


R. A. Leo Elworth,
Huw A. Ogilvie,
Jiafan Zhu and
Luay Nakhleh. Advances in Computational Methods for Phylogenetic Networks in the Presence of Hybridization. In
Tandy Warnow editor, Bioinformatics and Phylogenetics. Seminal Contributions of Bernard Moret, Vol. 29 of Computational Biology, Springer, 2019. Keywords: explicit network, phylogenetic network, phylogeny, Program Dendroscope, Program PhyloNet, Program PhyloNetworks SNaQ, Program PIRN, Program SplitsTree, reconstruction, survey. Note: https://bioinfocs.rice.edu/sites/g/files/bxs266/f/ElworthZhuOgilvieNakhleh.pdf



Juan Wang and
Maozu Guo. IGNet: Constructing Rooted Phylogenetic Networks Based on Incompatible Graphs. In ICNCFSKD19, Vol. 1075:894900 of Advances in Intelligent Systems and Computing, Springer, 2019. Keywords: explicit network, from rooted trees, phylogenetic network, phylogeny, Program BIMLR, Program IGNet, Program LNetwork, reconstruction, software.











Sha Zhu and
James H. Degnan. Displayed Trees Do Not Determine Distinguishability Under the Network Multispecies Coalescent. In SB, Vol. 66(2):283298, 2017. Keywords: branch length, coalescent, explicit network, from network, likelihood, phylogenetic network, phylogeny, Program Hybridcoal, Program HybridLambda, Program PhyloNet, software, uniqueness. Note: presentation available at https://www.youtube.com/watch?v=JLYGTfEZG7g.









Leo van Iersel,
Steven Kelk and
Celine Scornavacca. Kernelizations for the hybridization number problem on multiple nonbinary trees. In JCSS, Vol. 82(6):10751089, 2016. Keywords: explicit network, from rooted trees, kernelization, minimum number, phylogenetic network, phylogeny, Program Treeduce, reconstruction. Note: https://arxiv.org/abs/1311.4045v3.



Marc Thuillard and
Didier FraixBurnet. Phylogenetic Trees and Networks Reduce to Phylogenies on Binary States: Does It Furnish an Explanation to the Robustness of Phylogenetic Trees against Lateral Transfers? In Evolutionary Bioinformatics, Vol. 11:213221, 2015. [Abstract] Keywords: circular split system, explicit network, from multistate characters, outerplanar, perfect, phylogenetic network, phylogeny, planar, polynomial, reconstruction, split. Note: http://dx.doi.org/10.4137%2FEBO.S28158.



Leo van Iersel and
Steven Kelk. Kernelizations for the hybridization number problem on multiple nonbinary trees. In WG14, Vol. 8747:299311 of LNCS, springer, 2014. Keywords: explicit network, from rooted trees, kernelization, minimum number, phylogenetic network, phylogeny, Program Treeduce, reconstruction. Note: http://arxiv.org/abs/1311.4045.





Leo van Iersel and
Simone Linz. A quadratic kernel for computing the hybridization number of multiple trees. In IPL, Vol. 113:318323, 2013. Keywords: explicit network, FPT, from rooted trees, kernelization, minimum number, phylogenetic network, phylogeny, Program Clustistic, Program MaafB, Program PIRN, reconstruction. Note: http://arxiv.org/abs/1203.4067, poster.
Toggle abstract
"It has recently been shown that the NPhard problem of calculating the minimum number of hybridization events that is needed to explain a set of rooted binary phylogenetic trees by means of a hybridization network is fixedparameter tractable if an instance of the problem consists of precisely two such trees. In this paper, we show that this problem remains fixedparameter tractable for an arbitrarily large set of rooted binary phylogenetic trees. In particular, we present a quadratic kernel. © 2013 Elsevier B.V."





Yun Yu,
Cuong Than,
James H. Degnan and
Luay Nakhleh. Coalescent Histories on Phylogenetic Networks and Detection of Hybridization Despite Incomplete Lineage Sorting. In Systematic Biology, Vol. 60(2):138149, 2011. Keywords: coalescent, hybridization, lineage sorting, reconstruction, statistical model. Note: http://www.cs.rice.edu/~nakhleh/Papers/YuEtAlSB11.pdf.
Toggle abstract
"Analyses of the increasingly available genomic data continue to reveal the extent of hybridization and its role in the evolutionary diversification of various groups of species. We show, through extensive coalescentbased simulations of multilocus data sets on phylogenetic networks, how divergence times before and after hybridization events can result in incomplete lineage sorting with gene tree incongruence signatures identical to those exhibited by hybridization. Evolutionary analysis of such data under the assumption of a species tree model can miss all hybridization events, whereas analysis under the assumption of a species network model would grossly overestimate hybridization events. These issues necessitate a paradigm shift in evolutionary analysis under these scenarios, from a model that assumes a priori a single source of gene tree incongruence to one that integrates multiple sources in a unifying framework. We propose a framework of coalescence within the branches of a phylogenetic network and show how this framework can be used to detect hybridization despite incomplete lineage sorting. We apply the model to simulated data and show that the signature of hybridization can be revealed as long as the interval between the divergence times of the species involved in hybridization is not too small. We reanalyze a data set of 106 loci from 7 ingroup Saccharomyces species for which a species tree with no hybridization has been reported in the literature. Our analysis supports the hypothesis that hybridization occurred during the evolution of this group, explaining a large amount of the incongruence in the data. Our findings show that an integrative approach to gene tree incongruence and its reconciliation is needed. Our framework will help in systematically analyzing genomic data for the occurrence of hybridization and elucidating its evolutionary role. [Coalescent history; incomplete lineage sorting; hybridization; phylogenetic network.]. © 2011 The Author(s)."



David A. Morrison. Phylogenetic networks in systematic biology (and elsewhere) In
R.M. Mohan editor, Research Advances in Systematic Biology, Global Research Network, Trivandrum, India, 2010. Keywords: abstract network, explicit network, phylogenetic network, phylogeny, reconstruction, survey.





Luay Nakhleh,
Derek Ruths and
Hideki Innan. Gene Trees, Species Trees, and Species Networks. In
R. Guerra,
D. B. Allison and
D. Goldstein editors, Metaanalysis and Combining Information in Genetics and Genomics, 2009. Keywords: coalescent, explicit network, from rooted trees, from species tree, phylogenetic network, phylogeny, reconstruction. Note: http://www.cs.rice.edu/~nakhleh/Papers/GuerraGoldsteinBookChapter.pdf.



Philippe Gambette,
Vincent Berry and
Christophe Paul. The structure of levelk phylogenetic networks. In CPM09, Vol. 5577:289300 of LNCS, springer, 2009. Keywords: coalescent, explicit network, galled tree, level k phylogenetic network, phylogenetic network, Program Recodon. Note: http://hallirmm.ccsd.cnrs.fr/lirmm00371485/en/.
Toggle abstract
"Evolution is usually described as a phylogenetic tree, but due to some exchange of genetic material, it can be represented as a phylogenetic network which has an underlying tree structure. The notion of level was recently introduced as a parameter on realistic kinds of phylogenetic networks to express their complexity and treelikeness. We study the structure of levelk networks, and how they can be decomposed into levelk generators. We also provide a polynomial time algorithm which takes as input the set of levelk generators and builds the set of level(k + 1) generators. Finally, with a simulation study, we evaluate the proportion of levelk phylogenetic networks among networks generated according to the coalescent model with recombination. © 2009 Springer Berlin Heidelberg."



Laura S. Kubatko. Identifying Hybridization Events in the Presence of Coalescence via Model Selection. In Systematic Biology, Vol. 58(5):478488, 2009. Keywords: AIC, BIC, branch length, coalescent, explicit network, from rooted trees, from species tree, hybridization, lineage sorting, model selection, phylogenetic network, phylogeny, statistical model. Note: http://dx.doi.org/10.1093/sysbio/syp055.



Chen Meng and
Laura S. Kubatko. Detecting hybrid speciation in the presence of incomplete lineage sorting using gene tree incongruence: A model. In Theoretical Population Biology, Vol. 75(1):3545, 2009. Keywords: bayesian, coalescent, from network, from rooted trees, hybridization, likelihood, lineage sorting, phylogenetic network, phylogeny, statistical model. Note: http://dx.doi.org/10.1016/j.tpb.2008.10.004.
Toggle abstract
"The application of phylogenetic inference methods, to data for a set of independent genes sampled randomly throughout the genome, often results in substantial incongruence in the singlegene phylogenetic estimates. Among the processes known to produce discord between singlegene phylogenies, two of the best studied in a phylogenetic context are hybridization and incomplete lineage sorting. Much recent attention has focused on the development of methods for estimating species phylogenies in the presence of incomplete lineage sorting, but phylogenetic models that allow for hybridization have been more limited. Here we propose a model that allows incongruence in singlegene phylogenies to be due to both hybridization and incomplete lineage sorting, with the goal of determining the contribution of hybridization to observed gene tree incongruence in the presence of incomplete lineage sorting. Using our model, we propose methods for estimating the extent of the role of hybridization in both a likelihood and a Bayesian framework. The performance of our methods is examined using both simulated and empirical data. © 2008 Elsevier Inc. All rights reserved."



Rune Lyngsø,
Yun S. Song and
Jotun Hein. Accurate Computation of Likelihoods in the Coalescent with Recombination via Parsimony. In RECOMB08, Vol. 4955:463477 of LNCS, springer, 2008. Keywords: coalescent, likelihood, phylogenetic network, phylogeny, recombination, statistical model. Note: http://dx.doi.org/10.1007/9783540788393_41.
Toggle abstract
"Understanding the variation of recombination rates across a given genome is crucial for disease gene mapping and for detecting signatures of selection, to name just a couple of applications. A widelyused method of estimating recombination rates is the maximum likelihood approach, and the problem of accurately computing likelihoods in the coalescent with recombination has received much attention in the past. A variety of sampling and approximation methods have been proposed, but no single method seems to perform consistently better than the rest, and there still is great value in developing better statistical methods for accurately computing likelihoods. So far, with the exception of some twolocus models, it has remained unknown how the true likelihood exactly behaves as a function of model parameters, or how close estimated likelihoods are to the true likelihood. In this paper, we develop a deterministic, parsimonybased method of accurately computing the likelihood for multilocus input data of moderate size. We first find the set of all ancestral configurations (ACs) that occur in evolutionary histories with at most k crossover recombinations. Then, we compute the likelihood by summing over all evolutionary histories that can be constructed only using the ACs in that set. We allow for an arbitrary number of crossing over, coalescent and mutation events in a history, as long as the transitions stay within that restricted set of ACs. For given parameter values, by gradually increasing the bound k until the likelihood stabilizes, we can obtain an accurate estimate of the likelihood. At least for moderate crossover rates, the algorithmbased method described here opens up a new window of opportunities for testing and finetuning statistical methods for computing likelihoods. © 2008 SpringerVerlag Berlin Heidelberg."



Miguel Arenas,
Gabriel Valiente and
David Posada. Characterization of reticulate networks based on the coalescent with recombination. In MBE, Vol. 25(12):25172520, 2008. Keywords: coalescent, evaluation, explicit network, galled tree, phylogenetic network, phylogeny, Program Recodon, regular network, simulation, tree sibling network, treechild network. Note: http://dx.doi.org/10.1093/molbev/msn219.
Toggle abstract
"Phylogenetic networks aim to represent the evolutionary history of taxa. Within these, reticulate networks are explicitly able to accommodate evolutionary events like recombination, hybridization, or lateral gene transfer. Although several metrics exist to compare phylogenetic networks, they make several assumptions regarding the nature of the networks that are not likely to be fulfilled by the evolutionary process. In order to characterize the potential disagreement between the algorithms and the biology, we have used the coalescent with recombination to build the type of networks produced by reticulate evolution and classified them as regular, tree sibling, tree child, or galled trees. We show that, as expected, the complexity of these reticulate networks is a function of the population recombination rate. At small recombination rates, most of the networks produced are already more complex than regular or tree sibling networks, whereas with moderate and large recombination rates, no network fit into any of the standard classes. We conclude that new metrics still need to be devised in order to properly compare two phylogenetic networks that have arisen from reticulating evolutionary process. © 2008 The Authors."



Miguel Arenas and
David Posada. Recodon: Coalescent simulation of coding DNA sequences with recombination, migration and demography. In BMCB, Vol. 8(458), 2008. Keywords: coalescent, generation, Program Recodon, software. Note: http://dx.doi.org/10.1186/147121058458.
Toggle abstract
"Background: Coalescent simulations have proven very useful in many population genetics studies. In order to arrive to meaningful conclusions, it is important that these simulations resemble the process of molecular evolution as much as possible. To date, no single coalescent program is able to simulate codon sequences sampled from populations with recombination, migration and growth. Results: We introduce a new coalescent program, called Recodon, which is able to simulate samples of coding DNA sequences under complex scenarios in which several evolutionary forces can interact simultaneously (namely, recombination, migration and demography). The basic codon model implemented is an extension to the general timereversible model of nucleotide substitution with a proportion of invariable sites and amongsite rate variation. In addition, the program implements nonreversible processes and mixtures of different codon models. Conclusion: Recodon is a flexible tool for the simulation of coding DNA sequences under realistic evolutionary models. These simulations can be used to build parameter distributions for testing evolutionary hypotheses using experimental data. Recodon is written in C, can run in parallel, and is freely available from http://darwin.uvigo.es/. © 2007 Arenas and Posada; licensee BioMed Central Ltd."



Daniel H. Huson. Split networks and Reticulate Networks. In
Olivier Gascuel and
Mike Steel editors, Reconstructing Evolution, New Mathematical and Computational Advances, Pages 247276, Oxford University Press, 2007. Keywords: abstract network, consensus, from rooted trees, from sequences, from splits, from unrooted trees, galled tree, hybridization, phylogenetic network, phylogeny, Program Beagle, Program Spectronet, Program SplitsTree, Program SPNet, recombination, reconstruction, split network, survey. Note: similar to http://wwwab.informatik.unituebingen.de/research/phylonets/GCB2006.pdf.





Joanna L. Davies,
Frantisek Simancík,
Rune Lyngsø,
Thomas Mailund and
Jotun Hein. On RecombinationInduced Multiple and Simultaneous Coalescent Events. In GEN, Vol. 177:21512160, 2007. Keywords: coalescent, phylogenetic network, phylogeny, recombination, statistical model. Note: http://dx.doi.org/10.1534/genetics.107.071126.
Toggle abstract
"Coalescent theory deals with the dynamics of how sampled genetic material has spread through a population from a single ancestor over many generations and is ubiquitous in contemporary molecular population genetics. Inherent in most applications is a continuoustime approximation that is derived under the assumption that sample size is small relative to the actual population size. In effect, this precludes multiple and simultaneous coalescent events that take place in the history of large samples. If sequences do not recombine, the number of sequences ancestral to a large sample is reduced sufficiently after relatively few generations such that use of the continuoustime approximation is justified. However, in tracing the history of large chromosomal segments, a large recombination rate per generation will consistently maintain a large number of ancestors. This can create a major disparity between discretetime and continuoustime models and we analyze its importance, illustrated with model parameters typical of the human genome. The presence of gene conversion exacerbates the disparity and could seriously undermine applications of coalescent theory to complete genomes. However, we show that multiple and simultaneous coalescent events influence global quantities, such as total number of ancestors, but have negligible effect on local quantities, such as linkage disequilibrium. Reassuringly, most applications of the coalescent model with recombination (including association mapping) focus on local quantities. Copyright © 2007 by the Genetics Society of America."



Vladimir Makarenkov,
Dmytro Kevorkov and
Pierre Legendre. Phylogenetic Network Construction Approaches. In Applied Mycology and Biotechnology, Vol. 6:6197, 2006. Keywords: from distances, hybridization, lateral gene transfer, median network, NeighborNet, netting, Program Arlequin, Program Network, Program Pyramids, Program Reticlad, Program SplitsTree, Program T REX, Program TCS, Program WeakHierarchies, pyramid, reticulogram, split, split decomposition, split network, survey, weak hierarchy. Note: http://www.labunix.uqam.ca/~makarenv/makarenv/MKL_article.pdf.



Guillaume Bourque and
Louxin Zhang. Models and Methods in Comparative Genomics. In
ChauWen Tseng editor, Advances in Computers, Special Volume: Computational Biology, Vol. 68, Elsevier, 2006. Keywords: from distances, from rooted trees, from sequences, galled tree, phylogenetic network, phylogeny, survey. Note: http://www.math.nus.edu.sg/~matzlx/papers/CompGen_ZLX.pdf.









Richard R. Hudson. Properties of the neutral allele model with intragenic recombination. In TPP, Vol. 23:183201, 1983. Keywords: coalescent. Note: http://dx.doi.org/10.1016/00405809(83)900138, see also http://www.brics.dk/~compbio/coalescent/hudson_animator.html.
Toggle abstract
"An infinitesite neutral allele model with crossingover possible at any of an infinite number of sites is studied. A formula for the variance of the number of segregating sites in a sample of gametes is obtained. An approximate expression for the expected homozygosity is also derived. Simulation results are presented to indicate the accuracy of the approximations. The results concerning the number of segregating sites and the expected homozygosity indicate that a twolocus model and the infinitesite model behave similarly for 4Nu ≤ 2 and r ≤ 5u, where N is the population size, u is the neutral mutation rate, and r is the recombination rate. Simulations of a twolocus model and a fourlocus model were also carried out to determine the effect of intragenic recombination on the homozygosity test ofWatterson (Genetics 85, 789814; 88, 405417) and on the number of unique alleles in a sample. The results indicate that for 4Nu ≤ 2 and r ≤ 10u, the effect of recombination is quite small. © 1983."










