an n-block The shift
map σ takes a sequence x to the sequence y = σ(x) with ith
coordinate yi = xi+1. The inverse of the shift map takes a
sequence y to x = σ−1(y) with ith coordinate xi = yi−1.

When speaking of a finite collection of words F , we say
that F is anti-factorial or non-redundant if no word u∈F is
a factor of any word w∈F with u �= w.

Let F be a collection of words over Σ and XΣF denote the
subset of ΣZ consisting of all bi-infinite sequences that do not
contain a word from F . In this context F is referred to as a
forbidden list. A shift space is a set X = XΣF . This terminology
reflects the fact that X is invariant under the operation of the
shift map, i.e., σ(X) = X. A shift space is a shift of finite
type if there exists a finite set F such that X = XΣF .

Let Bn(X) denote the set of all length-n words that occur as
factors of sequences in X. The language of X is the collection

B(X) def=
∞⋃

n=0

Bn(X),

where B0(X) = {ε}, and ε denotes the empty word. The
language of a shift space determines the space [16, Proposition
1.3.4]. That is, a bi-infinite sequence x belongs to the shift
space X if and only if all of its sub-blocks belong to B(X).
Considering BN(X) as an alphabet, the Nth higher power
code γN : X → (BN(X))Z is the mapping

(γN(x))[i] = x[iN,iN+N−1],

which takes a sequence from X and breaks it into a sequence of

non-overlapping N-blocks. The image of X under γ N , XN def=
γN(X), is the Nth higher power shift of X.

Let X be a shift space over Σ, and let Ψ : Bm+a+1(X) →
Γ be a mapping from allowed (m + a + 1)-blocks in X to
symbols in an alphabet Γ . The sliding block code with memory
m and anticipation a induced by Ψ is the mapping ψ : X →
ΓZ defined by

y = ψ(x),

where, for x∈X,

yi = Ψ(x[i−m,i+a]).
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A sliding block code ψ : X → Y is a conjugacy from X
to Y if it is invertible. The shifts X and Y are conjugate if
Y = ψ(X) and ψ is a conjugacy.

B. Sofic Shifts

A labeled directed graph G = (G,L) consists of a directed
graph G = (V , E) with a finite set of states V = V(G), a
finite set of directed edges E = E(G) connecting the states,
and a labeling L : E → Σ that assigns a label to each edge.
Each directed edge e has an initial state, i(e) and a terminal
state t(e). A path in the graph is a finite sequence of edges
π = e1e2 · · · eN such that t(e j) = i(e j+1). The initial state
of a path π = e1e2 · · · eN is defined as i(π) = i(e1), and
the terminal state is defined as t(π) = t(eN). A path is a
cycle if i(π) = t(π). The label of π is the word L(π) =
L(e1)L(e2) . . .L(eN).

Whereas a path is finite, a walk on G is a bi-infinite se-
quence of edges ξ = · · · e−1e0e1 · · · such that t(e j) =
i(e j+1). The label of a walk is the sequence

L∞(ξ) def= · · · L(e−1)L(e0)L(e1) · · · .

A graph G is irreducible if for any pair of states I, J ∈V
there exists a path with i(π) = I and t(π) = J. An irre-
ducible component of a graph G is a maximal (with respect
to inclusion of vertices) irreducible subgraph of G.

A vertex I ∈V is stranded if either no edges start at I or
no edges terminate at I. A graph is essential if no vertex is
stranded.

A graph has local anticipation a if a is the smallest non-
negative integer such that, for each I ∈V , all paths of length
a + 1 that start at i and have the same label start with the same
edge. Similarly, a graph has local memory m if m is the small-
est nonnegative integer such that, for each I ∈V , all paths of
length m + 1 that end at i and have the same label end with
the same edge. A graph is deterministic if it has local antici-
pation 0, i.e., if edges with the same initial state have distinct
labels.

A graph is (m, a)-definite if, given any word w = w [−m,a],
the set of paths π = e−m . . . e0 . . . ea that generate w all agree
in the edge e0. If a graph is (m, a)-definite for some integers m
and a, it is said to be definite. An irreducible graph is definite
if and only if no two distinct cycles generate the same word
(see, for instance, [23, Prop. 2.4]). An (m, 0)-definite graph
is said to be finite-memory.

A sofic shift XG is the set of bi-infinite sequences obtained
by reading the labels of walks on G,

XG
def= {x |L∞(ξ) = x for some ξ a walk on G }.

We say that G is a presentation or cover of XG , or G presents
XG . A sofic shift is irreducible if it has an irreducible presen-
tation. The set of finite words generated by paths in G, denoted
S(G), is called a constrained system, and similar terminology
is used in that context.

Let G be a deterministic graph. For any word u∈B(XG),
we denote by τ(u) the set of terminal states of all paths with
label u. If the cardinality of τ(u) is 1, then u is called a

synchronizing word, and it is said to focus to the single state
in τ(u).

An irreducible sofic shift is almost-finite-type (AFT) if it
has a presentation with finite local anticipation and finite local
memory. Since every sofic shift has a deterministic presenta-
tion [16, Theorem 3.3.2], a sofic shift is AFT if and only if it
has an irreducible, deterministic presentation with finite local
memory.

Sofic shifts are shift spaces [16, Theorem 3.1.4]. Hence, for
every XG there exists a forbidden list, F , of words over Σ
such that XG = XΣF .

There is a unique, up to labeled graph isomorphism, deter-
ministic graph presenting an irreducible sofic shift with the
minimal number of states [16, Theorem 3.3.18]. This graph is
referred to as the Shannon cover of the shift. It is also called
the Fischer cover. One can obtain the Shannon cover from
any presentation via determinizing and state-minimizing algo-
rithms, e.g., [16, pp. 92], [22, pp. 68]. A Shannon cover always
has at least one synchronizing word [17]. An irreducible sofic
shift is FT (resp. AFT) if and only if the Shannon cover is
definite (resp. has finite local memory) [17].

The follower set FG(I) of state I in V is the collection of
labels of paths starting at I,

FG(I) def= {L(π)|L(π)∈B(XG) and i(π) = I}.

Note that for a graph, G,⋃
I ∈ V(G)

FG(I) = B(XG).

The follower set of a collection of states is simply the union
of their respective follower sets. The Nth higher power graph
GN = (GN ,LN) of G is the labeled graph with underlying
graph GN and the naturally induced labeling LN . Specifically,
the vertex set is V(GN) = V(G), and there is one edge eπ
in E(GN) from I to J with label LN(eπ ) = L(π) for each
path π of length N from I to J in G. The Nth higher power
graph presents the Nth higher power shift, XGN = (XG)N .

For I, J ∈V , let AIJ denote the number of edges from I to
J in G. The adjacency matrix of G is the |V| × |V| matrix
AG = [AIJ ].

Given a nonnegative matrix A, the period of state I, per(I),
is the greatest common divisor of those integers n � 1 for
which (An)I I > 0, if such integers exist. Otherwise, we define
per(I) = ∞. The period per(A) of A is defined as the greatest
common divisor of the finite periods per(I), or as ∞ if none
of the state periods per(I) is finite. The period of a graph,
per(G), is the period of its adjacency matrix. It is the same
as the greatest common divisor of the lengths of cycles in G.
The periods of the states in an irreducible graph are equal.
For a labeled graph G = (G,L), the period of G is defined
as per(G).

Let G be a labeled graph. If p is a positive integer, a coloring
of G in p colors, or a p-coloring for short, is a function c from
V(G) to {0, 1, . . . , p− 1} such that, whenever there is an edge
from a state I to a state J, c(J) = c(I) + 1 mod p. Note that
an irreducible presentation has a coloring in p colors if and
only if its period is a multiple of p.
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We say that a graph G is T-partite if the vertices of G may
be divided into T disjoint subsets D0, D1, . . . , DT−1 such that
any edge that begins in Di terminates in D(i+1) mod T . If G
is irreducible and per(G) = T then G is T-partite, and the
sets D0, D1, . . . , DT−1 are referred to as the period classes of
the graph.

The T-cascade of a graph G is the T-partite graph with
vertex set given by T copies V0, V1, . . . , VT−1 of the vertex set
V(G) and exactly one edge e from I ∈V i to J ∈V(i+1) mod T
for each edge e from I to J in G. For a sofic shift XG presented
by G = (G,L), the T-cascade of G is the shift presented by
the T-cascade of G with the natural labeling induced by L.

If G = (G,L) is irreducible with per(G) = p, then
GT = (GT,LT) decomposes into q = gcd(p, T) irreducible
components. Moreover, it is easy to verify that each compo-
nent has period p/q.

C. Finite Automata

A language over Σ is a subset L ⊆ Σ∗. A finite automaton
M is defined by a quadruple M = (G ,Σ, I0, F), where Σ
is the input alphabet, G = (V, E,L) is a finite-state labeled
graph, I0 ∈V is the initial state, and F ⊆ V is the set of final
states. Elements of F are accepting states of the automaton;
any other state is a non-accepting state.

An automaton is deterministic if G is deterministic. A word
w is accepted by automaton M = (G ,Σ, I0, F) if there exists
a path π on G with i(π) = I0, t(π)∈ F, and L(π) = w.
The language accepted by the automaton, L(M), is the set of
words accepted by the automaton. A regular language (or set)
is a language accepted by a finite automaton. In a deterministic
automaton, there exists a unique path from the initial state to
an accepting state that generates each w∈ L(M).

There is a natural correspondence between languages of
sofic shifts and regular languages. The language of a sofic
shift is a regular language [16], [18, A.12]. However, not all
regular languages are languages of sofic shifts. In particular,
if M = (G ,Σ, I0, F), then L(M) does not necessarily equal
B(XG). Simple counter-examples may be constructed from
graphs with initial or final states that are stranded.

III. PERIODIC-FINITE-TYPE (PFT) SHIFT SPACES

In this section we formally introduce the class of periodic-
finite-type (PFT) shift spaces and study their relationship to
FT shifts and AFT shifts.

A. Periodic Forbidden Words

In Section II-A, we defined a shift space in terms of a for-
bidden list F . Here, we will define a sequence space in terms
of a set of periodically forbidden words. A subtlety is required
in the definition to ensure shift invariance.

The notion of periodically forbidden words [14] general-
izes the notion of minimal forbidden words (or minimal for-
bidden factors) of a bi-infinite sequence (see for instance
[24], [25], [26]).

Let Σ be a finite alphabet. Let T be a positive integer (the
period), and let F = (F0,F1, . . . ,FT−1) be a list of T pos-
sibly empty sets of finite-length words. The list is said to be
regular (resp. finite) if all its sets are regular (resp. finite) sets.

Let X0 be the set of bi-infinite sequences x over Σ such
that, for each integer i, one has

u ≺i x ⇒ u /∈ Fi mod T .

Hence, at position i, the bi-infinite sequence x avoids the
words in Fi mod T , for all i. A word f ∈Fi is said to have
phase equal to i, and we sometimes denote such a word to-
gether with its phase by ( f , i). The set of all bi-infinite se-
quences obtained by all integer shifts of the bi-infinite se-
quences in X0 defines a subshift X. The list F is called a
periodic forbidden list of the shift X for the period T. Note
that the definition of X depends on the choice of the alphabet
Σ.

More formally, we have the following definition.

Definition 1. Given a period T and a periodic forbidden list
F = (F0,F1, . . . ,FT−1), The shift X = XΣ{F ,T} is defined
as the set of all bi-infinite sequences x over the alphabet Σ such
that there exists some integer k∈ [0, T − 1] with the property
that the k-shifted sequenceσ k(x) satisfies

u ≺i σ
k(x) ⇒ u /∈ Fi mod T

for every integer i. Note that k may depend upon x.

Shift invariance of X = XΣ{F ,T} is an immediate conse-
quence of the definition. Sometimes we will use the simpler
notation X{F ,T} or XF to denote the shift X when the context
prevents any confusion.

Proposition 1. A shift is a sofic shift if and only if it has a reg-
ular periodic forbidden list for any period.

Proof. Let X be a sofic shift over a finite alphabet Σ. Hence
B(X) is a regular language. For any positive integer T, the list
F defined by Fi = Σ∗ − Σ∗B(X)Σ∗, for any 0 � i � T − 1,
is a regular periodic forbidden list of X for the period T.

Conversely, supppose X = X{F ,T} for a period T where
Fi is a regular language for any 0 � i � T − 1. Let G
be a finite-state automaton accepting the regular language
W = Σ∗ − ∪T−1

i=0 (ΣT)∗ΣiFiΣ
∗. The finite-state labeled graph

obtained from this automaton by removing the non-final states
of G and by keeping its essential part (i.e. the states belong-
ing to a bi-infinite path) is a presentation of the shift X. Note
that if the essential part is empty, then the shift is empty and
thus sofic.

It follows from the definition that the list

F′ = (FT−1,F0, . . . ,FT−2)

formed by adding one, modulo T, to the phase of each ( f , i)
pair in F , satisfies X{F ,T} = X{F′ ,T}. We refer to the peri-
odic forbidden lists obtained by repeated application of this
procedure as the conjugates of the list F .

B. PFT Shifts

A shift space X is periodic-finite-type (PFT) for a positive
integer period T if it can be described as X = XΣ{F ,T}, where
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F is a finite periodic forbidden list F = (F0,F1, . . . ,FT−1).
We say that such a shift X is PFT(T). Note that a shift is finite-
type if and only if it is PFT(1).

Example 1 Consider the PFT sofic shift X over the alphabet
{0, 1} presented by the graph shown in Fig. 1. For T = 2, the
shift X has the periodic forbidden list F = (F0,F1), with
F0 = {1},F1 = ∅.

0 1

0

0
1

Fig. 1. The periodic-finite-type shift XF for the period 2 over {0, 1} with
F0 = {1},F1 = ∅.

It is easy to see that, for a PFT(T) shift XF over the alphabet
Σ, one can construct a periodic forbidden list F ′ in which all
words have the same phase, the same length, or both. A com-
mon phase is obtained by taking each word f ∈F i, prepending
each of the |Σ|i prefixes of length i to f , and associating phase
0 with each of the resulting words. The sets corresponding to
the other phases are defined to be empty sets. A common
word length is achieved by replacing each f in F i with the
words obtained by appending each of the |Σ| �−| f | suffixes to
f , where � � max f ∈ F | f |, so that each word has length �.
Finally, a list that satisfies both properties may be constructed
by applying the first transformation followed by the second.

C. PFT Sofic Shifts

The following theorem, an analog to [16, Theorem 3.1.5]
for shifts of finite type, establishes that PFT shift spaces are
sofic shifts by explicitly constructing a presentation.

Theorem 2. Every periodic-finite-type shift space is sofic.

Proof. Let XF be a PFT(T) shift space. Assume, without
loss of generality, that Fi = ∅ for i = 1, . . . , T − 1, and that
each word w∈F0 has length |w| = �.

For � � 1, let U (�) be the graph with vertex set V(U (�)) =
Σ�, the set of all �-blocks of letters from Σ. For each pair of
vertices I = a1a2 . . . a� and J = b1b2 . . . b� in V(U (�)) with
a2a3 . . . a� = b1b2 . . . b�−1, draw an edge from I to J with
label b�.

Let U (�, T) be the T-cascade of U (�) with vertex sets
V0, V1, . . .VT−1. Let U (�, T,F ) be the graph formed from
U (�, T) by deleting the edges starting and ending at each
vertex I = a1a2 . . . a� ∈V� mod T such that I = w where
w∈F0, as well as the vertex itself.

Let G be the essential subgraph of U (�, T,F ). We will
show that XF = XG . Choose x = L∞(· · · e−1e0e1 · · · )∈XG .
Suppose that i(e0)∈Vk ∩ V(G).

Let y = σ k(x). Then y[m,m+�−1] �= w for each w∈F0
and m∈Z with m mod T = 0. Therefore y∈XF and we
conclude that XG ⊆ XF .

To show the reverse inclusion, choose x∈XF , and let k be
an integer such that y = σ k(x) satisfies y[m,m+�−1] �= w
for each w∈F0 and m∈Z with m mod T = 0. Since
U (�, T) presents ΣZ, y is the label of a walk on U (�, T).
Let ξ = (. . . e−1e0e1 . . .) be the walk on U (�, T) such
that L∞(ξ) = y and i(e0)∈V0. Suppose an edge in ξ is
deleted when constructing G (so that y /∈ XG ). This occurs
only if y[m,m+�−1] = w for some w∈F0 and m∈Z with
m mod T = 0, contradicting the properties of y. Therefore
x∈XG and XF ⊆ XG .

The constructive proof of Theorem 2 provides a method to
obtain a presentation of a PFT shift. However, the complexity
grows exponentially with the length of the longest element
in F . In Section VI, we discuss alternative algorithms for
generating presentations of PFT shifts.

The construction in Theorem 2 actually implies a stronger
result, namely, that any PFT shift is AFT.

Theorem 3. Irreducible PFT shifts are AFT.

Proof. Let X{F ,T} be a PFT(T) shift over the alphabet Σ.
It is easy to see that the graph G constructed in Theorem 2 is
deterministic. Therefore, to prove that X{F ,T} is AFT, it suf-
fices to show that G has finite local memory. In fact, since
G ⊆ U (�, T), and the operation of passing to a subgraph
preserves the property of finite local memory, it suffices to
verify that U (�, T) has this property. Without loss of gener-
ality, consider a vertex I ∈V0, with I = (a1a2 . . . a�). Let
π = e0e1 . . . e� and π ′ = e′0e′1 . . . e′� be two paths of length
� + 1 that terminate in I and generate the word b 0b1 . . . b�.
Let J = i(e�) and J ′ = i(e′�). From the definition of U (�, T),
it follows that J ∈VT−1 and J ′ ∈ VT−1, and, moreover, both J
and J ′ correspond to the state b0b1 . . . b�−1 = b0a1a2 . . . a�−1.
The edge from this state to state I with label a� is unique, im-
plying that e� = e′�. Thus U (�, T) has finite local memory.

The sliding block coding theorem [16, Theorem 5.5.6] holds
for AFT systems [27]. Therefore there exist sliding-block-
decodable finite-state codes into irreducible PFT shifts at ra-
tional rates less than or equal to the Shannon capacity of the
shift. (In Section VI, we address the computation of the ca-
pacity of PFT shifts.)

D. Proper PFT Shifts

We further distinguish a PFT shift as proper if it is not FT.
For any proper PFT shift, there exists a word that is allowed in
some, but not all, phases. Hence proper PFT shifts are PFT(p)
only for p > 1. The PFT(2) shift of Example 1 is proper.
Here are two further examples of proper PFT constraints that
have found practical application in magnetic recording sys-
tems. Historically, these constraints provided the motivation
for the definition and study of PFT shifts.

Example 2 The well-known biphase shift is a PFT(2) shift
over the binary alphabet with F0 = {00, 11} and F1 = ∅.
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Fig. 2 illustrates U (�, T,F ), as described in the proof of The-
orem 2, where the cyclic nature of the cascade is represented
by re-drawing V1. Deleted edges and states are drawn with
dashed lines. The Shannon cover is illustrated in Fig. 3. It is
easily shown and well known that the biphase shift is not FT
(see, for example, [16, Theorem 3.4.17], [17, p. 1657]) and
hence is proper PFT.

V1 V0 V1

11

10

01

00

10

01

11

10

01

00

11

00

0

1
0

1

0

1
0

1

1

0

1

0

1
0

1

0

Fig. 2. U (�, T,F ) presenting the biphase shift.

0 1 2

1 1

00

Fig. 3. Shannon cover of the biphase constraint.

Example 3 The time-varying maximum-transition-run
(TMTR) shift [2], [3], [4] is a binary PFT(2) shift with
F0 = {111} and F1 = ∅. The Shannon cover is shown in
Fig. 4. It is easy to verify the TMTR shift is not FT ; for ex-
ample, note that the Shannon cover contains the cover for the
biphase shift, Fig. 3, as a subgraph. Therefore it cannot be
definite, implying that the TMTR shift is a proper PFT shift.

E. Periods of PFT Shifts

We now explore the periods T with which a PFT shift can
be associated.

Lemma 4. If X is an irreducible PFT(T) shift, then X is
PFT(nT) for any positive integer n.

0 1 2 3

0
1 1 1

0

00

Fig. 4. Shannon cover of the TMTR shift.

Proof. If X = XF with F = (F0,F1, . . . ,FT−1), then
we have trivially also X = XE with E = (Ei)0�i�nT−1 and
Ei = Fi mod T .

Proposition 5. If X is an irreducible PFT(T) shift which has an
irreducible presentation of period q, then X is PFT(gcd(T, q)).

Proof. Let X = XF with F = (F0,F1, . . . ,FT−1). Let
d = gcd(T, q) and k = T/d. Let Y = XE with E =
(E0, E1, . . . , Ed−1) and Ei = ∪k−1

j=0Fi+ jd. It is straightforward
to see that Y ⊆ X. We now show that X ⊆ Y which implies
X = Y and the conclusion.

Let us assume that there is a bi-infinite sequence x in X−Y.
Suppose x is periodic. Since x /∈ Y, for each integer 0 � � �
d − 1, there are integers 0 � i � d − 1, 0 � j � k − 1,
a positive integer n, and a finite factor u of x at position
� + nd + i such that u∈Fi+ jd. Moreover, since x is periodic,
one may assume without loss of generality that the distance
between two positions � + nd + i is greater than the maximal
length of the words in the list F . Let π be a path labeled by
x in the irreducible presentation of X of period q. Let I be
the state in π at position � + nd + i. Since the presentation
is irreducible and of period q, there is a finite number m of
cycling paths of lengths (� i)1�i�m around the state I such
that gcd((�i)1�i�m) = q.

It is well known that for any integer N greater than the
Frobenius number [28] of the (� i/q)1�i�m, N can be ex-
pressed as a nonnegative integer linear combination of the
(�i/q)1�i�m. As a consequence, there is a positive integer
N such that for any nonnegative integer r, (NT + r)q can
be expressed as a nonnegative integer linear combination of
the (�i)1�i�m and there is thus a cycle around I of length
NTq + rq. Since gcd(T, q) = d, there are integers a, b such
that aT = −bq + d. One can moreover choose b > 0. Let
M be a positive integer such that b( j − n) + MT > 0. We
choose r = b( j − n) + MT. Hence there is a cycle around I
of size Z = NTq + b( j− n)q + MTq. Its length is thus equal
to jd − nd mod T.

The bi-infinite sequence labeling a path obtained from x by
inserting this cycle at position � + nd + i belongs to X. At
the position � + nd + i + Z, equal to � + i + jd mod T, this
sequence contains a factor in F i+ jd mod T . By inserting such
cycles simultaneously into x at all positions � + nd + i, we
get a sequence y which belongs to X since it labels a path in
G. However, every shift by � positions of the sequence y has
a factor at a position equal to i + jd mod T which belongs to
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Fi+ jd. Hence y /∈ X, a contradiction.
This shows that any periodic x∈X must in fact belong to

Y. Since X is irreducible, any word in the language B(X) is
a factor of a periodic sequence in X and, therefore, B(X) ⊆
B(Y). Since a shift is determined by its language, we conclude
that X ⊆ Y, as desired.

Let G be a presentation of a PFT(T) shift XF . The following
proposition gives a condition that can be used to determine if
XF is not a proper PFT shift, namely, the period of G and
the period T associated with the forbidden list must share a
nontrivial common factor.

Corollary 6. If G is an irreducible presentation of a proper
PFT(T) shift XF over an alphabet Σ, then gcd(per(G), T) �= 1.

Proof. Indeed, if gcd(per(G), T) = 1, then by Proposition 5,
XF is PFT(1), and therefore FT.

Note that the PFT shifts in Examples 2 and 3 above – the
biphase and TMTR shifts - are not FT. The period associated
with each of their respective forbidden lists is T = 2, and
the graph period of each of their respective Shannon covers is
also 2. Hence, gcd(per(G), 2) = 2 �= 1, in accordance with
Corollary 6.

Example 4 The graph G in Fig. 5 is the Shannon cover of
a shift that we will refer to as the abcd shift. The abcd shift
is clearly FT, and therefore not proper PFT. Since any FT
shift may be described as a PFT(T) shift for arbitrary period
T by assigning all phases 0, 1, . . . , T − 1 to each word in a
finite forbidden list, we may choose F = (F0,F1) such that
XG = XF is PFT(2). Since per(G) = 2, gcd(per(G), T) = 2.
This demonstrates that the converse of Corollary 6 is not true.

0 1 2

a b

cd

Fig. 5. The Shannon cover of the abcd shift.

Example 5 Fig. 6 illustrates a graph that presents valid (d, k)
sequences for d > 0. Aside from the trivial case where d = k,
we find per(G) = 1; hence (d, k) shifts with d > 0 are not
proper PFT. (A similar argument holds for the case d = 0.)

0 1 d − 1 d d + 1 k· · · · · ·0 0 0 0 0 0 0

1 1 1

Fig. 6. Graph presenting the (d, k) shifts for d > 0.

The following example shows that not all AFT shifts are
PFT shifts.

Example 6 Fig. 7 is the Shannon cover of the even shift, so
called because its bi-infinite sequences contain only even num-
bers of consecutive 0’s. It is easily verified that the even shift
is AFT but not FT. By inspection, we see that per(G) = 1.
Therefore, by Corollary 6, the even shift is not PFT(T) for
any T � 1.

0 1
0

0

1

Fig. 7. Shannon cover of the even shift.

Example 6 shows that the PFT shift spaces are a proper
subset of the AFT shift spaces.

Remark Manada and Kashyap [29], [30] have examined
the relationship between the period T inherent in the defini-
tion of a PFT shift X = X{F ,T} and properties of the shift.
They also study the relationship of the smallest such period,
which they call the descriptive period, T X

desc, to the periods of
periodic sequences in X and to the periods of its graphical
presentations. In particular, they showed that if X is an irre-
ducible PFT shift, and G is an irreducible presentation of X,
then gcd(per(G), TX

desc) = TX
desc.

IV. CHARACTERIZATION AND DECIDABILITY

In this section, we further characterize PFT shifts in terms
of properties of their presentations. The characterizations im-
ply the decidability of the PFT property, and they suggest a
testing algorithm that is quadratic in the number of states of
the Shannon cover.

A. Graphical Characterization

The following proposition proves the decidability of the PFT
property for an irreducible sofic shift.

Proposition 7. Let X be an irreducible sofic shift, G its Shan-
non cover of period q, and T a positive integer. Then the fol-
lowing assertions are equivalent.

1) X is PFT(T).
2) The irreducible components of G gcd(T,q) are definite

graphs.

Proof. Let us assume that X is PFT(T). Let q be the period
of the Shannon cover of X and d = gcd(T, q). By Lemma 5,
X is PFT(d). We prove that the irreducible components of
Gd are definite. Let C be one of these components. Let us
suppose that C is not definite over the alphabet Σd. Then C
has two distinct cycles with the same label, one around a state
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I, another around a state J distinct from I. Hence there is in G
a cycle around I (resp. J) labeled by a word u of length nd for
some positive integer n. Since I and J belong to a common
irreducible component of G d, there is a path labeled by z from
I to J in G of length md for some positive integer m. Let v
be a left-infinite sequence ending with a synchronizing word
that focuses to I in G. Since G is the Shannon cover of X, the
states I and J have different follower sets. Let f J be a right-
infinite sequence generated by some path in G starting at J that
is not the label of a path starting at I. For any nonnegative
integer N, the bi-infinite sequence x = vu NzuN fJ belongs to
X. Since X is PFT(d), this implies that, for a large enough
N, x′ = vuN fJ belongs to X, which is a contradiction of the
fact that f J is not generated by a path starting at I.

Conversely, let us assume that each irreducible component
C of Gd is a definite graph. Since G has period q, one can or-
der the irreducible components of G d into (C0, C1, . . . , Cd−1),
such that there is at least one edge from some state in Ci to
some state in Ci+1 mod d in G. Each component Ci presents
a shift of finite type XFi

over the alphabet B = Σd, where
Fi is a finite subset of B∗. Let Ei be the set of words
in Fi with symbols in the alphabet Σ. Let Y = XE with
E = (E0, E1, . . . , Ed−1). By construction X = Y. It follows
that X is PFT(d) and also, by Lemma 4, PFT(T).

Corollary 8. Let X be an irreducible sofic shift and p be the pe-
riod of the Shannon coverG of X. Then the following assertions
are equivalent.

1) X is PFT.
2) X is PFT(p).
3) The irreducible components of G p are definite graphs.

Proof. (2) ⇔ (3) comes from Proposition 7. We prove
(1) ⇒ (2). If X is PFT(T) for some positive integer T, we
get from Lemma 5 that X is PFT(gcd(p, T)). It is then also
PFT(p) by Lemma 4. Finally (2) ⇒ (1) follows from the
definition of a PFT shift.

Example 7 The Shannon cover of the interleaved-biphase
shift is illustrated in Fig. 8. The period of the graph is 4,
and one can show that the irreducible components of G 4 are
finite-type. If H denotes the irreducible component consisting
of the central state in Fig. 8, then XH = XF′ , where

F′ = {0000, 0001, 0010, 0100, 0101, 0111,
1000, 1010, 1011, 1101, 1110, 1111}.

Hence the interleaved-biphase shift is PFT(4), with F0 = F′
and F1 = F2 = F3 = ∅.

This example suggests the following conjecture.

Conjecture 1 Let G be irreducible with period T. If an irre-
ducible componentH of G T is FT with XΣ

T

H = XΣ
T

F′ , then XG =
X{F ,T} where F0 = F′ and Fi = ∅, for i = 1, . . . , T − 1.

B. Decidability of PFT Property

We now derive from the previous propositions a quadratic-
time algorithm to check whether an irreducible sofic shift pre-
sented by its Shannon cover is PFT.

1 0
0 1 0

0 1
1 0 1

1 0

Fig. 8. Shannon cover of interleaved-biphase shift.

Proposition 9. Let X be an irreducible sofic shift presented by
its n-state Shannon cover. It is decidable in time O(n2 × |Σ|)
whether X is PFT.

Proof. Let G be the Shannon cover of X. One first computes
the period p of G. This operation can be performed with one
depth-first search of the graph of G in time O(n log n × |Σ|)
(see [31], [32]).

Since G has period p, one can define a coloring function c
from V(G) to {0, 1, . . . , p − 1} such that, whenever there is
an edge from a state I to a state J, c(J) = c(I) + 1 mod p.
The color of each state can be computed through a depth-first-
search of the graph of G in time O(n).

One then computes the fiber product graph H = G ∗ G
whose set of states is the set of pairs (I, J), where I, J are
states of G [17]. There is an edge labeled by a from (I, J) to
(I′, J ′) if and only if there are two edges labeled by a from I
to I ′ and from J to J ′. The graph H is deterministic over Σ
and has at most n2 states. Then X is PFT if and only if there is
no cycle in H going through a state (I, J) with I �= J and I, J
having the same color. Indeed, the existence of such a cycle
is equivalent to the existence of two identically labeled cycles
in G p, one starting at I, the other one at J with I �= J and
I, J in the same irreducible component of G p. The existence
of such cycles can be determined in time that is linear in the
size n2 of H, for instance by inspection of the irreducible
components of H. The final worst case time-complexity is
therefore O(n2 × |Σ|).

Example 8 Let us consider again the biphase shift of Exam-
ple 2. The Shannon cover, shown in Fig. 9, has period 2. For
any 2-coloring, the states 0 and 2 have the same color while
1 has a different color, as illustrated. The fiber product H is
represented in Fig. 10. (States (0,2) and (2,0) are not shown,
as there are no edges in H starting or ending in these states.)
Since the cycles go only through pairs of states (I, J) with I
and J of different colors or through pairs with I and J of the
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10 2

1 1

00

Fig. 9. A 2-coloring of the Shannon cover of the biphase shift.

same color but also with I = J, we conclude that the biphase
shift is PFT.

0, 0 1, 1 2, 2

1 1

00

0, 1 1, 2

1

0

1, 0 2, 1

1

0

Fig. 10. Graph H for checking if the biphase constraint is PFT. Names of
shaded states are shown in bold font. Stranded states are not shown.

V. PERIODIC FIRST OFFENDERS

In this section, we define a notion of minimal periodic for-
bidden list of a PFT shift for a given period.

Let F = (F0,F1, . . . ,FT−1) be a periodic forbidden list
of a shift X for some positive period T. We say that F is
periodic anti-factorial if and only if for any 0 � i � T − 1
and any j � 0,

w∈Fi and u ≺ j w with u �= w =⇒ u /∈ Fi+ j mod T .

The notion of periodic anti-factorial list was introduced in [13].
It generalizes the notion of anti-factorial language (see [25]).
In particular, the sets Fi of a periodic anti-factorial list are
prefix-free and suffix-free codes.

Example 9 The list

F0 = {00, 11}
F1 = {00, 11, 010},

with T = 2 is periodic anti-factorial, while the list

F0 = {00, 11, 010}
F1 = {00, 10},

with T = 2 is not periodic anti-factorial. Indeed, in the latter
list, 010∈F0, 10∈F1, and 10 ≺1 010.

For any regular periodic forbidden list F of a shift X, there
is a regular and periodic anti-factorial forbidden list F ′ of X
such that F ′

i ⊆ Fi for any 0 � i � T − 1. Indeed, one can
choose

F′
i = Fi −FiΣ

+ − (ΣT)+FiΣ
∗

−
T−1⋃
j=1

(ΣT)∗Σ jFi+ j mod TΣ
∗.

Periodic anti-factorial lists do not seem to satisfy any useful
kind of minimality property among periodic forbidden lists
of a PFT shift. We consider, instead, periodic forbidden lists
based upon sets of periodic forbidden words called periodic
first offenders that were introduced in [14], [15]. Their defini-
tion is intended to mimic that of the first offenders of a shift
X [18] and to refine the notion of periodic anti-factorial list.
A key difference, however, is that their definition is not intrin-
sic; rather, it refers specifically to a presentation of the sofic
shift.

We first recall the key properties of the set of first offend-
ers. A word w is a first offender for a shift X if w /∈ B(X)
but every proper subword of w is in B(X). The collection of
first offenders, O, describes the space, X = XO , and satis-
fies the following minimality properties [18], [16, Exercises
1.3.8,2.1.10]:

(1) if F ⊆ O and XF = X, then F = O,

(2) if F is finite and XF = X, then ∑
w∈O

|w| � ∑
w∈ F

|w|.

Clearly, the words in O form an anti-factorial list.
We now introduce an analogous construction for the peri-

odic scenario. Let G be an irreducible presentation of period p
of an irreducible sofic shift X. The states V of G are colored
in p colors by a coloring function c : V → {0, 1, . . . , p− 1}.
One has c(J) = c(I) + 1 mod p whenever there is an edge
from I to J. We denote by V i the set of states of color i, for
0 � i � p − 1. We also say that these states are in phase i.
We denote by F (G , c) the list F = (Fi)0�i�p−1 where the
sets Fi are the sets of finite words w = w[0,|w|−1] such that

1) w /∈ FG(Vi),
2) for any 0 � j < |w| − 1, w [0, j] ∈ FG(Vi),
3) for any 0 < j � |w| − 1, w [ j,|w|−1]∈ FG(Vi+ j mod p).

Note that the second condition can be replaced by
w[0,|w|−2]∈ FG(Vi), and the third one can be replaced by
w[1,|w|−1]∈ FG(Vi+1 mod p). Hence, for 0 � i � p − 1, the
sets Fi can also be defined by

Fi = (Σ∗ − FG(Vi)) ∩ (FG(Vi)Σ)∩ (ΣFG(Vi+1 mod p)).

Note also that, when c is changed into another col-
oring of the graph in p colors, the list F (G , c) =
(F0,F1, . . . ,Fp−1) is changed into one of its conjugates
(F j,F j+1, . . . ,Fp−1,F0, . . .F j−1).

Proposition 10. Let G be an irreducible presentation with a col-
oring of its states c in p colors. The list F (G , c) is a regular and
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anti-factorial periodic forbidden list of the sofic shift presented
by G.

Proof. Let F = F (G , c) and let X be the sofic shift pre-
sented by G. It follows from the definitions that X ⊂ XF .
Conversely, let x∈XF . We will show that every subword of
x is in B(X). Up to a power of the shift of the sequence
x, for any integers i, j, we have x [i, j] /∈ Fi mod p. We prove
by induction on j that x [i, j] ∈ FG(Vi) and x[i+1, j] ∈ FG(Vi+1)
for any j � i. Since x[i] /∈ Fi and x[i+1] /∈ Fi+1, we
have x[i] ∈ FG(Vi) and x[i+1] ∈ FG(Vi+1). By definition of
Fi, from x[i,i+1] /∈ Fi, we get x[i,i+1] ∈ FG(Vi). Let us
now assume that x[i, j] ∈ FG(Vi) and x[i+1, j] ∈ FG(Vi+1). By
definition of Fi, we get x[i, j+1] ∈ FG(Vi). This implies also
x[i+1, j+1]∈ FG(Vi+1). Thus, any subword of x belongs to
B(X). This shows that x∈ X. It is clear that F (G , c) is anti-
factorial.

We denote by size(F ) the size of a periodic forbidden list
F for a period p. It is defined by

size(F ) = ∑
0�i�p−1

∑
w∈ Fi

|w|.

Proposition 11. Let X be an irreducible sofic shift and G be an
irreducible presentation of X with a p-coloring c. Let F be any
regular periodic forbidden list of X for the period p. If F is
finite, F (G , c) is finite and size(F (G , c)) � size(F ).

Let G′ be another irreducible presentation of X with a p-
coloring c′ of its states. Up to a conjugacy, F (G , c) and
F (G′, c′) are equal.

Proof. We first prove that, up to a conjugacy of F , we
have FG(Vi) ∩ Fi = ∅ for all 0 � i � p − 1. Let us as-
sume that this is false. For any j such that 0 � j � p − 1,
there exists an integer f ( j), with 0 � f ( j) � p − 1, such
that there is a word w j ∈ FG(V f ( j)) ∩ F( f ( j)+ j mod p). That
is, the word w j is the label of a path π j starting at some
state in V f ( j) and w j ∈F( f ( j)+ j mod p) . Since G is irreducible,
there is a bi-infinite path of G labeled by x which contains
all the paths π j as sub-paths. Moreover, since G has a p-
coloring and w j ∈ FG(V f ( j)), one can choose the path such
that wj ≺g( j) x and g( j) = f ( j) mod p for all integers j.
Since X = XF , there is an integer N such that, for any inte-
ger �, w ≺� x ⇒ w /∈ F(N+� mod p). By taking � = g(N),
we get that wN �≺g(N) x, which is a contradiction.

Next, we change F into another list E such that each proper
prefix of a word in E i belongs to FG(Vi). For this, one replaces
each word in Fi by its shortest prefix which is not in FG(Vi).
Thus we define E by the formula

Ei = (FG(Vi)Σ)∩ (Σ∗ − FG(Vi)) ∩ (Fi(Σ∗)−1),

where Fi(Σ∗)−1 = {u | ∃v∈Σ∗, uv∈Fi}. Note that the
new list E is still a regular periodic forbidden list of X for
the period p. Indeed, it is clear that XE ⊆ X. Conversely, let
x∈X. Up to some shift, the word x is the label of a path
(I j) j∈ Z in G such that I j ∈V j mod p. Hence, for any k � j,
we have x[ j,k] ∈ FG(V j) and thus x[ j,k] /∈ E j. Thus, X ⊆ XE
and X = XE .

Now, we remove each word w∈E i which is not in F (G , c)i
and add at most one word shorter than w into some E j

as follows, in order to still have a periodic forbidden list
of X. If w /∈ F (G , c)i, there are indices j, j′ such that
w[ j, j′] ∈F (G , c)i+ j mod p. We add w[ j, j′] ∈Ei+ j mod p and re-
move w from E i. It is important to note that j, j ′ are unique
in this case. Indeed, let us assume that there are two factors
v1 and v2 of w, both shorter than w, with v1 = w[ j, j′] in
F (G , c)i+ j mod p and v2 = w[k,k′] in F (G , c)i+k mod p. Since
w[0,|w|−2]∈ FG(Vi), j′ = k′ = |w| − 1 and v1 is a suffix of
v2, or vice-versa. This contradicts the fact that F (G , c) is peri-
odic anti-factorial. Hence at most one word is added whenever
one is removed.

The new list D that we get satisfies Di ⊆ F (G , c)i.
Hence X ⊆ XD . Conversely, let x /∈ X = XE .
For any integer N, there is an integer �(N) such
that there is a word wN with wN ≺�(N) x and
wN ∈ EN+�(N) mod p. If wN ∈F (G , c)N+�(N) mod p, then
wN ∈DN+�(N) mod p. If wN /∈ F (G , c)N+�(N) mod p, then
there is uN ≺r(N) wN (and hence uN ≺�(N)+r(N) x) such
that uN ∈DN+�(N)+r(N) mod p. As a consequence x /∈ XD .
Hence XD ⊆ X and we conclude that X = XD .

We now show that Di = F (G , c)i. Assume the contrary and
let w be a word in F (G , c) i −Di. By definition of F (G , c) i,
if w = ua = bv with a, b∈Σ, we have u∈ FG(Vi), ua /∈
FG(Vi), and v∈ FG(Vi+1). Hence u is the label of a path in G
starting at a state I ∈Vi and v is the label of a path ending in
a state J ∈Vi+|w| mod p. For any left-infinite word z labeling
a path ending at I, and any right-infinite word y labeling a
path starting at J, the word zwy is in XD . It is possible to
choose z and y such that zwy /∈ XF (G ,c), which contradicts
the fact X = XD . Hence D = F (G , c). By construction, if F
is finite, then D is also, and size(D) � size(E ) � size(F ).
Thus size(F (G , c)) � size(F ).

We now prove the second statement of the proposition. We
first transform F (G′, c′) into E ′ as above. The size of E ′ is
less than the size of F (G′, c′) if E ′ �= F (G′, c′). We then
transform E ′ into D = F (G , c). Again, the size of D is less
than the size of E ′ if D �= E ′. It follows that size(F (G , c)) �
size(F (G′, c′)) and the two sets are equal whenever the sizes
are equal. By reversing the roles played by size(F (G , c)) and
size(F (G′, c′)), we conclude that equality holds and that the
two lists are equal, up to some conjugacy.

Example 10 The Shannon cover of the interleaved-biphase
shift, Fig. 8, has period 4. The periodic first offenders are

F0 = {000, 010, 101, 111},
F1 = {000, 010, 101, 111},
F2 = ∅,
F3 = ∅.

The following corollary, a direct consequence of Proposi-
tion 11, provides a method to determine whether a sofic shift
is PFT, based on the periodic first offenders.

Corollary 12. Let X be an irreducible sofic shift with presen-
tation G that admits a coloring c. Then the following assertions
are equivalent.
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• X is PFT.
• F (G , c) is finite.

Moreover, a list of periodic first offenders provides a min-
imal description of a PFT shift:

Proposition 13. Let X be an irreducible PFT shift with presen-
tation G that has period p. For d that divides p, let F (G , c(d))
denote the periodic first offenders for the d-coloring of G. Then

min
d|p

size(F (G , c(d)) � min
F : X=XF

size(F ).

Proof. Let F be a finite periodic forbidden list of an irre-
ducible PFT shift X for a period T. By Proposition 5, one
can obtain from F a finite periodic forbidden list F ′ of X for
period d = gcd(p, T) such that the size of F ′ is less than
or equal to the size of F . By Proposition 11, size(F ′) �
size(F (G , c)). Hence size(F ) � size(F (G , c)), which
completes the proof.

It was conjectured in [14], [15] that the periodic first of-
fenders of the Shannon cover, with a period corresponding to
the period of the cover, are the minimal periodic forbidden list
for any period. The following example shows that this is not
true.

Example 11 Let X be the shift on the alphabet Σ =
{a, b, c, d, e} presented by the Shannon cover of Fig. 11.
The shift X is FT and its minimal periodic forbidden list
for the period p = 1, i.e., its list of first offenders, is
F = {c, d, e, aa, bb}. For the period p = 2, which is the
period of the Shannon cover, the periodic first offenders are
F (G , c(p)) = {F0 = {c, d, e, b},F1 = {c, d, e, a}}. Hence
size(F (G , c(p))) > size(F ).

0 1

a

b

Fig. 11. A shift of finite type X over the alphabet Σ = {a, b, c, d, e}. We
have X = XF with F = {c, d, e, aa, bb} for the period p = 1. We also have
X = XE with E0 = {b, c, d, e}, E1 = {a, c, d, e} for the period p = 2. The
size of F is less than the size of E and the period of the Shannon cover of
X is 2.

VI. CAPACITY OF PFT SHIFTS

The base-2 capacity, or simply capacity of a sofic shift
space X over an alphabet Σ is defined as

C(X) = lim
n→∞

1
n

log2 |Bn(X)|.
It measures the growth rate of the number of words of length
n in X. In this section, we discuss methods for computing the
capacity of a PFT shift.

It is well known that the capacity of a sofic shift is the loga-
rithm of the largest real eigenvalue of the adjacency matrix of

a lossless presentation of the shift [17]. Hence it is straightfor-
ward to determine the capacity from a lossless presentation.
In Section VI-A, we review techniques for generating lossless
presentations of PFT shifts.

In Section VI-B, we present a combinatorial technique for
computing the capacity directly from a periodic forbidden list.
It extends to PFT shifts the computation of the capacity of FT
shifts presented by Pimentel and Uchôa-Filho in [21], relying
on the well-known Inclusion-Exclusion Principle from enu-
merative combinatorics [19], [20]. It is also known as the
Goulden-Jackson Cluster Method [34,35], [36, III.7.4] (see
also [37]). This combinatorial method provides a much more
efficient means to compute the capacity than the conventional
graph-based method when the lengths of the periodically for-
bidden words are large compared to the number of words.

A. Constructing a Lossless Presentation

Suppose one is given a finite, anti-factorial list F of for-
bidden words over an alphabet Σ. The proof of Theorem 2
provides a method to construct a presentation of the shift XΣF
with |Σ|�max−1 states, where �max is the length of the longest
word in F . Of course, this construction has complexity expo-
nential in size(F ).

An alternative algorithm was described in the unpublished
masters thesis of Sindhushayana [38]. The construction makes
use of the close connections between symbolic dynamics and
automata theory, a theme that underlies several of the other
techniques we will mention. Although generally more practi-
cal than the straightforward approach, it is not computation-
ally efficient in the sense of guaranteed time complexity poly-
nomial in size(F ). A similar construction appeared in the
unpublished doctoral dissertation of McEwen [39]. In [25],
Crochemore et al. gave an efficient, automata-theoretic con-
struction of a deterministic presentation that requires time only
linear in size(F ).

These algorithms for FT shifts can be extended, often natu-
rally, to PFT shifts. McEwen [39] includes such an extension,
and [15] described a generalization of the procedure in [38].
Although neither of these run in polynomial time, for many ap-
plications they are convenient to implement and give insights
into the properties of the PFT shift.

Constrained systems with unconstrained positions, intro-
duced by Wijngaarden and Immink [10] and further studied
by de Souza et al. [11], represent a natural example of PFT
shift spaces. Given a sofic shift X, a positive integer T, and
a subset U of integers modulo T, the authors of [11] con-
struct a presentation of the unique maximal subsystem such
that any position modulo T in U is unconstrained. Begin-
ning with a finite-state presentation of the underlying shift
X, their algorithm in general has exponential time and space
complexity. However, for FT shifts, under a certain gap condi-
tion that restricts |U| relative to the memory of the shift, their
algorithm is efficient, requiring only quadratic complexity in
space and time. They also provide an efficient construction
for Maximum-Transition-Run (MTR) constraints with param-
eter j � 1 [8], the systems in which the maximum allowable
length of a run of consecutive 1’s is j.
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Béal et al. [13] also recognized the connection between PFT
shifts and constraints with unconstrained systems. Their con-
struction of a presentation for such a system consists of two
steps. First, they derive a periodic list of forbidden words that
define a maximal subsystem for T and U, given a prefix-free
list F of forbidden words defining the underlying FT shift.
The description of F must be in the form of a tree-like deter-
ministic automaton called a trie [13]. (A linear time and space
algorithm for this step has recently been given in [33].)

In the second step, they invoke a general procedure for con-
structing a finite-state presentation of a PFT shift defined by a
periodic forbidden list The input to the algorithm is a collec-
tion of T tries representing the periodically forbidden words
associated with the phases 0, 1, . . . , T− 1. They show that this
step has time and space complexity that is linear in the size
of the periodic forbidden list.

Example 12 Suppose we would like to determine the capac-
ity of the PFT(2) shift space over the alphabet {0, 1} with
F0 = {101} and F1 = {010}. Following the procedure in
[13], one may construct a lossless presentation of the shift,
with Shannon cover illustrated in Fig. 12. The corresponding
adjacency matrix ⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0
1 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 1 0
0 0 0 1 0 1
1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

has largest real eigenvalue

λ =
1
3

(
1 + (19− 3

√
33)1/3 + (19 + 3

√
33)1/3

)
and the capacity is

C = log(λ) = 0.6093 . . .

1
1

0

0

0
0

1

1
10

Fig. 12. Shannon cover corresponding to Σ = {0, 1}, T = 2, F0 = {101},
F1 = {010}.

B. Combinatorial Determination of Capacity

The method we describe here is a computation of the ca-
pacity directly from the periodic forbidden list. As mentioned
in the Introduction, it extends to periodic-finite-type shifts the
computation of the capacity of shifts of finite type presented
by Pimentel and Uchôa-Filho in [21], based upon the combina-
torial Inclusion-Exclusion Principle [19], [20], also known as
the Goulden-Jackson Cluster Method [34], [35], [36, III.7.4],
[37]).

Let us assume that X = XF , where F is some finite anti-
factorial periodic forbidden list for a period T. (Note that if the
given list is not anti-factorial, it can be changed into one that
is in linear time [13].) Denoting the cardinality of B n(X) by
xn for convenience, we define the generating series counting
the number of factors of X:

f (z) = ∑
n�0

xnzn. (1)

It is known (see for instance [40]) that f (z) is a rational series
and that C(X) is log 1/ρ, where ρ is the radius of convergence
of f (z).

Recalling the definition of the set X0 in Section III-A, we
denote by B (i)(X) (for 0 � i < T) the set of factors u of X
such that u ≺i x, for some x∈X0.

We set x(i)
n = |B(i)(X) ∩ Σn|, and define the generating

series of the integers ∑T−1
i=0 x(i)

n :

g(z) = ∑
n�0

T−1

∑
i=0

x(i)
n zn. (2)

For an irreducible PFT shift X, it is known that

C(X) = lim
n→∞

1
n

log
T−1

∑
i=0

x(i)
n . (3)

and C(X) is log 1/ρ, where ρ is the radius of convergence of
g(z).

Let 0 � i < T and let k � 0. If u∈Σ∗, we denote by
n(u, i) the number of occurrences of a factor v of u such
that v ≺i+ j u and v∈F j mod T . We denote by d(u, i, k) the
number of ways to choose k indices j such that there is a factor
v of u with v ≺i+ j u and v∈F j mod T. Note that d(u, i, k) =
(n(u,i)

k ). Finally we define

∆(n, i, k) = ∑
u:|u|=n

d(u, i, k).

By the Inclusion-Exclusion Principle, each word u of length
n contributes 0 to ∑k�0(−1)k∆(n, i, k) if it contains at least
one word v ≺i+ j u, where v∈F j mod T . It contributes 1 other-
wise, i.e., when it belongs to B (i)(X). Indeed, let u be a word
of length n with n(u, i) = r occurrences of words v such
that v ≺i+ j u and v∈F j mod T . Then ∑k�0(−1)kd(u, i) =
∑k�0(−1)k(r

k) = (1 − 1)r. It is equal to 0 if r > 0 and to 1
if r = 0.

We deduce that

x(i)
n = ∑

k�0
(−1)k∆(n, i, k). (4)
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We define the following bivariate generating series:

h(z, y, i) = ∑
u∈ Σ∗

∑
k�0

d(u, i, k)z|u|yk, (5)

= ∑
n�0

∑
k�0

∆(n, i, k)znyk, (6)

h(z, y) =
T−1

∑
i=0

h(z, y, i). (7)

It follows from Equations (2), (4), and (7) that

g(z) = h(z,−1).

Example 13 We consider the PFT shift X = XF over the
alphabet Σ = {0, 1} for a period T = 4 with

F0 = {111},
F1 = {111},
F2 = {1111},
F3 = ∅.

This list of periodically forbidden words defines the
TMTR(2,2,3,3) constraint. This constraint can be described
as follows. The number of consecutive 1’s ending at the time
indices 0 mod 4 and 1 mod 4 is at most 2, while the num-
ber of consecutive 1’s ending at the time indices 2 mod 4
and 3 mod 4 is at most 3. It is not difficult to see that this
description is equivalent to saying that the block 111 is for-
bidden when it begins at the time indices 0 or 1 mod4, and
the block 1111 is forbidden when it begins at the time indices
2 mod 4. Hence the TMTR(2,2,3,3) constraint is described by
the shift XF .

Let u = 000011111100. It has the word 111 of F 0 as
a factor at position 4, the word 111 of F 1 as a factor at
position 5, and the word 1111 of F 2 as a factor at position
6. Hence it contributes 1 to ∆(12, 0, 0), 3 to ∆(12, 0, 1), (3

2)
to ∆(12, 0, 2), 1 to ∆(12, 0, 3), and 0 to ∆(12, 0, k) for k >
3. Its total contribution to ∑k�0(−1)k∆(n, 0, k) is 1 − (3

1) +
(3

2)− 1 = 0.
Now let u = 000000000000. It contributes 1 to the sum

∑k�0(−1)k∆(n, 0, k) since it contributes 1 to ∆(12, 0, 0) and
0 to ∆(12, 0, k) for k > 0.

We now describe how to compute the bivariate series
h(z, y). Let F = (F0, . . . ,FT−1) be a finite periodic for-
bidden list. If Fi is a nonempty set, we define the set F̃i =
{( f , i) | f ∈Fi}. If Fi is the empty set we denote by F̃i the
singleton containing the integer i. We denote by F̃ the union
of the F̃i. Note that the size of F̃ is at most size(F ) + T − 1.

Let ( f , i) and (g, j) be in F̃. We denote by ( f , i) � (g, j)
the set of nonempty words u such that there are nonempty
words v, w with f = uv, g = vw and v ≺ j−i mod T f (see
Fig. 13).

We define a square matrix G(z) with entries indexed by
F̃ × F̃ as follows. For any ( f , i), (g, j), k, r in F̃,

G(z)( f ,i)(g, j) = ∑
u∈ ( f ,i)�(g, j)

z|u|,

G(z)k( f ,i) = G(z)( f ,i)k = G(z)kr = 0.

i j

v w

u v

Fig. 13. The word u belongs to ( f , i) � (g, j) since f = uv, g = vw and
v ≺ j−i mod T f .

Example 13 (continued). The matrix G(z) for the periodic
forbidden list F of period 4 of Example 13 is the following
|F̃| × |F̃| matrix with F̃ = {(111, 0), (111, 1), (1111, 2), 3}.

G(z) =

⎡
⎢⎢⎣

0 z z2 0
0 0 z 0
z2 z3 0 0
0 0 0 0

⎤
⎥⎥⎦ .

Let ( f1, i1), ( f2, i2), . . . , ( fk, ik)∈ F̃. We denote by
( f1, i1) � ( f2, i2) � · · · � ( fk, ik) the set of (k − 1)-
tuples of nonempty words (u1, . . . , uk−1) such that, for
1 � r � k − 1, ur ∈ ( fr, ir) � ( fr+1, ir+1) (see Fig. 14).
The (k − 1)-tuple (u1, . . . , uk−1) is called a k-overlapping
decomposition of the word u = u1 . . . uk−1 fk. Note that
( f1, i1) � ( f2, i2) � · · · � ( fk, ik) is obtained by concatenat-
ing all words u1 in ( f1, i1) � ( f2, i2) to all (k − 2)-tuples in
( f2, i2) � · · · � ( fk, ik).

f1 f3

f2

u1 u2

i1 i2 i3

Fig. 14. An example of a 3-overlapping decomposition of the word u =
u1u2 f3.

For any word u, we denote by v(u, k, i, j) the number
of (k + 1)-overlapping decompositions of u in all ( f 1, i1) �
( f2, i2) � · · · � ( fk+1, ik+1) such that i1 = i and ik+1 +
| fk+1| = j.

For 0 � i, j < T, we define the bivariate series

Vi j(z, y) = ∑
n�0

∑
k�0

v(n, k, i, j)znyk+1,

where v(n, k, i, j) = ∑u:|u|=n v(u, k, i, j).
We define the T × T-matrix V(z, y)

V(z, y) = (Vi j(z, y))0�i, j<T.

We then define the |F̃| × T matrix Φ(z) as follows: For any
( f , i), k in F̃, 0 � j < T,

Φ(z)( f ,i) j =

{
z| f | if j = i + | f | mod T,
0 otherwise ,

Φ(z)k j = 0.

Example 13 (continued). The matrix Φ(z) for the periodic
forbidden list F for period 4 in Example 13 is an | F̃| × T
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matrix with F̃ = {(111, 0), (111, 1), (1111, 2), 3}.

Φ(z) =

⎡
⎢⎢⎣

0 0 0 z3

z3 0 0 0
0 0 z4 0
0 0 0 0

⎤
⎥⎥⎦ .

We define a T × |F̃|-matrix Ψ(z) as follows: For any ( f , i),
k in F̃ and 0 � j < T,

Ψ(z) j( f ,i) =

{
1 if j = i,
0 otherwise ,

Ψ(z) jk =

{
1 if k = j,
0 otherwise .

Example 13 (continued). The matrix Ψ(z) for the periodic
forbidden list F for period 4 in Example 13 is an | F̃| × T
matrix with F̃ = {(111, 0), (111, 1), (1111, 2), 3}.

Ψ(z) =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

Note that in this example Φ(z) and Ψ(z) are square matrices
since |F̃| = T.

Therefore, for 0 � i, j < T, we get

Vi j(z, y) = ∑
n�0

∑
k�0

v(n, k, i, j)znyky,

= ∑
k�0

(
∑

n�0
v(n, k, i, j)zn

)
yky,

= ∑
k�0

1i
TΨ(z)G(z)kΦ(z)1jy

ky

where 1i is the column characteristic vector of i.
Hence

V(z, y) = Ψ(z) ∑
k�0

(G(z)kyk)Φ(z)y,

= Ψ(z)(I − G(z)y)−1Φ(z)y.

where I is the |F̃| × |F̃| identity matrix.
Finally, we define a T × T square matrix P(z). For any

0 � i, j < T,

P(z)i j =

{
|Σ|z if j = i + 1 mod T,
0 otherwise .

Example 13 (continued). The matrix P(z) for the periodic
forbidden list F of period 4 of Example 13 is an | F̃| × |F̃|
matrix with F̃ = {(111, 0), (111, 1), (1111, 2), 3}.

P(z) =

⎡
⎢⎢⎣

0 2z 0 0
0 0 2z 0
0 0 0 2z
2z 0 0 0

⎤
⎥⎥⎦ .

Let P = ({0, 1, . . . , T − 1}, E) be an automaton, i.e, a

labeled graph, whose edges are labeled in N[Σ∗, y] and defined
as follows. There is in P an edge labeled by ay0 for each letter
a of the alphabet Σ from the state i to the state i + 1 mod T.
There is an edge labeled by ∑k v(u, k, i, j)uyk+1 from the state
i to the state j for each word u. The cover P is pictured in
Fig. 15 for Σ = {0, 1}.

j

1

0, 1y0

0

0, 1y0

T − 1

0, 1y0

i

0, 1y0

0, 1y0

0, 1y0

∑u ∑ kv(u
, k, i, j)uyk

+1

Fig. 15. The automaton P for the period T.

We claim that, for any 0 � i < T, the bivariate series
h(z, y, i) = ∑u∈ Σ∗ ∑k�0 d(u, i, k)z|u|yk, seen as a series in
z, enumerates the labels of paths in P starting at the state i.
Indeed, let u be a word and let us choose r � 0 indices j such
that there is factor f j of u with f j ≺i+ j u and f j ∈F j mod T.
The sequence ( f j) can be decomposed into � sequences sm
of k1, . . . , k� elements such that k1 + · · · + k� = r and, if
sm = ( fi1 , . . . fikm

), u[i1, i1 + 1], u[i1 + 1, i1 + 2], . . . , u[ikm −
2, ikm − 1] is an overlapping decomposition in ( f i1 � . . .� fikm

).
Note that overlapping occurrences of periodic forbidden words
always correspond to a decomposition in some ( f i1 � . . .� fikm

)
since F is antifactorial.

Thus the paths of P starting at the state i and labeled by
uyr count all such choices of the indices j. Since d(u, i, r) is
the number of choices of r indices j such that there is factor f
of u with v ≺ i + ju and v∈F j mod T, the series h(z, y, i)
enumerates the labels of paths in P starting at the state i.
Hence the bivariate series h(z, y) enumerates the labels of all
paths in P .

As a consequence,

h(z, y) = 1T ∑
r�0

(P(z) + V(z, y))r1

= 1T(1 − P(z)− Ψ(z)(I − G(z)y)−1Φ(z)y)−11.

We get

g(z) = 1T(1 − P(z) + Ψ(z)(I + G(z))−1Φ(z))−11. (8)

As a consequence, C(X) is log 1/ρ, where ρ is the positive
root of minimum modulus of

det
(

I − P(z) + Ψ(z)(I + G(z))−1Φ(z)
)

. (9)

Example 13 (continued). For the periodic forbidden list F of
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period 4 of Example 13, the series g(z) is1

g(z) =
1

4z8 − 13z4 + 1

(
8z + 16z2 + 30z3 + 4z4

+2z5 − 8z6 − 12z7 + z8 − 2z9 + z10 + 4
)

The capacity of X is log 1/ρ, where ρ is the positive root of
minimum modulus of

13z4 − 4z8 − 1 = (3z2 + 2z4 − 1)(3z2 − 2z4 + 1),

We get ρ =
√√

17−3
2 and λ = 1/ρ = 1.887207676.

Example 14 We consider the PFT shift X = XF over the
alphabet Σ = {0, 1} for a period T = 2 with

F0 = {111},
F1 = ∅.

The |F̃| × |F̃| matrices G(z), Φ(z) and P(z), with F̃ =
{(111, 0), 1} are

G(z) =
[

z2 0
0 0

]
, Φ(z) =

[
0 z3

0 0

]
, P(z) =

[
0 2z
2z 0

]
.

The series g(z) is

g(z) =
−4z − 2z2 − 3z3 − 2

3z2 + 2z4 − 1
.

The capacity of X is log 1/ρ, where ρ is the positive root of

minimum modulus of 3z2 + 2z4 − 1 We get ρ =
√√

17−3
2 .

This PFT shift has the same capacity as the PFT shift of Ex-
ample 13. See [9] for a classification of the capacities of the
TMTR(m) constraints where m is a positive integral vector
with length up to four.

Example 15 We consider the PFT shift X = XF over the
alphabet Σ = {0, 1} for a period T = 2 with

F0 = {101},
F1 = {010}.

The |F̃| × |F̃| matrices G(z), Φ(z) and P(z), with F̃ =
{(101, 0), (010, 1)} are

G(z) =
[

z2 z
z z2

]
, Φ(z) =

[
0 z3

z3 0

]
, P(z) =

[
0 2z
2z 0

]
.

The series g(z) is

g(z) =
−2z − 2z2 − 2
z + z2 + z3 − 1

.

The capacity of X is log 1/ρ, where ρ is the positive root
of minimum modulus of z + z2 + z3 − 1. This time-varying
constraint has a capacity approximatively 0.8791464216. This
capacity is equal to the capacity of the MTR(2) constraint (see
[41] for the relationship between these two constraints).

VII. CONCLUSIONS

We have introduced the class of periodic-finite-type (PFT)
shift spaces. This class of sofic shifts lie between the class

1obtained with a MuPAD computation.

of finite-type shifts and almost-finite-type shifts. We proved
several properties of graph presentations of these spaces. For
a given PFT space, we identified a particular list of periodi-
cally forbidden words, the periodic first offenders, that enjoy
certain minimality properties with respect to other forbidden
lists defining the space. Finally, we consider the calculation
of the capacity of a PFT shift. We present a straightforward
algorithm to construct a graph presenting a PFT space that
can be used to determine the capacity of the constraints. We
also present a quite different method which relies upon tech-
niques from enumerative combinatorics and that appears to be
very effective when the size of the periodic forbidden blocks
is large compared to the number of blocks in the list.
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