
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Sorting genomes by prefix double-cut-and-joins ✩

Guillaume Fertin a, Géraldine Jean a,∗, Anthony Labarre b

a Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France
b Laboratoire d’Informatique Gaspard Monge, Université Gustave Eiffel, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM, F-77454,
Marne-la-Vallée, France

A R T I C L E I N F O A B S T R A C T

Keywords:
Genome rearrangements
Prefix reversals
Prefix DCJs
Lower bounds
Algorithmics
Approximation algorithms

In this paper, we study the problem of sorting unichromosomal linear genomes by prefix double-
cut-and-joins (or DCJs) in both the signed and the unsigned settings. Prefix DCJs cut the leftmost
segment of a genome and any other segment, and recombine the severed endpoints in one of two
possible ways: one of these options corresponds to a prefix reversal, which reverses the order of
elements between the two cuts (as well as their signs in the signed case). Our main results are:
(1) new structural lower bounds based on the breakpoint graph for sorting by unsigned prefix
reversals, unsigned prefix DCJs, and signed prefix DCJs; (2) two polynomial-time algorithms for
sorting by prefix DCJs, both in the signed case (which answers an open question of Labarre [1])
and in the unsigned case; (3) a 1-absolute approximation algorithm for sorting by unsigned prefix
reversals for a specific class of permutations.

1. Introduction

Genome rearrangements is a classical paradigm for studying evolution between species. The rationale is to consider species by
observing their genomes, which are usually represented as ordered sets of elements (the genes) that can be signed (according to gene
orientation, when known). A genome can then evolve by changing the order of its genes, through operations called rearrangements,
which can be generally described as cutting the genome at different locations, thus forming segments, and rearranging these segments
in a different fashion. Given two genomes, a sorting scenario is a sequence of rearrangements transforming the first genome into the
other. The length of a shortest such sequence of rearrangements is called the rearrangement distance. Several specific rearrangements
such as reversals, translocations, fissions, fusions, transpositions, and block-interchanges have been defined, and the rearrangement
distance together with its corresponding sorting problem have been widely studied either by considering one unique type of rear-
rangement or by allowing the combination of some of them [2]. The double-cut-and-join (or DCJ) operation introduced by Yancopoulos
et al. [3] encompasses all the above-mentioned rearrangements: it consists in cutting the genome in two different places and joining
the four resulting extremities in any possible way. A DCJ is a prefix DCJ whenever one cut is applied to the leftmost position of the
genome. The prefix restriction can be applied to other rearrangements such as prefix reversals, which prefix DCJs generalise. Whereas
the computational complexity of the sorting problems by unrestricted rearrangements has been thoroughly studied and pretty well
characterised, there is still a lot of work to do to understand the corresponding prefix sorting problems (see Table 1 in [1] for a
summary of existing results). Our interest in prefix rearrangements is therefore mostly theoretical: techniques that apply in the un-

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.
* Corresponding author.

E-mail addresses: guillaume.fertin@univ-nantes.fr (G. Fertin), geraldine.jean@univ-nantes.fr (G. Jean), Anthony.Labarre@univ-eiffel.fr (A. Labarre).

https://doi.org/10.1016/j.tcs.2024.114909
Received 25 October 2023; Received in revised form 30 September 2024; Accepted 9 October 2024

Theoretical Computer Science 1024 (2025) 114909

Available online 15 October 2024
0304-3975/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:guillaume.fertin@univ-nantes.fr
mailto:geraldine.jean@univ-nantes.fr
mailto:Anthony.Labarre@univ-eiffel.fr
https://doi.org/10.1016/j.tcs.2024.114909
https://doi.org/10.1016/j.tcs.2024.114909
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2024.114909&domain=pdf
http://creativecommons.org/licenses/by/4.0/

G. Fertin, G. Jean and A. Labarre

𝐺

0 1 2 4 3 6 5

0 2 1 4 3 6 5

𝐺1

0 4 3 6 1 2 5

𝐺2

Fig. 1. Example of a prefix DCJ acting on a genome 𝐺, showing the two possible ways to join after the cut takes place. Cutting edges {0,1} and {2,4} from the
nonlinear genome 𝐺 produces genome 𝐺1 with a reversed segment, if we add edges {0,2} and {1,4}, or genome 𝐺2 with an extracted cycle if we add {0,4} and {1,2}
instead.

restricted setting do not directly apply under the prefix restriction, and new approaches are therefore needed to make progress on
algorithmic issues and complexity aspects. Since DCJs generalise several other operations, we hope that the insight we gain through
their study will shed light on other prefix rearrangement problems.

In this paper, we study the problem of Sorting by Prefix DCJs and, for the sake of simplicity, we consider the case where
the source and the target genomes are unichromosomal and linear. This implies that genomes can be seen as (signed) permutations
(depending on whether the gene orientation is known or not), although some of the algorithms we design are able to handle more
general structures. Moreover, prefix DCJs applied to such genomes allow to exactly mimick three kinds of rearrangement: (i) a prefix
reversal when the segment between the two cuts is reversed; (ii) a cycle extraction when the extremities of the segment between the
two cuts are joined; (iii) a cycle reincorporation when the cut occurs in a cycle and the resulting linear segment is reincorporated at
the beginning of the genome where the leftmost cut occurs.

This paper, which is an extended version of [1], is organised as follows. Based on the study of the breakpoint graph, we first show
new structural lower bounds for the problems Sorting by Signed Prefix DCJs and Sorting by Unsigned Prefix DCJs. In the
latter case, we fix a flaw present in the original paper. Since prefix reversals are particular cases of prefix DCJs, we extend this result to
Sorting by Unsigned Prefix Reversals (note that Labarre and Cibulka [4] proved it for Sorting by Signed Prefix Reversals).
These preliminary results allow us to answer an open question of Labarre [1], by proving that Sorting by Signed Prefix DCJs is in
𝖯, similarly as in the unrestricted case [3]. We also show that Sorting by Unsigned Prefix DCJs can be solved in polynomial time,
and provide an additional result concerning the problem Sorting by Unsigned Prefix Reversals: although this problem has been
shown to be 𝖭𝖯-hard [5], we design a 1-absolute approximation algorithm (i.e. an algorithm providing solutions that are always at
most 1 away from the optimum) to solve this problem for a specific class of permutations, which we call pseudo-simple permutations.

1.1. Permutations, genomes, and rearrangements

We begin with the simplest models for representing organisms.

Definition 1. A (unsigned) permutation of [𝑛] = {1,2,… , 𝑛} is a bijective function of [𝑛] onto itself. A signed permutation 𝜋 of
{±1,±2,… ,±𝑛} is a bijective function of {±1, ±2, …, ±𝑛} onto itself that satisfies 𝜋−𝑖 = −𝜋𝑖 (+ signs are usually omitted). The
identity permutation is the permutation 𝜄 = (1 2 ⋯ 𝑛).

As per standard practice (see e.g. Knuth [6] and Bóna [7]), we will mostly view permutations as sequences of elements rather than
as functions; namely, we consider the sequence (𝜋1 𝜋2 ⋯ 𝜋𝑛) obtained by concatenating the elements of the permutation 𝜋 ordered
by positions. We use 𝑆𝑛 and 𝑆±

𝑛 to denote the set of all unsigned and signed permutations, respectively. The following model is a
straightforward generalisation of unsigned permutations.

Definition 2. A genome 𝐺 is a set of vertex-disjoint paths and cycles over {0, 1, 2, …, 𝑛+ 1}. It is linear if it consists of a single path
with endpoints 0 and 𝑛+ 1. The identity genome is the path induced by the sequence (0,1,2,… , 𝑛+ 1).

Let us note that a genome may contain loops or parallel edges (see Fig. 1).

Definition 3. Let 𝑒 = {𝑢, 𝑣} be an edge of a genome 𝐺. Then 𝑒 is a breakpoint if 0 ∉ 𝑒, and either |𝑢− 𝑣| ≠ 1 or 𝑒 has multiplicity two.
Otherwise, 𝑒 is an adjacency. The number of breakpoints of 𝐺 is denoted by 𝑏(𝐺).

For instance, the genome with edge multiset {{0,4}, {4,3}, {3,6}, {1,2}, {2,1}, {5,5}}, which is genome 𝐺2 from Fig. 1, has
three breakpoints (underlined). Note that permutations can be viewed as linear genomes using the following simple transformation:
given a permutation 𝜋, extend it by adding two new elements 𝜋0 = 0 and 𝜋𝑛+1 = 𝑛 + 1, and build the linear genome 𝐺𝜋 with edge
set {{𝜋𝑖, 𝜋𝑖+1} | 0 ≤ 𝑖 ≤ 𝑛}. This allows us to use the notion of breakpoints on permutations as well, with the understanding that they
apply to the extended permutation, and therefore 𝑏(𝜋) = 𝑏(𝐺𝜋).

Signed permutations generalise to signed genomes using the following notion.

Theoretical Computer Science 1024 (2025) 114909

2

G. Fertin, G. Jean and A. Labarre

Definition 4. The unsigned translation of 𝜋 is the unsigned permutation 𝜋′ obtained as follows: (a) transform each element 𝜋𝑖, 1≤ 𝑖 ≤ 𝑛,
into the sequence 𝜋′

2𝑖−1 𝜋′
2𝑖, where 𝜋′

2𝑖−1 𝜋′
2𝑖 = (2𝜋𝑖 −1) 2𝜋𝑖 if 𝜋𝑖 > 0 (resp. 2|𝜋𝑖| (2|𝜋𝑖|−1) if 𝜋𝑖 < 0) ; (b) add two new elements 𝜋′

0 = 0
and 𝜋′

2𝑛+1 = 2𝑛+ 1.

For instance, the unsigned translation of the signed permutation 𝜋 = (−1 4 −3 −2 5) is (0 2 1 7 8 6 5 4 3 9 10 11).

Definition 5. A signed genome 𝐺 is a perfect matching over the vertex set {0,1,2,…, 2𝑛 + 1}. 𝐺 is linear if there exists a signed
permutation 𝜋 such that 𝐸(𝐺) = {{𝜋′

2𝑖, 𝜋
′
2𝑖+1} | 0 ≤ 𝑖 ≤ 𝑛}, where 𝜋′ is the unsigned translation of 𝜋. The signed identity genome is the

perfect matching {{2𝑖,2𝑖+ 1} | 0 ≤ 𝑖 ≤ 𝑛}.

An example of a signed genome for 𝑛 = 5 is 𝐺 = {{0,4}, {1,6}, {3,7}, {10,8}, {9,5}, {2,11}}. This genome is linear since there
exists the signed permutation 𝜋 =(−2 4 −5 3 1) whose unsigned translation 𝜋′ =(0 4 3 7 8 10 9 5 6 1 2 11) enables to give the set
of edges of 𝐺. The signed identity genome for 𝑛 = 5 is {{0,1}, {2,3}, …, {10,11}}. It is sometimes convenient to view an unsigned
translation 𝜎 as a signed genome, by using the elements of 𝜎 as vertex set and mapping each pair (2𝜎𝑖,2𝜎𝑖 + 1) for 0 ≤ 𝑖 ≤ 𝑛 onto an
edge {2𝜎𝑖,2𝜎𝑖 + 1}. We study transformations based on the following well-known operation on (signed) permutations, which will be
seen to generalise in a natural way to (signed) genomes.

Definition 6. A reversal 𝜌(𝑖, 𝑗) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 is a permutation that reverses the order of elements between positions 𝑖 and 𝑗:

𝜌(𝑖, 𝑗) = (1 ⋯ 𝑖− 1 𝑗 𝑗 − 1 ⋯ 𝑖+ 1 𝑖 𝑗 + 1 ⋯ 𝑛).

A signed reversal 𝜌(𝑖, 𝑗) with 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 is a signed permutation that reverses both the order and the signs of elements between
positions 𝑖 and 𝑗:

𝜌(𝑖, 𝑗) = (1 ⋯ 𝑖− 1 − 𝑗 − (𝑗 − 1) ⋯ − (𝑖+ 1) − 𝑖 𝑗 + 1 ⋯ 𝑛).

If 𝑖 = 1, then 𝜌(𝑖, 𝑗) (resp. 𝜌(𝑖, 𝑗)) is called a prefix (signed) reversal.

A reversal 𝜌 applied to a permutation 𝜋 transforms it into another permutation 𝜎 = 𝜋𝜌. For instance, if 𝜋 = (−1 4 −3 −2 5), then
the reversal 𝜌(2,4) transforms 𝜋 into 𝜋𝜌 = (−1 − 2 − 3 4 5), while the signed reversal 𝜌(2,4) transforms 𝜋 into 𝜋𝜌 = (−1 2 3 − 4 5).
When the distinction matters, we mention whether objects or transformations are signed or unsigned; otherwise, we omit those
qualifiers to lighten the presentation.

A reversal can be thought of as an operation that “cuts” (i.e., removes) two edges from a genome, then “joins” the severed endpoints
(by adding two new edges) in such a way that the segment between the cuts is now reversed (see e.g. how 𝐺 transforms into 𝐺1 in
Fig. 1). The following operation builds on that view to generalise reversals.

Definition 7. [3] Let 𝑒 = {𝑢, 𝑣} ≠ 𝑓 = {𝑤,𝑥} be two edges of a genome 𝐺. The double-cut-and-join (or DCJ for short) 𝛿 applied to 𝐺
transforms 𝐺 into a genome 𝐺′ by replacing edges 𝑒 and 𝑓 with either {{𝑢,𝑤},{𝑣,𝑥}} or {{𝑢, 𝑥}, {𝑣,𝑤}}. Operation 𝛿 is a prefix DCJ
if 0 ∈ 𝑒 ∪ 𝑓 .

Fig. 1 shows an example of a prefix DCJ applied to an unsigned genome, considering both options for replacing edges. DCJs apply
to signed genomes as well: they may cut any pair of edges of the perfect matching, and recombine their endpoints in one of two ways.

1.2. Problems

We study several specialised versions of the following problem. A configuration is a (possibly signed and / or linear) genome, and
the identity configuration is the identity genome with structural constraints consistent with the input configuration (see Definitions 1, 2
and 5).

sorting by Ω
Input: a configuration 𝐺, a number 𝐾 ∈ℕ, and a set Ω of allowed operations.
Question: is there a sequence of at most 𝐾 operations from Ω that transforms
𝐺 into the identity configuration?

Specific choices for Ω and the model chosen for 𝐺 yield the following variants:

• Sorting by Unsigned Prefix DCJs, where 𝐺 is a genome and Ω is the set of all prefix DCJs;
• Sorting by Signed Prefix DCJs, where 𝐺 is a signed genome and Ω is the set of all prefix DCJs;
• Sorting by Unsigned Prefix Reversals, where 𝐺 is a linear genome and Ω is the set of all prefix reversals;
• Sorting by Signed Prefix Reversals, where 𝐺 is a signed linear genome and Ω is the set of all prefix signed reversals.

We refer to the smallest number of operations needed to transform 𝐺 into the identity configuration as the Ω-distance of 𝐺. A
specific distance is associated to each of the above problems; we use the following notation:

Theoretical Computer Science 1024 (2025) 114909

3

G. Fertin, G. Jean and A. Labarre

• 𝑝𝑑𝑐𝑗(𝐺) for the prefix DCJ distance of an unsigned genome 𝐺, and 𝑝𝑠𝑑𝑐𝑗(𝐺) for its signed version;
• 𝑝𝑟𝑑(𝐺) for the prefix reversal distance of an unsigned genome 𝐺, and 𝑝𝑠𝑟𝑑(𝐺) for its signed version.

In order to avoid triviality, the input configuration for each problem must satisfy specific structural constraints so that it can be
transformed into the identity configuration at all. Namely, two genomes can be transformed into one another by DCJs if and only if
their labelled degree sequences coincide (see Bienstock and Günlük [8, Lemma 2.6]); and a genome can be sorted by (possibly prefix
and / or signed) reversals if and only if it is linear (or equivalently, if it is a permutation). For Sorting by Unsigned Prefix DCJs,
the input genome must contain a path from 0 to 𝑛+ 1; elements that do not belong to that path must belong to one or more cycles.

2. A generic lower bounding technique

We present in this section a lower bounding technique which applies to both the signed and the unsigned models, and on which
we will build, in subsequent sections, to obtain exact or approximation algorithms.

2.1. Preliminaries

The effect of algebraic transpositions, or exchanges, on the classical cycles of a permutation, is a key ingredient to our lower bounding
technique.

Definition 8. An exchange 𝜀(𝑖, 𝑗) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 is a permutation that swaps elements in positions 𝑖 and 𝑗:

𝜀(𝑖, 𝑗) =

(
1 ⋯ 𝑖− 1 𝑖 𝑖+ 1 ⋯ 𝑗 − 1 𝑗 𝑗 + 1 ⋯ 𝑛
1 ⋯ 𝑖− 1 𝑗 𝑖+ 1 ⋯ 𝑗 − 1 𝑖 𝑗 + 1 ⋯ 𝑛

)
.

If 𝑖 = 1, then 𝜀(𝑖, 𝑗) is called a prefix exchange.

For instance, the exchange 𝜀(3,6) applied to permutation 𝜋 = (3 1 4 2 6 5 7) transforms 𝜋 into 𝜋𝜀 = (3 1 5 2 6 4 7). We let Γ(𝜋)
denote the (directed) graph of a permutation 𝜋, with vertex set [𝑛] and which contains an arc (𝑖, 𝑗) whenever 𝜋𝑖 = 𝑗. The length of a
cycle in the graph Γ(𝜋) is the number of edges it contains. A 𝑘-cycle is a cycle of length 𝑘: it is trivial if 𝑘 = 1, and nontrivial otherwise.
We let 𝑐(Γ(𝜋)) (resp. 𝑐1(Γ(𝜋))) denote the number of cycles (resp. 1-cycles) in Γ(𝜋). Since exchanges involve elements belonging to
one or two cycles of Γ(𝜋), we have the following well-known fact:

Fact 1. For any unsigned permutation 𝜋 and any exchange 𝜀(𝑖, 𝑗), 𝑐(Γ(𝜋)) − 𝑐(Γ(𝜋𝜀(𝑖, 𝑗))) ∈ {−1,0,1}.

Let 𝑝𝑒𝑑(𝜋) denote the prefix exchange distance of a permutation 𝜋. The following result allows the computation of that distance
in linear time, and will be useful to our purposes.

Theorem 1. [9] For any unsigned permutation 𝜋, we have

𝑝𝑒𝑑(𝜋) = 𝑛+ 𝑐(Γ(𝜋)) − 2𝑐1(Γ(𝜋)) −
{

0 if 𝜋1 = 1,
2 otherwise.

In the following two subsections, we obtain lower bounds on 𝑝𝑑𝑐𝑗(⋅) and 𝑠𝑝𝑑𝑐𝑗(⋅) by observing that the effect of (prefix) exchanges
on the cycles of a permutation is the same as that of (prefix) DCJs on the cycles of a different graph structure based on permutations
— namely, the (unsigned) breakpoint graph.

2.2. The signed case

We generalise the following structure, originally introduced by Bafna and Pevzner [10] for signed permutations, to signed genomes.

Definition 9. The breakpoint graph of a signed genome 𝐺, denoted by 𝐵𝐺(𝐺), is the union of 𝐺, whose edges are referred to as black
edges, and the signed identity genome, whose edges are referred to as grey edges. The breakpoint graph of a signed permutation is the
breakpoint graph of its unsigned translation (viewed as a signed genome, as explained after Definition 5).

See Fig. 2 for an example. Note that, although vertices are merged by the union, edges with the same endpoints but with different
colours are not. Breakpoint graphs are 2-regular and as such are the union of disjoint cycles whose edges alternate between both
colours, thereby referred to as alternating cycles. The length of a cycle in a breakpoint graph is the number of black edges it contains.
In what follows, we define a 𝑘-cycle as a cycle of length 𝑘: it is trivial if 𝑘 = 1, and nontrivial otherwise. We let 𝑐(𝐵𝐺(𝐺)) (resp.
𝑐1(𝐵𝐺(𝐺))) denote the number of cycles (resp. 1-cycles) in 𝐵𝐺(𝐺).

A breakpoint graph represents both the current genome (as black edges) and the target genome (as grey edges). The breakpoint
graph of the identity genome is the only breakpoint graph with 𝑛 + 1 cycles. Therefore, this representation allows to reduce the

Theoretical Computer Science 1024 (2025) 114909

4

G. Fertin, G. Jean and A. Labarre

0 2 1 7 8 6 5 4 3 9 10 11

Fig. 2. The breakpoint graph of the unsigned translation obtained from 𝜋 = (−1 4 −3 −2 5).

sorting by Ω problem to increasing the number of cycles in a breakpoint graph up to 𝑛+1 by using only operations from the set Ω.
As a consequence, by studying the effect of a single operation on the number of cycles, lower bounds can be obtained by showing that
the number of cycles cannot increase by more than some increment at every step. The following result is an example of that strategy.

Theorem 2. For any signed linear genome 𝐺, we have

𝑝𝑠𝑑𝑐𝑗(𝐺) ≥ 𝑛+ 1 + 𝑐(𝐵𝐺(𝐺)) − 2𝑐1(𝐵𝐺(𝐺)) −
{

0 if {0,1} ∈ 𝐺,
2 otherwise.

(1)

Proof. As observed by Yancopoulos et al. [3], a DCJ acts on at most two cycles of 𝐵𝐺(𝐺) and can therefore change the number of
cycles by at most one. Their effect on 𝐵𝐺(𝐺) is therefore exactly the same as that of exchanges (see Fact 1), and this analogy is
preserved under the prefix constraint. Since prefix DCJs cannot increase the number of cycles in 𝐵𝐺(𝐺) faster than prefix exchanges
in Γ(𝜋), the lower bound then follows from Theorem 1. Note that Equation (1) uses 𝑛+1 rather than 𝑛, since the number of elements
is now the number of black edges; the condition that depends on {0,1} ∈ 𝐺 is the breakpoint graph analogue of 𝜋1 = 1, since in both
cases, the first component of the underlying graph structure is a cycle of length 1. □

Since (prefix) signed reversals are a subset of (prefix) signed DCJs, the result below by Labarre and Cibulka [4] is a simple corollary
of Theorem 2.

Theorem 3. [4] For any signed permutation 𝜋, we have

𝑝𝑠𝑟𝑑(𝜋) ≥ 𝑛+ 1 + 𝑐(𝐵𝐺(𝜋)) − 2𝑐1(𝐵𝐺(𝜋)) −
{

0 if 𝜋1 = 1,
2 otherwise.

(2)

2.3. The unsigned case

We now show that our lower bounds apply to the unsigned setting as well. The definition of the breakpoint graph in the unsigned
case is identical to the signed case, except that the union acts on different structures; the definition of the length of a cycle remains
unchanged.

Definition 10. The unsigned breakpoint graph of a genome 𝐺, denoted by 𝑈𝐵𝐺(𝐺), is the union of 𝐺, whose edges are referred to as
black edges, and the identity genome, whose edges are referred to as grey edges. The breakpoint graph of a permutation 𝜋 = (𝜋1 𝜋2 ⋯ 𝜋𝑛)
is the breakpoint graph of the linear genome (0, 𝜋1, 𝜋2,… , 𝜋𝑛, 𝑛+ 1).

Fig. 3(𝑎) shows an example of an unsigned breakpoint graph. Vertices 0 and 𝑛+1 in the unsigned breakpoint graph have degree 2,
and all other vertices have degree 4. Just like its signed counterpart, the unsigned breakpoint graph also decomposes into alternating
cycles, but this time the decomposition is no longer unique, and the choices made in the course of computing such a decomposition
impact the value of the lower bound we provide next.

As explained in the paragraph before Theorem 2, a genome with a breakpoint graph whose cycle decomposition is “closest” to that
of the identity will require fewer operations to sort. This motivates the need for decompositions that will optimise some parameter
related to that decomposition, as formalised in the next definition.

Definition 11. For any genome 𝐺 and an arbitrary decomposition 𝒟 of 𝑈𝐵𝐺(𝐺) into alternating cycles, let 𝑐𝒟 (resp. 𝑐𝒟1) denote the
number of cycles (resp. trivial cycles) of 𝒟. We call 𝒟 optimal if it minimises 𝑐𝒟 − 2𝑐𝒟1 .

Fig. 3(𝑏) shows an example of an optimal decomposition. The reason for this choice stems from the following lower bound, where
𝑐∗(𝑈𝐵𝐺(𝐺)) and 𝑐∗1 (𝑈𝐵𝐺(𝐺)) denote, respectively, the number of cycles and the number of 1-cycles in an optimal decomposition of
𝑈𝐵𝐺(𝐺): since we can only use prefix DCJs, each of which can increase the number of cycles in the breakpoint graph by at most 1,
choosing the right decomposition with respect to the identity constitutes our only leeway. We discuss the problem of computing such
a decomposition in Proposition 1.

Theoretical Computer Science 1024 (2025) 114909

5

G. Fertin, G. Jean and A. Labarre

Fig. 3. (𝑎) The unsigned breakpoint graph 𝑈𝐵𝐺(𝜋) of 𝜋 = (3 2 5 4 1); (𝑏) an optimal decomposition of 𝑈𝐵𝐺(𝜋) into two trivial cycles (thick) and one 4-cycle (dotted).

Fig. 4. An optimal sorting sequence of prefix DCJs for an instance with 𝑛 = 4, and in which the presence of both {0,1} and {1,2} prevents the creation of a new
1-cycle. At each step, we show an optimal decomposition of 𝑈𝐵𝐺(𝐺): dotted edges belong to the nontrivial cycles of the decomposition. For instance, at the first step,
we have 𝑐∗(𝑈𝐵𝐺(𝐺)) = 4 and 𝑐∗1 (𝑈𝐵𝐺(𝐺)) = 3. The value of the lower bound of Theorem 4 is also shown at each step.

Fig. 5. An optimal prefix reversal with respect to Equation (4) for permutation (1 4 2 3): it moves 1 out of the way and preserves the number of trivial and nontrivial
cycles (resp. 2 and 1). The decompositions of both unsigned breakpoint graphs are optimal, and dotted edges belong to the nontrivial cycles of the decomposition.

Theorem 4. For any genome 𝐺, we have

𝑝𝑑𝑐𝑗(𝐺) ≥ 𝑛+ 1 + 𝑐∗(𝑈𝐵𝐺(𝐺)) − 2𝑐∗1 (𝑈𝐵𝐺(𝐺)) −
⎧⎪⎨⎪⎩
0 if {0,1} ∈ 𝐺 and {1,2} ∈ 𝐺,
1 if {0,1} ∈ 𝐺 and {1,2} ∉ 𝐺,
2 otherwise.

(3)

Proof. As in the proof of Theorem 2, prefix DCJs affect the cycles in a decomposition of 𝑈𝐵𝐺(𝐺) in the same way that prefix exchanges
affect the cycles of a permutation. The particular case where {1,2} ∉ 𝐺 allows us to make progress in the case where {0,1} ∈ 𝐺:
since {1,2} ∉ 𝐺, 𝐺 contains at least one breakpoint involving 2, say {2, 𝑦}; applying the prefix DCJ that replaces {{0,1},{2, 𝑦}} with
{{0, 𝑦},{1,2}} replaces the 1-cycle (0,1) in 𝑈𝐵𝐺(𝐺) with a new 1-cycle (1,2) in 𝑈𝐵𝐺(𝐺′), and the number of nontrivial cycles is
unaffected. Since prefix DCJs cannot increase the number of cycles in 𝐵𝐺(𝐺) faster than prefix exchanges in Γ(𝜋), except in the case
we just analysed, the lower bound then follows from Theorem 1 and the optimality of a decomposition. As in the proof of Theorem 2,
Equation (3) uses 𝑛+ 1 rather than 𝑛, since the number of elements is now the number of black edges. □

Fig. 4 shows an optimal sorting sequence for an instance of length 𝑛 = 4 that contains both {0,1} and {1,2}. Since (prefix) reversals
are (prefix) DCJs that preserve the path structure of a linear genome, the lower bound of Theorem 4 is also a lower bound on 𝑝𝑟𝑑(𝜋).

Corollary 1. For any permutation 𝜋 on 𝑛 ≥ 2 elements, let 𝑝2 = 𝜋𝜋−1
2 −1 (i.e., 𝑝2 is the element that appears right before 2 in 𝜋); we have

𝑝𝑟𝑑(𝜋) ≥ 𝑛+ 1 + 𝑐∗(𝑈𝐵𝐺(𝜋)) − 2𝑐∗1 (𝑈𝐵𝐺(𝜋)) −
⎧⎪⎨⎪⎩
0 if 𝜋1 = 1 and {𝑝2,2} is an adjacency,
1 if 𝜋1 = 1 and {𝑝2,2} is a breakpoint,
2 otherwise.

(4)

Fig. 5 shows an example for the case where 𝜋1 = 1 and {𝑝2,2} is a breakpoint.

Theoretical Computer Science 1024 (2025) 114909

6

G. Fertin, G. Jean and A. Labarre

Fig. 6. Two optimal decompositions of 𝑈𝐵𝐺(𝜋) with 𝜋 = (213465). (𝑎) A decomposition obtained using the algorithm described in the proof of Proposition 1, i.e.,
which first maximises the number of trivial cycles (namely, 3) and then minimises the number of nontrivial cycles (namely, 2). (𝑏) Another optimal decomposition
with only 2 trivial cycles and 1 nontrivial cycle.

We now show that an optimal decomposition of an unsigned breakpoint graph into alternating cycles can be found in polynomial
time. This contrasts with the problem of finding an optimal decomposition in the case of sorting by unrestricted reversals, which was
shown to be 𝖭𝖯-complete [11] (note that in that context, an optimal decomposition maximises the total number of cycles). Recall that
an alternating Eulerian cycle in a bicoloured graph 𝐺 is a cycle that traverses every edge of 𝐺 exactly once and such that the colours
of every pair of consecutive edges are distinct.

Corollary 2. [12,13] A bicoloured connected graph contains an alternating Eulerian cycle iff the number of incident edges of each colour is
the same at every vertex; i.e., iff every vertex 𝑣 incident with 𝑘𝑣 edges of the first colour is incident with 𝑘𝑣 edges of the second colour.

Proposition 1. There exists a polynomial-time algorithm for computing an optimal decomposition for 𝑈𝐵𝐺(𝐺).

Proof. Let us consider the following algorithm: extract all trivial cycles from 𝑈𝐵𝐺(𝐺), then let each connected component in the
resulting graph (ignoring isolated vertices) be a nontrivial cycle (Corollary 2 guarantees that the remaining components are alternating
cycles). This yields a decomposition 𝒟, which we now show is optimal. For this, note that by construction, no decomposition of
𝑈𝐵𝐺(𝐺) contains strictly more than 𝑐𝒟1 trivial cycles — in other words, 𝒟 contains the highest possible number of trivial cycles.
Moreover, also by construction, no decomposition containing 𝑐𝒟1 trivial cycles can have strictly less than 𝑐𝒟 − 𝑐𝒟1 nontrivial cycles.

Aiming for a contradiction, let us now assume that 𝒟 is not optimal. Then there exists another decomposition ℰ such that

𝑐𝒟 − 2𝑐𝒟1 > 𝑐ℰ − 2𝑐ℰ1 . (5)

As previously argued, we have 𝑐ℰ1 ≤ 𝑐𝒟1 . Now, if 𝑐ℰ1 = 𝑐𝒟1 , as discussed above, any decomposition, including ℰ, has at least
𝑐𝒟 − 𝑐𝒟1 nontrivial cycles. In other words, we have 𝑐ℰ − 𝑐ℰ1 ≥ 𝑐𝒟 − 𝑐𝒟1 , which we can rewrite as 𝑐ℰ − 2𝑐ℰ1 ≥ 𝑐𝒟 − 2𝑐𝒟1 (since we
suppose 𝑐ℰ1 = 𝑐𝒟1). However, this contradicts Equation (5). Therefore, the only remaining case is the following: 𝑐ℰ1 < 𝑐𝒟1 .

Assume that 𝑐𝒟1 = 𝑐ℰ1 + 𝑥, for some integer 𝑥 > 0, and, w.l.o.g., let us consider ℰ to be a decomposition for which 𝑥 is minimised.
In other words, 𝑥 of the 𝑐𝒟1 trivial cycles in 𝒟 are contained in the nontrivial cycles of ℰ (see e.g. Fig. 6(𝑏), in which the trivial cycle
(3,4) of the decomposition in Fig. 6(𝑎) is now part of a nontrivial cycle).

A merge involving a trivial cycle 𝑐 occurs with either one or two cycles, that may be trivial or nontrivial, which leads to five
possible cases. Let first 𝑐𝒟𝑛𝑡 = 𝑐𝒟 − 𝑐𝒟1 (resp. 𝑐ℰ𝑛𝑡 = 𝑐ℰ − 𝑐ℰ1) denote the number of nontrivial cycles in 𝒟 (resp. in ℰ). The five cases
to consider are the following:

1. 𝑐 is merged with one nontrivial cycle. In that case, 𝑥 = 1 and the number of nontrivial cycles remains unchanged, i.e. 𝑐ℰ𝑛𝑡 − 𝑐𝒟𝑛𝑡 = 0;

2. 𝑐 is merged with one trivial cycle. In that case, 𝑥 = 2 and the number of nontrivial cycles is increased by one, i.e. 𝑐ℰ𝑛𝑡 − 𝑐𝒟𝑛𝑡 = 1;
3. 𝑐 is merged with two nontrivial cycles. In that case, 𝑥 = 1 and the number of nontrivial cycles is decreased by one, i.e. 𝑐ℰ𝑛𝑡 − 𝑐𝒟𝑛𝑡 =

−1;
4. 𝑐 is merged with one nontrivial and one trivial cycle. In that case, 𝑥 = 2 and the number of nontrivial cycles remains unchanged,

i.e. 𝑐ℰ𝑛𝑡 − 𝑐𝒟𝑛𝑡 = 0;
5. finally, 𝑐 is merged with two trivial cycles. In that case, 𝑥 = 3 and the number of nontrivial cycles increases by 1, i.e. 𝑐ℰ𝑛𝑡 − 𝑐𝒟𝑛𝑡 = 1.

In each of the above five cases, we can see that 𝑐ℰ𝑛𝑡 − 𝑐𝒟𝑛𝑡 ≥ −𝑥. However, the above inequality contradicts Equation (5). Indeed,
we can rewrite it 𝑐𝒟𝑛𝑡 − 𝑐𝒟1 > 𝑐ℰ𝑛𝑡 − 𝑐ℰ1 , which yields 𝑐ℰ𝑛𝑡 − 𝑐𝒟𝑛𝑡 < −𝑥, since we assumed 𝑐𝒟1 = 𝑐ℰ1 + 𝑥. This shows that 𝒟 is optimal. □

Note that maximising the number of trivial cycles is only one way of reaching optimality. For instance, Fig. 6(𝑏) shows a decom-
position that does not maximise the number of trivial cycles, yet is optimal.

3. Algorithms for sorting by prefix DCJs

3.1. Signed prefix DCJs

We give a polynomial-time algorithm for Sorting by Signed Prefix DCJs. It is based on the notion of breakpoint, which we
defined in the unsigned setting (Definition 3), and which generalises to the signed setting in a straightforward way: a breakpoint in a
signed genome is an edge that does not contain 0 and that does not appear in the identity genome. Our result relies on the following
simple observation.

Theoretical Computer Science 1024 (2025) 114909

7

G. Fertin, G. Jean and A. Labarre

Observation 1. Let 𝐺 be a signed linear genome, and let 𝑔(𝐺) denote the right-hand side of Equation (1). Then 𝑔(𝐺) = 0 iff 𝐺 is the identity
genome.

Proof. Clearly, if 𝐺 is the identity genome, then {0,1} ∈ 𝐺 and 𝐵𝐺(𝐺) contains 𝑛+ 1 cycles, which all are trivial. Thus 𝑐(𝐵𝐺(𝐺)) =
𝑐1(𝐵𝐺(𝐺)) = 𝑛+ 1 and we obtain 𝑔(𝐺) = 0.

If 𝑔(𝐺) = 0, let us denote 𝑐+(𝐵𝐺(𝐺)) = 𝑐(𝐵𝐺(𝐺)) − 𝑐1(𝐵𝐺(𝐺)) the number of nontrivial cycles in 𝐵𝐺(𝐺). Then:

1. either {0,1} ∈ 𝐺, in which case 𝑔(𝐺) = 0 can be rewritten as 𝑐1(𝐵𝐺(𝐺)) − 𝑐+(𝐵𝐺(𝐺)) = 𝑛 + 1. However, since 𝑐1(𝐵𝐺(𝐺)) can
never exceed 𝑛+ 1, the only way to satisfy the above equality is when 𝑐1(𝐵𝐺(𝐺)) = 𝑛+ 1 and 𝑐+(𝐵𝐺(𝐺)) = 0, that is when 𝐺 is
the identity genome.

2. or {0,1} ∉ 𝐺, in which case 𝑔(𝐺) = 0 can be rewritten as 𝑐1(𝐵𝐺(𝐺)) − 𝑐+(𝐵𝐺(𝐺)) = 𝑛 − 1. However, since {0,1} ∉ 𝐺, 0 and 1
belong to a nontrivial cycle ; therefore, 𝑐1(𝐵𝐺(𝐺)) ≤ 𝑛− 1 because  contains at least 2 edges, and thus prevents the existence
of at least 2 trivial cycles (among the 𝑛+1 potential ones). Consequently, 𝑐1(𝐵𝐺(𝐺)) − 𝑐+(𝐵𝐺(𝐺)) = 𝑛−1 is only possible in this
case when 𝑐1(𝐵𝐺(𝐺)) = 𝑛− 1 and 𝑐+(𝐵𝐺(𝐺)) = 0, a contradiction to the existence of the nontrivial cycle . □

Theorem 5. The Sorting by Signed Prefix DCJs problem is in 𝖯.

Proof. Let 𝐺 be any signed genome (other than the identity, in order to avoid triviality). For convenience, as in the proof of Observa-
tion 1, let 𝑔(𝐺) denote the right-hand side of Equation (1). We will show that the lower bound of Theorem 2 for Sorting by Signed
Prefix DCJs is also an upper bound, by proving that every unsorted genome 𝐺 admits a prefix DCJ that transforms 𝐺 into another
genome 𝐺′ in such a way that 𝑔(𝐺′) − 𝑔(𝐺) = −1. Doing this, we are able, in 𝑔(𝐺) steps, to obtain a genome 𝐺∗ such that 𝑔(𝐺∗) = 0 ;
by Observation 1, we conclude that 𝐺∗ is the identity genome. Thus, inductively, starting from 𝐺∗ , this shows that every intermedi-
ate genome 𝐺𝛼 we obtained going from 𝐺 to 𝐺∗ satisfies 𝑝𝑠𝑑𝑐𝑗(𝐺𝛼) ≤ 𝑔(𝐺𝛼). In particular, 𝑝𝑠𝑑𝑐𝑗(𝐺) ≤ 𝑔(𝐺), which, combined with
Theorem 2, shows 𝑝𝑠𝑑𝑐𝑗(𝐺) = 𝑔(𝐺).

Now it remains to show that every unsorted genome 𝐺 admits a prefix DCJ that transforms 𝐺 into another genome 𝐺′, in such
a way that 𝑔(𝐺′) − 𝑔(𝐺) = −1. In what follows, we refer to the only neighbour of a vertex in 𝐺 (resp. in the identity genome) as its
black (resp. grey) neighbour, which is guaranteed to be unique since signed genomes are perfect matchings. For convenience, let 𝑔(𝐺)
denote the right-hand side of Equation (1). Let 𝑣 be the black neighbour of 0; we have two cases to consider:

1. if 𝑣 = 1, apply a prefix DCJ 𝛿 acting on {0, 𝑣} and any breakpoint {𝑥, 𝑦} and which reconnects the endpoints arbitrarily. Since
𝛿 merges the trivial cycle (0,1) with a nontrivial cycle in 𝐵𝐺(𝐺), the number of trivial cycles decreases by 1, as does the total
number of cycles. The resulting genome 𝐺′ satisfies

𝑔(𝐺′) − 𝑔(𝐺) = 𝑛+ 1 + 𝑐(𝐵𝐺(𝐺)) − 1 − 2(𝑐1(𝐵𝐺(𝐺)) − 1) − 2

− (𝑛+ 1 + 𝑐(𝐵𝐺(𝐺)) + 2(𝑐1(𝐵𝐺(𝐺)))

= −1.

2. otherwise, 𝑣 ≠ 1: let 𝑥 be the grey neighbour of 𝑣 and 𝑦 be the black neighbour of 𝑥, and apply the prefix DCJ 𝛿′ that replaces
{0, 𝑣} and {𝑥, 𝑦} with {0, 𝑦} and {𝑣,𝑥}. Since 𝛿′ connects 𝑣 to its grey neighbour, the number of trivial cycles increases by 1 (if
𝑦 ≠ 1) or 2 (if 𝑦 = 1). Moreover, before applying 𝛿′, there is an alternating path going through elements 0, 𝑣, 𝑥 and 𝑦 in 𝐵𝐺(𝐺),
which means that those elements belong to the same cycle in 𝐵𝐺(𝐺). Applying 𝛿′ splits that cycle into two distinct cycles, and
therefore the total number of cycles increases by 1 in both cases. We distinguish between two subcases based on 𝑦’s value:
(a) if 𝑦 ≠ 1, then

𝑔(𝐺′) − 𝑔(𝐺) = 𝑛+ 1 + 𝑐(𝐵𝐺(𝐺)) + 1 − 2(𝑐1(𝐵𝐺(𝐺)) + 1) − 2

− (𝑛+ 1 + 𝑐(𝐵𝐺(𝐺)) + 2(𝑐1(𝐵𝐺(𝐺))) + 2

= −1.

(b) if 𝑦 = 1, then

𝑔(𝐺′) − 𝑔(𝐺) = 𝑛+ 1 + 𝑐(𝐵𝐺(𝐺)) + 1 − 2(𝑐1(𝐵𝐺(𝐺)) + 2)

− (𝑛+ 1 + 𝑐(𝐵𝐺(𝐺)) + 2(𝑐1(𝐵𝐺(𝐺))) + 2

= −1.

As a consequence, the value of our lower bound always decreases by 1 in all cases, which completes the proof. □

Algorithm 1 implements the approach outlined in the proof of Theorem 5, without the need to build the breakpoint graph.
Indeed, the other endpoint 𝑥 of the grey edge incident to 0’s neighbour 𝑣 can be deduced from 𝑣’s parity: since the identity’s edge
set is {{2𝑖,2𝑖 + 1} | 0 ≤ 𝑖 ≤ 𝑛} (see Definition 5), if 𝑣 is odd, then its neighbour in the identity is 𝑣 − 1; likewise, if 𝑣 is even, then

Theoretical Computer Science 1024 (2025) 114909

8

G. Fertin, G. Jean and A. Labarre

Algorithm 1: SortingByPSDCJ(𝐺).
Input: A signed genome 𝐺.
Output: An optimal sorting sequence of prefix DCJs for 𝐺.

1 𝑆 ← empty sequence;
2 𝐵 ← 𝐺’s breakpoints;
3 while 𝐵 ≠ ∅ do

4 𝑣 ← 0’s neighbour in 𝐺;
5 if 𝑣 = 1 then

6 extract any breakpoint {𝑥, 𝑦} from 𝐵;
7 𝐺 ← 𝐺 ⧵ {{0, 𝑣},{𝑥, 𝑦}} ∪ {{0, 𝑥},{𝑣, 𝑦}};
8 𝑆 .append(({{0, 𝑣},{𝑥, 𝑦}},{{0, 𝑥},{𝑣, 𝑦}}));
9 𝐵 ← 𝐵 ∪ {{𝑣, 𝑦}};

10 else

11 𝑥 ← 𝑣+ 1 − 2(𝑣 mod 2); // 𝑣’s neighbour in the identity
12 𝑦 ← 𝑥’s neighbour in 𝐺;
13 𝐺 ← 𝐺 ⧵ {{0, 𝑣},{𝑥, 𝑦}} ∪ {{0, 𝑦},{𝑣,𝑥}};
14 𝑆 .append(({{0, 𝑣},{𝑥, 𝑦}},{{0, 𝑦},{𝑣,𝑥}}));
15 𝐵 ← 𝐵 ⧵ {{𝑥, 𝑦}};

16 return 𝑆 ;

0 𝑣

𝑥1

𝑦1

∄

∄

0 𝑣

𝑥1

𝑦1

∄

∄

Fig. 7. Proof of Theorem 6, in the case where {0, 𝑣} ∈ 𝐺 with 𝑣 ≠ 1. Dashed edges correspond to alternating paths. Grey edges that are known not to exist in 𝑈𝐵𝐺 are
struck out. In order to be as general as possible, 𝐺 is intentionally not drawn linearly.

its neighbour in the identity is 𝑣 + 1. Encoding 𝐺’s edges using an array storing each vertex’s only neighbour allows us to query
neighbours and perform DCJs in 𝑂(1) time, and a simple set data structure for breakpoints allows us to extract or add them in 𝑂(1)
time as well. Finally, the distance’s value is bounded by 𝑂(𝑛), and checking whether 𝐺 is sorted reduces to checking whether the set
of breakpoints is empty, which yields an 𝑂(𝑛) running time for Algorithm 1.

3.2. Unsigned prefix DCJs

We now turn to the problem of Sorting by Unsigned Prefix DCJs, for which we give a polynomial-time algorithm.

Theorem 6. For any genome 𝐺, we have

𝑝𝑑𝑐𝑗(𝐺) = 𝑛+ 1 + 𝑐∗(𝑈𝐵𝐺(𝐺)) − 2𝑐∗1 (𝑈𝐵𝐺(𝐺)) −
⎧⎪⎨⎪⎩
0 if {0,1} ∈ 𝐺 and {1,2} ∈ 𝐺,
1 if {0,1} ∈ 𝐺 and {1,2} ∉ 𝐺,
2 otherwise.

(6)

Proof. Theorem 4 shows that the right-hand side of Equation (6), that we will denote 𝑔(𝐺) for convenience, is a lower bound for
Sorting by Unsigned Prefix DCJs. Note that, using arguments similar to those discussed in Observation 1, 𝑔(𝐺) is equal to 0 iff 𝐺
is the identity genome. Then, assume 𝐺 is not the identity genome, in which case the claim trivially holds. To show that 𝑔(𝐺) is also
an upper bound, we use arguments similar to those provided in the proof of Theorem 5. More precisely, we first prove that it is always
possible to find a prefix DCJ that transforms 𝐺 into another genome 𝐺′ in such a way that 𝑔(𝐺) decreases by 1. Combining the above
property with the fact that 𝑔(𝐺) = 0 iff 𝐺 is the identity genome allows us to conclude that 𝑝𝑑𝑐𝑗(𝐺) = 𝑔(𝐺). Let 𝑐 = 𝑐∗(𝑈𝐵𝐺(𝐺)) and
𝑐1 = 𝑐∗1 (𝑈𝐵𝐺(𝐺)), as well as 𝑐′ = 𝑐∗(𝑈𝐵𝐺(𝐺′)) and 𝑐′1 = 𝑐∗1 (𝑈𝐵𝐺(𝐺′)). We have two main cases to consider:

1. If {0, 𝑣} ∈ 𝐺 with 𝑣 ≠ 1 (see Fig. 7), then 𝐺 contains an element 𝑥1 ∈ {𝑣 − 1, 𝑣 + 1} that is not adjacent to 𝑣. In turn, since
{𝑣,𝑥1} ∉ 𝐺, 𝑥1 must be adjacent to an element 𝑦1 such that {𝑥1, 𝑦1} is a breakpoint. We distinguish between the following
subcases depending on the value of 𝑦1.
(a) If 𝑦1 ≠ 1: we apply the prefix DCJ 𝛿1 that replaces {{0, 𝑣},{𝑥1, 𝑦1}} with {{0, 𝑦1},{𝑣,𝑥1}}. Since 𝑈𝐵𝐺(𝐺) contains the

alternating path (0, 𝑣, 𝑥1, 𝑦1), those four elements belong to the same cycle in 𝑈𝐵𝐺(𝐺); 𝛿1 replaces that path with a shortcut
of length 1 (namely, {0, 𝑦1}), and the cycle remains nontrivial since 𝑦1 ≠ 1. Therefore, we have 𝑐′ = 𝑐 + 1 and 𝑐′1 = 𝑐1 + 1,
and:

𝑔(𝐺′) − 𝑔(𝐺) = 𝑛+ 1 + 𝑐 + 1 − 2𝑐1 − 2 − 2 − (𝑛+ 1 + 𝑐 − 2𝑐1 − 2) = −1.

Theoretical Computer Science 1024 (2025) 114909

9

G. Fertin, G. Jean and A. Labarre

0 𝑣

𝑥1

𝑥2

𝑥3

1

2

∄

∄

0 𝑣

𝑥1

𝑥2

𝑥3

1

2

∄

∄

Fig. 8. Proof of Theorem 6, case 1(c)ii. In order to be as general as possible, 𝐺 is intentionally not drawn linearly.

(b) If 𝑦1 = 1 and {1,2} ∉ 𝐺: we apply the prefix DCJ 𝛿1 from the previous case. Both 𝑐1 and 𝑐 increase by 2 since 𝛿1 also yields
the trivial cycle (0,1) in 𝐺′. Since {0,1} ∈ 𝐺′ and {1,2} ∉ 𝐺′, we obtain:

𝑔(𝐺′) − 𝑔(𝐺) = 𝑛+ 1 + 𝑐 + 2 − 2𝑐1 − 4 − 1 − (𝑛+ 1 + 𝑐 − 2𝑐1 − 2) = −1.

(c) If 𝑦1 = 1 and {1,2} ∈ 𝐺: consider 𝑥1’s other black neighbour 𝑧1 ≠ 𝑦1: if {𝑥1, 𝑧1} is a breakpoint, then we apply the anal-
ysis used in case 1(a), replacing 𝑦1 with 𝑧1 (so we apply a different prefix DCJ 𝛿2, which replaces {{0, 𝑣},{𝑥1, 𝑧1}} with
{{0, 𝑧1},{𝑣,𝑥1}}). Otherwise, consider 𝑣’s other grey neighbour 𝑥2 ∈ {𝑣 − 1, 𝑣 + 1}. 𝑥2 cannot be adjacent to 1 since 1’s
neighbours are 𝑥1 and 2.

i. If 𝑥2 is not adjacent to 𝑣, then it forms a breakpoint with some element 𝑤. In that case, we can again apply the analysis
used in case 1(a), replacing 𝑥1 with 𝑥2 and 𝑦1 with 𝑤 (so we apply a prefix DCJ 𝛿3, which replaces {{0, 𝑣},{𝑥2,𝑤}} with
{{0,𝑤}, {𝑣,𝑥2}}).

ii. Otherwise, 𝑣 has neighbours 0 and 𝑥2. Moreover, element 𝑥1 ≠ 𝑥2 with 𝑥1 ∈ {𝑣 − 1, 𝑣 + 1} is adjacent to 1 and has a
neighbour 𝑥3 such that {𝑥1, 𝑥3} is an adjacency (since otherwise we would apply the above analysis involving 𝑧1). Then
there exists an optimal decomposition of 𝑈𝐵𝐺(𝐺) with a 2-cycle induced by vertices (0, 𝑣, 𝑥1,1) that is itself surrounded
by the 1-cycles (𝑣,𝑥2), (𝑥3, 𝑥1) and (1,2) (see Fig. 8). Note that even if 𝑥2 = 𝑥3, the 2-cycle of interest in an optimal
decomposition remains the same since the 1-cycles (𝑣,𝑥2), (𝑥3, 𝑥1) and (1,2) still surround the 2-cycle (0, 𝑣, 𝑥1,1). There-
fore, we can apply the prefix DCJ 𝛿1 from cases 1(a) and 1(b), which replaces {{0, 𝑣},{𝑥1 ,1}} with {{0,1},{𝑣,𝑥1}}. 𝛿1
replaces a nontrivial cycle with two new trivial cycles, and we have:

𝑔(𝐺′) − 𝑔(𝐺) = 𝑛+ 1 + 𝑐 + 1 − 2𝑐1 − 4 − 0 − (𝑛+ 1 + 𝑐 − 2𝑐1 − 2) = −1.

2. Otherwise, {0,1} ∈ 𝐺.
(a) If {1,2} ∉ 𝐺 (see Fig. 9(𝑎)), then 𝐺 contains the breakpoint {2, 𝑦}, in which case a prefix DCJ 𝛿4 which replaces {{0,1},{2, 𝑦}}

with {{0, 𝑦},{1,2}} yields a genome 𝐺′ with 𝑐′1 = 𝑐1, since cycle (0,1) was replaced with cycle (1,2). Note that 1 and 𝑦 belong
to the same nontrivial cycle in an optimal decomposition of 𝑈𝐵𝐺(𝐺), otherwise those separate nontrivial cycles could have
been merged into a single one using the alternating path (1,2, 𝑦). They also belong to the same cycle in 𝑈𝐵𝐺(𝐺′), so 𝑐′ = 𝑐
and we obtain:

𝑔(𝐺′) − 𝑔(𝐺) = 𝑛+ 1 + 𝑐 − 2𝑐1 − 2 − (𝑛+ 1 + 𝑐 − 2𝑐1 − 1) = −1.

(b) If {1,2} ∈ 𝐺 (see Fig. 9(𝑏)), then let 𝑘 be the closest element to 0 in the only path of 𝐺 such that the next vertex 𝓁 forms a
breakpoint with 𝑘. Then a prefix DCJ 𝛿5 which replaces {{0,1},{𝑘,𝓁}} with {{0,𝓁},{1, 𝑘}} yields genome 𝐺′. The removal
of black edge {0,1} leads to a decrease of 1 in the number of trivial cycles in 𝑈𝐵𝐺(𝐺). Moreover, 𝑘 and 𝓁 belong to the
same nontrivial cycle in 𝑈𝐵𝐺(𝐺), and remain in that cycle in 𝑈𝐵𝐺(𝐺′) due to the replacement of black edge {𝑘,𝓁} with the
alternating path (𝑘,1,0,𝓁). Therefore 𝑐′ = 𝑐 − 1, and we obtain:

𝑔(𝐺′) − 𝑔(𝐺) = 𝑛+ 1 + 𝑐 − 1 − 2(𝑐1 − 1) − 2 − (𝑛+ 1 + 𝑐 − 2𝑐1) = −1. □

Algorithm 2 implements the approach outlined in the proof of Theorem 6, without the need to build the breakpoint graph.
Encoding 𝐺’s edges using an array storing each vertex’s neighbours (at most 2) allows us to query neighbours and perform DCJs in
𝑂(1) time, and a simple set data structure for breakpoints allows us to extract or add them in 𝑂(1) time as well. The first breakpoint in
the only path of 𝐺 (line 30) corresponds to the breakpoint with the smallest element of 𝐺. We can easily record this element the first
time we extract breakpoints and the update can be done in 𝑂(1) time. Finally, the distance’s value in the unsigned case is bounded
by 𝑂(𝑛), and checking whether 𝐺 is sorted reduces to checking whether the set of breakpoints is empty, which yields a 𝑂(𝑛) running
time for Algorithm 2.

Theoretical Computer Science 1024 (2025) 114909

10

G. Fertin, G. Jean and A. Labarre

0 1

2

𝑦

∄

0 1

2

𝑦

∄

0 1

2

𝑘𝓁
∄

0 1

2

𝑘𝓁 ∄

(𝑎) (𝑏)

Fig. 9. Proof of Theorem 6: the cases where {0,1} ∈ 𝐺. Dashed edges correspond to alternating paths. Grey edges that are known not to exist in 𝑈𝐵𝐺 are struck out.

Algorithm 2: SortingByPDCJ(𝐺).
Input: A genome 𝐺.
Output: An optimal sorting sequence 𝑆 of prefix DCJs for 𝐺.

1 𝑆 ← empty sequence;
2 while 𝐺 is not sorted do

3 𝑣 ← 0’s neighbour in 𝐺;
4 if 𝑣 = 1 then

5 𝑥1 ← an element in {𝑣− 1, 𝑣+ 1} such that {𝑣,𝑥1} ∉ 𝐺;
6 𝑦1 ← a neighbour of 𝑥1 such that {𝑥1 , 𝑦1} is a breakpoint;
7 if 𝑦1 ≠ 1 or {1,2} ∉ 𝐺 then // cases 1(a) and 1(b)
8 𝐺 ← 𝐺 ⧵ {{0, 𝑣},{𝑥1, 𝑦1}} ∪ {{0, 𝑦1},{𝑣,𝑥1}};
9 𝑆 .append({{0, 𝑣},{𝑥1, 𝑦1}},{{0, 𝑦1},{𝑣,𝑥1}});

10 else // case 1(c)
11 𝑧1 ← the other neighbour of 𝑥1 ;
12 if {𝑥1, 𝑧1} is a breakpoint then

13 𝐺 ← 𝐺 ⧵ {{0, 𝑣},{𝑥1, 𝑧1}} ∪ {{0, 𝑧1},{𝑣,𝑥1}};
14 𝑆 .append({{0, 𝑣},{𝑥1, 𝑧1}},{{0, 𝑧1},{𝑣,𝑥1}});

15 else

16 𝑥2 ← the other grey neighbour of 𝑣;
17 if {𝑣,𝑥2} ∉ 𝐺 then // case 1(c)i
18 𝑤 ← a neighbour of 𝑥2 such that {𝑤,𝑥2} is a breakpoint;
19 𝐺 ← 𝐺 ⧵ {{0, 𝑣},{𝑥2,𝑤}} ∪ {{0,𝑤},{𝑣,𝑥2}};
20 𝑆 .append({{0, 𝑣},{𝑥2,𝑤}},{{0,𝑤},{𝑣,𝑥2}});

21 else // case 1(c)ii
22 𝐺 ← 𝐺 ⧵ {{0, 𝑣},{𝑥1, 𝑦1}} ∪ {{0, 𝑦1},{𝑣,𝑥1}};
23 𝑆 .append({{0, 𝑣},{𝑥1, 𝑦1}},{{0, 𝑦1},{𝑣,𝑥1}});

24 else

25 if {1,2} ∉ 𝐺 then // case 2(a)
26 𝑦 ← a neighbour of 2 such that {2, 𝑦} is a breakpoint;
27 𝐺 ← 𝐺 ⧵ {{0,1},{2, 𝑦}} ∪ {{0, 𝑦},{1,2}};
28 𝑆 .append(({{0,1},{2, 𝑦}},{{0, 𝑦},{1,2}}));
29 else // case 2(b)
30 {𝑘,𝓁}← the first breakpoint in the only path of 𝐺;
31 𝐺 ← 𝐺 ⧵ {{0,1},{𝑘,𝓁}} ∪ {{0,𝓁},{1, 𝑘}};
32 𝑆 .append(({{0,1},{𝑘,𝓁}},{{0,𝓁},{1, 𝑘}}));
33 return 𝑆 ;

4. Prefix reversals

We start by showing that the lower bound of Corollary 1 (more precisely, Equation (4)) is always at least as large as the number
of breakpoints.

Proposition 2. For any unsigned permutation 𝜋, the lower bound of Equation (4) is greater than or equal to 𝑏(𝜋). Moreover, the gap that
separates both bounds can be arbitrarily large.

Proof. Consider any permutation 𝜋 of length 𝑛, and let us optimally decompose 𝑈𝐵𝐺(𝜋) as described in the proof of Proposition 1.
In order to prove the first part of the statement, we distinguish between three cases, which are the ones that appear in Equation (4).
For this, recall that 𝑝2 = 𝜋𝜋−1

2 −1 is the element that appears right before 2 in 𝜋.

1. If 𝜋1 = 1 and {𝑝2,2} is an adjacency, then the lower bound of Equation (4) has value 𝑛 + 1 + 𝑐∗(𝑈𝐵𝐺(𝜋)) − 2𝑐∗1 (𝑈𝐵𝐺(𝜋)). Note
that, by definition, each of the 𝑐∗1 (𝑈𝐵𝐺(𝜋)) trivial cycles in our decomposition of 𝑈𝐵𝐺(𝜋) corresponds to an edge {𝑖, 𝑖+1}, which
is therefore an adjacency. Moreover, since 𝜋1 = 1, then 0 and 1 form a trivial cycle, and consequently

𝑛+ 1 = 𝑏(𝜋) + 𝑐∗1 (𝑈𝐵𝐺(𝜋)). (7)

Theoretical Computer Science 1024 (2025) 114909

11

G. Fertin, G. Jean and A. Labarre

We can rewrite Equation (4) as follows:

𝑝𝑟𝑑(𝜋) ≥ (𝑛+ 1 − 𝑐∗1 (𝑈𝐵𝐺(𝜋))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐴

+(𝑐∗(𝑈𝐵𝐺(𝜋)) − 𝑐∗1 (𝑈𝐵𝐺(𝜋)))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐵

.

By Equation (7), we know that 𝐴 = 𝑏(𝜋), and since 𝐵 is the number of nontrivial cycles in our decomposition, we have 𝐵 ≥ 0.
2. If 𝜋1 = 1 and {𝑝2,2} is a breakpoint, then the lower bound of Equation (4) has value 𝑛+ 1+ 𝑐∗(𝑈𝐵𝐺(𝜋)) − 2𝑐∗1 (𝑈𝐵𝐺(𝜋)) − 1. As

in the previous case, 0 and 1 form a trivial cycle, so Equation (7) also holds. We can therefore rewrite Equation (4) as follows:

𝑝𝑟𝑑(𝜋) ≥ (𝑛+ 1 − 𝑐∗1 (𝑈𝐵𝐺(𝜋)))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐴

+(𝑐∗(𝑈𝐵𝐺(𝜋)) − 𝑐∗1 (𝑈𝐵𝐺(𝜋)) − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐶

.

As discussed in the previous case, Equation (7) implies that 𝐴 = 𝑏(𝜋). Moreover, we have 𝐶 ≥ 0: indeed, since 𝜋 contains the
breakpoint {𝑝2,2}, it cannot be the identity permutation, and therefore any decomposition of 𝑈𝐵𝐺(𝜋) contains at least one
nontrivial cycle. In other words, 𝑐∗(𝑈𝐵𝐺(𝜋)) ≥ 𝑐∗1 (𝑈𝐵𝐺(𝜋)) + 1, and we are done.

3. Finally, if 𝜋1 ≠ 1, then the lower bound of Equation (4) has value 𝑛 + 1 + 𝑐∗(𝑈𝐵𝐺(𝜋)) − 2𝑐∗1 (𝑈𝐵𝐺(𝜋)) − 2. In that case, since 0
and 1 do not form a trivial cycle but is (by definition) not counted as a breakpoint, we have

𝑛 = 𝑏(𝜋) + 𝑐∗1 (𝑈𝐵𝐺(𝜋)). (8)

We can rewrite Equation (4) as follows:

𝑝𝑟𝑑(𝜋) ≥ (𝑛− 𝑐∗1 (𝑈𝐵𝐺(𝜋))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐷

+(𝑐∗(𝑈𝐵𝐺(𝜋)) − 𝑐∗1 (𝑈𝐵𝐺(𝜋)) − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐶

.

As discussed in the previous case, since 𝜋 is not the identity genome, we have 𝐶 ≥ 0. The fact that 𝐷 = 𝑏(𝜋) follows
from Equation (8).

In order to show that the gap between the lower bound of Equation (4) and 𝑏(𝜋) can be arbitrarily large, consider the following
permutation built on 𝑛 = 6𝑝 elements, for any arbitrary integer 𝑝 ≥ 2: 𝜋 is the concatenation of subpermutations 𝜎1, 𝜎2,… , 𝜎𝑝, where
for every 1 ≤ 𝑖 ≤ 𝑝, we have

𝜎𝑖 = (6𝑖− 5) (6𝑖− 3) (6𝑖− 1) (6𝑖− 4) (6𝑖− 2)6𝑖.

For instance, when 𝑝 = 3, we have

𝜋 = (135246
⏟⏞⏟⏞⏟

𝜎1

7 91181012
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝜎2

131517141618
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜎3

).

Now consider the optimal decomposition of 𝑈𝐵𝐺(𝜋) as described in the proof of Proposition 1. It can be seen that 𝑐∗1 (𝑈𝐵𝐺(𝜋)) =
𝑝+1, which corresponds to edges {6𝑖,6𝑖+1}, 0≤ 𝑖 ≤ 𝑝. Thus, since 𝜋1 = 1, Equation (7) holds and we have 𝑏(𝜋) = 𝑛+1−𝑐∗1 (𝑈𝐵𝐺(𝜋)) =
5𝑝. Finally, 𝜋 has been built in such a way that, for every 1 ≤ 𝑖 ≤ 𝑝, the elements of the interval [6𝑖 − 5;6𝑖] form a cycle in 𝑈𝐵𝐺(𝜋).
As a consequence, when trivial cycles are removed from 𝑈𝐵𝐺(𝜋), 𝑝 connected components remain, each induced by the elements of
[6𝑖−5;6𝑖], 1 ≤ 𝑖 ≤ 𝑝. Hence, the optimal decomposition described in the proof of Proposition 1 yields 𝑝 nontrivial cycles. This allows
us to conclude that 𝑐∗(𝑈𝐵𝐺(𝜋)) = 2𝑝 + 1. Altogether, since 𝜋1 = 1 and {𝑝2,2} is a breakpoint, we are in case 2 of Equation (4), i.e.
𝑝𝑟𝑑(𝜋) ≥ 𝑛+1+ 𝑐∗(𝑈𝐵𝐺(𝜋))−2𝑐∗1 (𝑈𝐵𝐺(𝜋))−1. The above discussion allows us to conclude that 𝑝𝑟𝑑(𝜋) ≥ 6𝑝−1, while as mentioned
above, 𝑏(𝐺) = 5𝑝, which is the sought result. □

We now show that the longstanding ratio of 2 for Sorting by Prefix Reversals can be improved for permutations that are
pseudo-simple (see Definition 12 below). The performance of our algorithm is measured additively: more precisely, for any pseudo-
simple permutation 𝜋, it always returns a solution of size at most 𝑝𝑟𝑑(𝜋) + 1.

Definition 12. A permutation 𝜋 is pseudo-simple if 𝑈𝐵𝐺(𝜋) admits an optimal decomposition with no cycle of length longer than 2.

For instance, permutation (2 1) is pseudo-simple, and Fig. 10(𝑎) shows an optimal decomposition of its unsigned breakpoint
graph into cycles of length ≤ 2. By contrast, the unsigned breakpoint graph of permutation (2 3 1) does admit a decomposition into
cycles of length ≤ 2 (see Fig. 10), but that decomposition is not optimal. We name these permutations by analogy with simple signed
permutations, which are signed permutations whose breakpoint graph has no cycle of length longer than 2. The following structural
property of pseudo-simple permutations will prove useful.

Observation 2. For any pseudo-simple permutation 𝜋, let 𝒟∗ be an optimal decomposition of 𝑈𝐵𝐺(𝜋). Then for every pair of black edges
that share a vertex, at least one of these edges belongs to a trivial cycle.

Theoretical Computer Science 1024 (2025) 114909

12

G. Fertin, G. Jean and A. Labarre

Fig. 10. (𝑎) A decomposition of the unsigned breakpoint graph of pseudo-simple permutation 𝜋 = (2 1) into two cycles of length ≤ 2. (𝑏) A non-optimal decomposition
of 𝑈𝐵𝐺((2 3 1)) into two 2-cycles. (𝑐) The breakpoint graph of (−2 − 1), a spin of pseudo-simple permutation (2 1) which satisfies Observation 3.

Fig. 11. The transformation outlined in Observation 3 and its impacts: (a) {𝑢, 𝑣} and {𝑣,𝑤} both belong to trivial cycles ; (b) {𝑣,𝑤} belongs to a trivial cycle while
{𝑢, 𝑣} belongs to a 2-cycle ; {𝑢, 𝑣} belongs to a trivial cycle while {𝑣,𝑤} belongs to a 2-cycle. Dashed edges correspond to alternating paths.

Proof. For any permutation 𝜋, let 𝒟∗ be any optimal decomposition of 𝑈𝐵𝐺(𝜋), and let {𝑢, 𝑣} and {𝑣,𝑤} be two black edges that
share the vertex 𝑣. If one of these edges belongs to a trivial cycle, we are done. Otherwise, {𝑢, 𝑣} and {𝑣,𝑤} must belong to the same
2-cycle (if they belonged to separate 2-cycles, then they could be merged into a 4-cycle, which would contradict the optimality of
𝒟∗), and therefore {𝑢, 𝑣} and {𝑣,𝑤} also appear as grey edges. Now consider the decomposition 𝒟′ obtained from 𝒟∗ by splitting
the 2-cycle involving {𝑢, 𝑣} and {𝑣,𝑤} into two trivial cycles. If 𝑐 (resp. 𝑐1) denotes the number of cycles (resp. trivial cycles) in
𝒟∗, then in 𝒟′ we have 𝑐′1 = 𝑐1 + 2 trivial cycles and 𝑐′ = 𝑐 + 1 cycles. But in that case, we have 𝑐′ − 2𝑐′1 = (𝑐 + 1) − 2(𝑐1 + 2), i.e.,
𝑐′ − 2𝑐′1 = (𝑐 − 2𝑐1) − 3, which contradicts the minimality of 𝑐 − 2𝑐1 and thereby the optimality of 𝒟∗ as well. □

The following notion provides a useful connection between both classes.

Definition 13. [14] A signed permutation 𝜋 in 𝑆±
𝑛 is a spin of an unsigned permutation 𝜋 in 𝑆𝑛 if 𝜋𝑖 = |𝜋𝑖| for 1 ≤ 𝑖 ≤ 𝑛.

We simplify Hannenhalli and Pevzner’s definition [14] of “(un)oriented” edges as follows.

Definition 14. For any permutation 𝜋, let 𝐶 be a 2-cycle in 𝑈𝐵𝐺(𝜋). 𝐶 is oriented if the positions of the endpoints of its grey edges
have the same parity, and unoriented otherwise.

For instance, the dotted 2-cycle in Fig. 10(𝑏) is oriented (the endpoints of {2,1} are {1,3} and those of {3,4} are {2,4}), while
the other 2-cycle is unoriented (the endpoints of {0,1} are {0,3} and those of {2,3} are {1,2}).

Observation 3. Every pseudo-simple permutation 𝜋 has a simple spin 𝜎 such that every 2-cycle in 𝑈𝐵𝐺(𝜋) is mapped onto a 2-cycle with
the same orientation in 𝐵𝐺(𝜎).

See Fig. 10(𝑐) for an example.

Proof. Let 𝜋 be a pseudo-simple permutation, and 𝒟∗ an optimal decomposition of 𝑈𝐵𝐺(𝜋). We transform 𝑈𝐵𝐺(𝜋) into a new graph
𝐵 by splitting each vertex 𝑣 in 𝑈𝐵𝐺(𝜋), except 0 and 𝑛+ 1, into an ordered pair (𝑣1, 𝑣2) of vertices, which we refer to as siblings (see
Fig. 11). The split maps black edges {𝑢, 𝑣} and {𝑣,𝑤} in 𝑈𝐵𝐺(𝜋) onto black edges {𝑢, 𝑣1} and {𝑣2,𝑤} in 𝐵, and at least one of {𝑢, 𝑣}
or {𝑣,𝑤} belongs to a trivial cycle (see Observation 2), which means that at least one of these black edges also appears as a grey edge
in 𝑈𝐵𝐺(𝜋).

Trivial cycles in 𝑈𝐵𝐺(𝜋) are mapped onto trivial cycles in 𝐵, which allows us to preserve the other grey edge without ambiguity:
i.e., if grey edge {𝑢, 𝑣} (resp. {𝑣,𝑤}) belongs to 𝑈𝐵𝐺(𝜋), then grey edge {𝑢, 𝑣1} (resp. {𝑣2,𝑤}) belongs to 𝐵. The graph 𝐵 is the
breakpoint graph of a spin 𝜎 of 𝜋, which we obtain from 𝜋 by assigning numbers in {1,2,… ,2𝑛+ 1} as follows: starting from vertex
𝑖 = 0, assign number 𝑖 + 1 to its grey neighbour 𝑥 in 𝐵; if 𝑖 < 2𝑛, 𝑥 comes from a split vertex in 𝑈𝐵𝐺(𝜋), and its sibling is the only
vertex to its left or to its right that is not connected to 𝑥 by a black edge. That sibling receives number 𝑖 + 2, and we repeat the
process until all vertices have been labelled, thereby completing the inverse of the unsigned translation (recall Definition 4). Siblings
in increasing (resp. decreasing) order yield a + (resp. −) sign for the element they originate from. Finally, the orientation and the
length of all cycles in 𝒟∗ are clearly preserved in 𝐵, and therefore 𝜎 is simple. □

Simple permutations can be sorted by prefix signed reversals in polynomial time. Their distance can be computed using the
following structure and Theorem.

Theoretical Computer Science 1024 (2025) 114909

13

G. Fertin, G. Jean and A. Labarre

0 4 3 6 5 1 2 7

𝐶1 𝐶2

𝐶1 𝐶2

(𝑎) (𝑏)

Fig. 12. (𝑎) The breakpoint graph of the signed permutation 𝜋 = (−2 −3 1). (𝑏) The corresponding graph 𝐻(𝜋). 𝐶1 is the leftmost vertex and is nonoriented, while
𝐶2 is oriented.

Definition 15. [15] Let 𝐻(𝜋) be the graph whose vertices are the cycles in 𝐵𝐺(𝜋) and whose edges connect two vertices if the
corresponding cycles intersect. A component of 𝐵𝐺(𝜋) is a connected component of 𝐻(𝜋); it is oriented if a vertex of that component
in 𝐻(𝜋) corresponds to an oriented cycle in 𝐵𝐺(𝜋), and unoriented otherwise.

See Fig. 12 for an example. Following Labarre and Cibulka [4], we refer to the component that contains the leftmost cycle as the
leftmost component.

Theorem 7. [4] For every simple permutation 𝜋 in 𝑆±
𝑛 , we have:

𝑝𝑠𝑟𝑑(𝜋) = 𝑛+ 1 + 𝑐(𝐵𝐺(𝜋)) − 2𝑐1(𝐵𝐺(𝜋)) + 𝑡(𝜋) −
{

0 if 𝜋1 = 1
2 otherwise

,

where 𝑡(𝜋) = 1 if 𝜋1 ≠ 1 and the leftmost component of 𝐵𝐺(𝜋) is unoriented, and 0 otherwise.

Corollary 3. There is a polynomial-time approximation algorithm for Sorting by Prefix Reversals which, applied on any pseudo-simple
permutation 𝜋, returns a solution of size at most 𝑝𝑟𝑑(𝜋) + 1.

Proof. Let 𝜋 be a pseudo-simple permutation and 𝜎 be its simple spin obtained using Observation 3. Then 𝑝𝑟𝑑(𝜋) ≤ 𝑝𝑠𝑟𝑑(𝜎), whose
value can be computed using Theorem 7; since 𝜎 is a spin of 𝜋, any sorting sequence for 𝜎 can be applied to 𝜋 by ignoring signs. For
the additive performance guarantee, let 𝑔(𝜋) denote the right-hand side of Corollary 1 and note that, as observed for Equation (1) (in
Observation 1) and Equation (3) (in the proof of Theorem 6), 𝑔(𝜋) is equal to 0 iff 𝜋 is the identity genome. We also note that 𝜋1 = 1
if and only if 𝜎1 = 1. Moreover, we have 𝑐(𝐵𝐺(𝜎)) = 𝑐∗(𝑈𝐵𝐺(𝜋)) and 𝑐1(𝐵𝐺(𝜎)) = 𝑐∗1 (𝑈𝐵𝐺(𝜋)). We show that 𝑝𝑠𝑟𝑑(𝜎) − 𝑔(𝜋) ≤ 1,
distinguishing between the following two cases.

1. If 𝜋1 = 1, then 𝜎1 = 1 and 𝑡(𝜎) = 0. In order to maximise 𝑝𝑠𝑟𝑑(𝜎) − 𝑔(𝜋), assume {𝑝2,2} is a breakpoint; we have

𝑝𝑠𝑟𝑑(𝜎) − 𝑔(𝜋) ≤ 𝑛+ 1 + 𝑐(𝐵𝐺(𝜎)) − 2𝑐1(𝐵𝐺(𝜎))

− (𝑛+ 1 + 𝑐∗(𝑈𝐵𝐺(𝜋)) − 2𝑐1(𝑈𝐵𝐺(𝜋)) − 1)

= 1.

2. If 𝜋1 ≠ 1, then 𝜎1 ≠ 1; we have

𝑝𝑠𝑟𝑑(𝜎) − 𝑔(𝜋) = 𝑛+ 1 + 𝑐(𝐵𝐺(𝜎)) − 2𝑐1(𝐵𝐺(𝜎)) + 𝑡(𝜎) − 2

− (𝑛+ 1 + 𝑐∗(𝑈𝐵𝐺(𝜋)) − 2𝑐1(𝑈𝐵𝐺(𝜋)) − 2)

= 𝑡(𝜎) ≤ 1. □

We omit the pseudocode of the algorithm outlined in the proof of Corollary 3: it is sufficient to use Algorithm 4.1 in Labarre and
Cibulka’s paper [4], which yields an optimal sorting sequence for any simple permutation 𝜎, and can be implemented to run in time
𝑂(𝑛3∕2).

5. Conclusions and future work

In this paper, we focused on the problem of sorting genomes by prefix DCJs, a problem that had not yet been studied in its prefix-
constrained version. We showed that both the signed and the unsigned versions are solvable in polynomial time. Since prefix DCJs
generalise prefix reversals, we also provided several algorithmic results for Sorting by Unsigned Prefix Reversals, including a 1-
absolute, thus nearly optimal, approximation algorithm. Nevertheless, several questions remain open: for instance, can the new lower
bound introduced in section 2 help improve the 2-approximation ratios known for both Sorting by Signed Prefix Reversals and
Sorting by Unsigned Prefix Reversals? Although a proof has eluded us so far, we think that our 1-absolute approximation algo-
rithm for pseudo-simple permutations is in fact optimal. Moreover, can we take advantage of the study on pseudo-simple permutations
to extend the result in Corollary 3 to obtain a 𝑐-absolute approximation algorithm (with 𝑐 constant) for more general permutations?
Finally, we studied the case where both source and target genomes are unichromosomal and linear; it would be interesting to extend
this study to a more general context where input genomes can be multichromosomal and not necessarily linear.

Theoretical Computer Science 1024 (2025) 114909

14

G. Fertin, G. Jean and A. Labarre

CRediT authorship contribution statement

Guillaume Fertin: Writing – review & editing, Writing – original draft, Formal analysis, Conceptualization. Géraldine Jean:
Writing – review & editing, Writing – original draft, Formal analysis, Conceptualization. Anthony Labarre: Writing – review &
editing, Writing – original draft, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] A. Labarre, Sorting by prefix block-interchanges, Theor. Comput. Sci. 958 (2023) 113857, https://doi.org/10.1016/j.tcs.2023.113857.
[2] G. Fertin, A. Labarre, I. Rusu, E. Tannier, S. Vialette, Combinatorics of Genome Rearrangements, Computational Molecular Biology, MIT Press, 2009.
[3] S. Yancopoulos, O. Attie, R. Friedberg, Efficient sorting of genomic permutations by translocation, inversion and block interchange, Bioinformatics 21 (2005)

3340–3346.
[4] A. Labarre, J. Cibulka, Polynomial-time sortable stacks of burnt pancakes, Theor. Comput. Sci. 412 (2011) 695–702.
[5] L. Bulteau, G. Fertin, I. Rusu, Pancake flipping is hard, J. Comput. Syst. Sci. 81 (2015) 1556–1574, https://doi.org/10.1016/j.jcss.2015.02.003, https://www.

sciencedirect.com/science/article/pii/S0022000015000124.
[6] D.E. Knuth, Sorting and Searching, The Art of Computer Programming, vol. 3, Addison-Wesley, 1995.
[7] M. Bóna, Combinatorics of Permutations, second edition, Discrete Mathematics and Its Applications, CRC Press, 2012.
[8] D. Bienstock, O. Günlük, A degree sequence problem related to network design, Networks 24 (1994) 195–205, https://doi.org/10.1002/net.3230240402.
[9] S.B. Akers, B. Krishnamurthy, D. Harel, The star graph: an attractive alternative to the 𝑛-cube, in: Proceedings of the Fourth International Conference on Parallel

Processing, Pennsylvania State University Press, 1987, pp. 393–400.
[10] V. Bafna, P.A. Pevzner, Genome rearrangements and sorting by reversals, SIAM J. Comput. 25 (1996) 272–289.
[11] A. Caprara, Sorting permutations by reversals and Eulerian cycle decompositions, SIAM J. Discrete Math. 12 (1999) 91–110 (electronic).
[12] A. Kotzig, Moves without forbidden transitions in a graph, Mat. čas. 18 (1968) 76–80.
[13] P.A. Pevzner, DNA physical mapping and alternating eulerian cycles in colored graphs, Algorithmica 13 (1995) 77–105.
[14] S. Hannenhalli, P.A. Pevzner, To cut... or not to cut (applications of comparative physical maps in molecular evolution), in: É. Tardos (Ed.), Proceedings of the

Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, 28-30 January 1996, Atlanta, Georgia, USA, ACM/SIAM, 1996, pp. 304–313.
[15] S. Hannenhalli, P.A. Pevzner, Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals, J. ACM 46 (1999) 1–27.

Theoretical Computer Science 1024 (2025) 114909

15

https://doi.org/10.1016/j.tcs.2023.113857
http://refhub.elsevier.com/S0304-3975(24)00526-7/bib2B8DC3292A6863E291462BF1F8E9345Cs1
http://refhub.elsevier.com/S0304-3975(24)00526-7/bib9A05C7EA8645235245AC3A0195C36A92s1
http://refhub.elsevier.com/S0304-3975(24)00526-7/bibA8D6B2EAFE60B14296E0D9544AF45B96s1
http://refhub.elsevier.com/S0304-3975(24)00526-7/bibA8D6B2EAFE60B14296E0D9544AF45B96s1
http://refhub.elsevier.com/S0304-3975(24)00526-7/bib28458E01563FDD3E5682EEA497D9AADBs1
https://doi.org/10.1016/j.jcss.2015.02.003
https://www.sciencedirect.com/science/article/pii/S0022000015000124
http://refhub.elsevier.com/S0304-3975(24)00526-7/bib14BB3D16BDFD9200083ACB9D3D7B6D32s1
https://www.sciencedirect.com/science/article/pii/S0022000015000124
http://refhub.elsevier.com/S0304-3975(24)00526-7/bib14BB3D16BDFD9200083ACB9D3D7B6D32s1
http://refhub.elsevier.com/S0304-3975(24)00526-7/bib88252A4168B682BE5E6BA20B5EA4FE91s1
http://refhub.elsevier.com/S0304-3975(24)00526-7/bibF301950FDBB094F971EBD97A75C721CAs1
https://doi.org/10.1002/net.3230240402
http://refhub.elsevier.com/S0304-3975(24)00526-7/bibD2C772864F2F65F24AC549115B7E6378s1
http://refhub.elsevier.com/S0304-3975(24)00526-7/bib507B9E2860389AB35F6663321AECF9FDs1
http://refhub.elsevier.com/S0304-3975(24)00526-7/bib507B9E2860389AB35F6663321AECF9FDs1
http://refhub.elsevier.com/S0304-3975(24)00526-7/bib0919E1A91958C641594C03867013E528s1
http://refhub.elsevier.com/S0304-3975(24)00526-7/bibE289DA98BAF808362E2DD75BA8E09CF4s1
http://refhub.elsevier.com/S0304-3975(24)00526-7/bib421A27B97956B9113BEADFAD1CD30106s1
http://refhub.elsevier.com/S0304-3975(24)00526-7/bib0E7FFB928CCE78461636B5CB52741DD2s1
http://refhub.elsevier.com/S0304-3975(24)00526-7/bib8CB0DCD024B97E1543864272CD49061Es1
http://refhub.elsevier.com/S0304-3975(24)00526-7/bib8CB0DCD024B97E1543864272CD49061Es1
http://refhub.elsevier.com/S0304-3975(24)00526-7/bib401CD1C1D8C8027FEE8ED005569CA129s1

	Sorting genomes by prefix double-cut-and-joins
	1 Introduction
	1.1 Permutations, genomes, and rearrangements
	1.2 Problems

	2 A generic lower bounding technique
	2.1 Preliminaries
	2.2 The signed case
	2.3 The unsigned case

	3 Algorithms for sorting by prefix DCJs
	3.1 Signed prefix DCJs
	3.2 Unsigned prefix DCJs

	4 Prefix reversals
	5 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

