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Abstract

Color-coding is a technique to design fixed-parameter algorithms for

several NP-complete subgraph isomorphism problems. Somewhat sur-

prisingly, not much work has so far been spent on the actual implementa-

tion of algorithms that are based on color-coding, despite the elegance of

this technique and its wide range of applicability to practically important

problems. This work gives various novel algorithmic improvements for

color-coding, both from a worst-case perspective as well as under practical

considerations. We apply the resulting implementation to the identifica-

tion of signaling pathways in protein interaction networks, demonstrating

that our improvements speed up the color-coding algorithm by orders of

magnitude over previous implementations. This allows more complex and

larger structures to be identified in reasonable time; many biologically

relevant instances can even be solved in seconds where, previously, hours

were required.

1 Introduction

Motivation. Color-coding is an elegant technique that was introduced by
Alon et al. [1] in 1995 to derive (randomized) fixed-parameter algorithms for sev-
eral NP-complete subgraph isomorphism problems. For example, color-coding
can be used to find a k-vertex path, a k-vertex cycle, or a given subgraph of
bounded treewidth1 in a given graph.
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1Treewidth is a measure of how treelike a graph is, e.g., see [22, Chapter 10].
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Recently, color-coding has received considerable attention in bioinformat-
ics, because it can be used to detect signaling pathways in protein interaction
networks. In general, a signaling pathway is a cascade of successive protein
interactions that the cell uses to react to various external and internal stimuli.
A special role—with respect to both biological meaning as well as algorithmic
tractability—is played by the most simple structures, namely linear pathways.2

These are easy to understand and analyze and, as demonstrated by Ideker et
al. [15] for the yeast galactose metabolism, they can serve as a seed structure
for experimental investigation of more complex mechanisms.

Initiated by Steffen et al. [30], there have been efforts to design algorithms
for the automated discovery of linear pathways in protein interaction networks.
Two recent works have successfully used the color-coding technique to design
algorithms that identify biologically meaningful candidates for linear signaling
pathways:

• Scott et al. [27] formalize the task of pathway detection as the NP-complete
Minimum-Weight Path problem, that is, the task of finding a minimum-
weight simple path of a specified length in a weighted graph. They use
color-coding to detect paths of up to 10 vertices, requiring some hours for
this task.

• Shlomi et al. [29] formalize the task of pathway detection as the NP-
complete Pathway Query problem, that is, the problem of finding a
path in a labeled and weighted graph that best matches a pre-specified
query path while allowing for a fixed number of insertions and deletions
into it. They show that this task can be solved with color-coding, requiring
some minutes for paths with up to 7 vertices.

Both works demonstrate that the color-coding approach is capable of iden-
tifying biologically meaningful pathways. Their implementations are limited,
however, to path lengths of around 10 vertices. Moreover, finding paths of this
length requires some hours of running time. In this work, we give various novel
improvements for color-coding, both from a worst-case perspective as well as
under practical considerations. These speed up the color-coding algorithms by
orders of magnitude and thus allow the discovery of pathways that consist of
more than 20 vertices within two hours (effectively doubling the path length
that can be handled in reasonable time). Perhaps even more important, our
improvements allow the frequently encountered task of finding pathways of up
to 13 vertices to be accomplished in mere seconds. This allowed the imple-
mentation of an interactive application with graphical user interface for finding
pathways [14].

Previous Work. Concerning the theoretical side of color-coding, several au-
thors have used this technique to develop and improve fixed-parameter algo-
rithms for the problems of Set Packing and Graph Packing [10, 18, 19, 24].
Very recently, color-coding has also inspired a new algorithmic technique that
is based on randomly partitioning a graph into subgraphs and then solving
subproblems on these partitions [5, 17].

2Biologists use the term “linear pathway” to denote a simple path in the protein interaction
network, that is, a path where no vertex can occur more than once.
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On the practical side, it seems somewhat surprising that not much work has
been spent so far on implementing algorithms that are based on the color-coding
technique, despite its elegance and wide range of applicability. Besides the im-
plementations of Scott et al. [27] and Shlomi et al. [29], Raymann [25] discusses
a color-coding implementation that determines whether an unweighted graph
contains a simple k-vertex path, which, in practice, is an easier problem than
the ones we consider here because the algorithm can terminate after it has found
a single such path and there are generally many of them to be found. Recently,
some more implementations for various applications have been made [4, 7, 8, 20],
but none of them focuses on algorithm engineering aspects.

The central problem we are dealing with is Minimum-Weight Path: given
an edge-weighted graph with n vertices and an integer k, it asks for a simple
(non-crossing) path of k vertices with minimum weight. It is thus a general-
ization of the well-known NP-hard Longest Path problem. Longest Path

is a classical NP-complete problem. It is NP-complete because for k = n, it
is equivalent to Hamiltonian Path. Moreover, even finding a constant factor
approximation is NP-hard [16]. The best known polynomial-time approxima-
tions [9, 11] are capable of finding a path of length k1/(log(n/k)+log log n) and
exp(

√

log k/ log log k), respectively.
Many algorithms for Longest Path, in particular those using dynamic pro-

gramming, can be adapted for Minimum-Weight Path. The best known exact
(not parameterized) algorithm is a dynamic programming based approach [13]
which runs in O(2nn2). Plehn and Voigt [23] gave an algorithm running in
O(kO(k)nω+1) time, where ω is the treewidth of the graph.

Fixed-parameter algorithms [22] are an approach to exactly solving NP-
hard problems by confining the combinatorial explosion to a parameter k. More
precisely, a problem is fixed-parameter tractable with respect to a parameter k if
an instance of size n can be solved in f(k)·nO(1) time for an arbitrary function f .
For Minimum-Weight Path, the length of the path is a natural parameter.
Monien [21] gave the first fixed-parameter algorithm with a running time of O(k!·
nm). Bodlaender [2] gave an algorithm running in O(2kk!·n) time using dynamic
programming. Introducing the color-coding method, Alon et al. [1] presented
an algorithm solving Minimum-Weight Path in O(5.44k ·m) time with high
probability. In Section 3.1, we show how to speed up this algorithm to achieve
an O(4.32k ·m) time bound.

Contribution and structure of this work. As Niedermeier [22, p. 180]
notes, there is very little “substantial practical experience with [color-coding]” so
far. Motivated by its application in signaling pathway detection, we advance the
practical experience with color-coding here and propose a number of algorithmic
improvements. Practical experiments on biological and random networks show
that this increases the speed of pathway detection by some orders of magnitude.

The color-coding technique is explained in Section 2. Our algorithmic im-
provements and data structures are discussed in Section 3. The improved
color-coding algorithms have been implemented in C++; the source is available
at http://theinf1.informatik.uni-jena.de/colorcoding/ as free software.
Section 4 discusses experimental results that were obtained by using our imple-
mentation on the S. cerevisiae (yeast) interaction network of Scott et al. [27],
the D. melanogaster (fruit fly) interaction networks of Giot et al. [12], the data
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of Shlomi et al. [29], and random networks that are structurally similar to pro-
tein interaction networks. These experiments demonstrate that the algorithmic
improvements proposed in this work improve the efficiency of color-coding by
some orders of magnitude. Concerning the detection of signaling pathways, this
means that the detection of larger pathway candidates is possible, and moreover
it opens the possibility of interactive exploration of smaller structures.

2 The Color-Coding Technique

The central idea that underlies color-coding is to randomly color each vertex of
the input graph using a small set of colors and to “hope” that the path that
is sought after becomes colorful in the process, i.e., that each of its vertices
acquires a different color. One then searches only for such colorful paths, which
can be done much more efficiently than a search for all paths of a certain length.

As we later discuss in more detail, finding a colorful path can be accom-
plished in O(2km) time for an m-edge graph by dynamic programming. When-
ever the path that is sought after in the input graph (that is, the path that
constitutes an optimal solution) is colorful, it is found by this dynamic pro-
gramming. The catch, of course, is that the coloring of the input graph is
random and hence many coloring trials have to be performed to ensure that
the minimum-weight path is found with a high probability. More precisely, the
probability of any k-vertex path (including the optimal one) being colorful in a
single trial is

Pc =
k!

kk
>
√

2πke−k (1)

because there are kk ways to arbitrarily color k vertices with k colors and k!
ways to color them such that no color is used more than once. Using t trials,
a path of length k is found with probability 1 − (1 − Pc)

t. To ensure that a
colorful path is found with a probability greater than 1−ε (for some 0 < ε ≤ 1),
at least

t(ε) =

⌈

ln ε

ln(1 − Pc)

⌉

= | ln ε| ·O(ek) (2)

trials are therefore needed. While the result of this approach is only optimal
with a (user-specifiable) probability, setting the error probability ε to a very
low value of, say, 0.1% is likely to be acceptable in practice: Note that only the
logarithm of the error probability goes into the overall running time and hence,
very low error probabilities are efficient to achieve.

As Alon et al. [1] note, it is also possible to derandomize color-coding using
a result of Schmidt and Siegel [26], that is, we can achieve a deterministic color-
coding algorithm that maintains the 2O(k) part of the running time bound.
Chen et al. [5] give an improved derandomization. However, the randomized
algorithm remains preferable in practice: the combinatorial explosion of the
derandomized algorithms is much worse, while the error probability of the ran-
domized algorithm is only a logarithmic factor in its running time and can hence
be easily made sufficiently small for practical purposes.

It remains to discuss the problem-specific dynamic programming algorithms
that are used by Scott et al. [27] and Shlomi et al. [29] in each color-coding
trial in order to find the “best” colorful paths in a graph for a given coloring.
For this purpose, a protein interaction network is modeled as an undirected
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Figure 1: Example for solving Minimum-Weight Path using the color-coding
technique. Using Equation (3) a new table entry (right) is calculated using two
already known entries (left and middle).

graph G = (V, E) with n := |V | and m := |E|. Each vertex in V represents a
protein; an edge signifies that the proteins represented by its endpoints are as-
sumed to interact. Each edge e ∈ E is weighted with a probability 0 < p(e) ≤ 1
that expresses the likelihood of the interaction (we set p(e) = 0 for e /∈ E).

2.1 Finding Minimum-Weight Paths

Scott et al. [27] demonstrated that high-scoring simple paths in a protein in-
teraction network constitute plausible candidates for linear signal transduction
pathways, simple meaning that no vertex occurs more than once and high-
scoring meaning that the product of edge weights is maximized. For easier
handling, we work with the weight w(e) := − log p(e) of the edges, such that
the goal is to minimize the sum of weights for the edges of a path. To make the
finding of signaling pathway candidates algorithmically feasible and biologically
meaningful, the number of vertices that these paths contain is restricted by
some reasonably small integer k. Formally stated, the NP-hard problem that
needs to be solved in order to find minimum-weight simple paths thus is the
following:

Minimum-Weight Path

Input: An undirected edge-weighted graph G = (V, E) with n :=
|V | and m := |E| and an integer k.
Task: Find a length-k path in G that minimizes the sum over its
edge weights.

Given a fixed coloring of vertices, finding the minimum-weight colorful path
can be accomplished by dynamic programming: Assume that for some i < k
we have computed a value W (v, S) for every vertex v ∈ V and cardinality-i
subset S of vertex colors; this value denotes the minimum weight of a path that
uses every color in S exactly once and ends in v. Clearly, this path is simple
because no color is used more than once. We can now use this to compute the
values W (v, S) for all cardinality-(i + 1) subsets S and vertices v ∈ V because
a colorful length-(i + 1) path that ends in a vertex v ∈ V can be composed of
a colorful length-i path that does not use the color of v and ends in a neighbor
of v. More precisely, we let

W (v, S) = min
e={u,v}∈E

(

W (u, S \ {color(v)}) + w(e)
)

. (3)
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as exemplified in Figure 1.
It is easy to verify that the dynamic programming takes O(2km) time.3

Using the number of trials that was established in (2) to achieve an error proba-
bility of ε, this bounds the overall running time for solving Minimum-Weight

Path by O(| ln ε| · 2O(k) ·m).
A particularly appealing aspect of the color-coding method is that it can

be easily adapted to many practically relevant variations of the problem for-
mulation: For example, the set of vertices where a path can start and end can
be restricted (such as to force it to start in a membrane protein and end in a
transcription factor [27]). Unless otherwise noted, for experiments we use the
following variant of Minimum-Weight Path that matches the experiments by
Scott et al. [27]: With an error probability of ε = 0.1%, we seek 100 minimum-
weight paths which must differ from each other in at least 30% of the vertices (to
ensure that they are not only minor modifications of the global minimum-weight
path).

2.2 Querying Paths

Pathway queries are an important problem in the analysis of protein interaction
networks [28]: Once a pathway has been identified in a protein interaction
network, one is interested in whether similar pathways also exist in protein
interaction networks of other species, for example, in order to enable a knowledge
transfer from well-studied networks. Of course, one will usually not look for the
exact same pathway since—in the course of evolution—proteins might have been
added, deleted, or replaced. Taking these changes into account led Shlomi et
al. [29] to the following problem formalization:

Pathway Query

Input: An undirected graph G = (V, E) with an edge weight func-
tion w : E → R+, a length-ℓ query sequence Q = q1, . . . , qℓ, a match
weight function h : {q1, . . . , qℓ} × V → R+, and two nonnegative
integers Nins and Ndel.
Task: Find an alignment, that is, a path P = p1, . . . , pk in G to-
gether with a mapping M from {q1, . . . , qℓ} to {p1, . . . , pk} ∪ {⊥}
such that no vertex in P has more than one preimage. The align-
ment must have at most Nins insertions (that is, vertices in P that
have no preimage in Q) and at most Ndel deletions (that is, vertices
in Q that are mapped to ⊥). Further, the weight of the alignment
must be minimal, that is, one must minimize

ℓ−1
∑

i=1

w(pi, pi+1) +
∑

1≤i≤ℓ
M(qi) 6=⊥

h(qi, M(qi)) .

Note that Pathway Query is a generalization of Minimum-Weight Path

and becomes equivalent to this problem in the special case where the match
weight function h is unit and Nins = Ndel = 0.

3Literature usually states the weaker bound O(2kkm) that is obtained when representing
the sets S explicitly instead of using a table.
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Shlomi et al. [29] show how to solve Pathway Query by color-coding. The
basic process is the same as for Minimum-Weight Path: the input graph is
randomly colored with k := ℓ+Nins colors and it is hoped that the optimal path
becomes colorful in the process. However, the dynamic programming step (3)
from solving Minimum-Weight Path needs to be adapted in several ways in
order to account for the more general problem formulation of Pathway Query:

• New dimensions are added to the dynamic programming table to track
the number of deletions θ and the number of matched vertices i.

• The vertex match weights are taken into account.

• New recurrences for the process of insertion and deletion are added.

Thus, a table entry W (v, i, θ, S) contains the minimum weight of a partial
alignment that matches q1, . . . , qi, ends at v, contains θ deletions, and uses the
colors in S for P . The precise recurrences are:

W (v, i, θ, S) = min










W (u, i− 1, θ, S \ {color(v)}) + w(u, v) + h(qi, u) {u, v} ∈ E

W (u, i, θ, S \ {color(v)}) + w(u, v) {u, v} ∈ E, |S| − i < Nins

W (v, i− 1, θ − 1, S) θ < Ndel.

(4)

Letting k := ℓ + Nins and assuming that both Nins and Ndel are constants,
calculating these recurrences requires O(2k · k ·m) time for a given instance of
Pathway Query, that is, an additional factor of k compared to the recurrence
for Minimum-Weight Path. Details of the implementation of calculating (4)
are given in Section 3.3.

3 Speeding Up Color-Coding

This section presents several algorithmic improvements for color-coding that
lead to large savings in time and memory consumption. Whereas most of the
improvements in Sections 3.2 and 3.3 are of a heuristic nature, the improvement
in Section 3.1 makes color-coding also more efficient in a worst-case scenario.
Most of our improvements are applicable to color-coding in general and not
restricted to the bioinformatics scenario that we apply them to.

3.1 Speedup by Increasing the Number of Colors

Assume that we want to solve Minimum-Weight Path for a k-vertex path. We
clearly need at least k colors to find a minimum-weight k-vertex path when using
the color-coding technique. Increasing the number of used colors beyond this
leads to a tradeoff: Fewer trials have to be performed to ensure the same error
bound (because the path that we seek after is more likely to become colorful in
a trial), yet the dynamic programming step of each single trial takes longer.

More specifically, assume that to detect a minimum-weight k-vertex path
we are using the color-coding technique with k + x colors for some positive
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integer x. Then the probability Pc of a k-vertex path in the input graph being
colorful becomes

Pc =

(

k+x
k

)

· k!

(k + x)k
=

(k + x)!

x!(k + x)k
=

k
∏

i=1

i + x

k + x
(5)

because there are (k + x)k ways to color k vertices with k+x colors and of these
ways exactly

(

k+x
k

)

· k! use mutually different colors. The overall running time tA
of the color-coding algorithm to ensure an error probability of at most ε is a
product of two factors, namely the running time of a single trial and the number
of trials t(ε) to perform. As discussed in Section 2.1, the worst-case running
time for each trial when solving Minimum-Weight Path is O(2k+x ·m), and
we obtain

tA ≤ t(ε) ·O(2k+x ·m) =

⌈

ln ε

ln(1− Pc)

⌉

·O(2k+x ·m). (6)

Obviously, the value of x should be chosen such that the right-hand side of (6)
is minimized. Nearly all works we are aware of use x = 0 for their running time
analysis, which yields

tA = O(| ln ε| · ek · 2km) = O(| ln ε| · 5.44km) .

While this choice can be argued for with respect to memory requirements for
a trial (after all, these are a major bottleneck for dynamic programming algo-
rithms), it is not optimal concerning tA:

Theorem 1. The worst-case running time of color-coding for Minimum-Weight

Path with 1.3k colors and error probability ε is O(| ln ε| · 4.32km).

Proof. To estimate the factorials in Equation (5), we use the double inequality

√
2πnn+1/2 · exp(−n + 1/(12n + 1)) < n! <

√
2πnn+1/2 · exp(−n + 1/(12n))

derived from Stirling’s approximation. This yields

Pc ≥
√

2π(k + x)k+x+1/2 · exp
(

−k − x + 1
12k+12x+1

)

√
2πxx+1/2 · exp

(

−x + 1
12x

) · (k + x)−k

=

(

k

x
+ 1

)x+1/2

· exp

(

−k − 1

12x
+

1

12k + 12x + 1

)

.

Setting x := 0.3k and using the inequality ln(1 − Pc) < −Pc (which is valid
because the probability Pc satisfies 0 < Pc < 1) we obtain

tA ≤
⌈

ln ε

ln(1− Pc)

⌉

·O(2k+x ·m) <

(

ln ε

−Pc
+ 1

)

·O(2k+x ·m)

where

1

Pc
< 4.33−0.3k−1/2 · exp

(

k +
1

12x

)

= O

(

ek

1.552k

)

= O(1.752k)
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Figure 2: Running times for finding the 20 minimum-weight paths of different
lengths k in the yeast protein interaction network of Scott et al. [27]. Increasing
the number of colors yields a speedup of up to two orders of magnitude. No
lower bound function (Section 3.2.1) was used; the highlighted point of each
curve marks the optimal choice when assuming worst-case trial running time.

which finally yields

tA ≤ | ln ε| · (O(1.752k) + 1) ·O(21.3km) = O(| ln ε| · 4.32km)

as claimed by the theorem.

Increasing the number of colors has been independently examined by Desh-
pande et al. [7]. They also suggest using 1.3k colors; however, their analysis
only derives an O(4.5k) bound for the exponential part of the running time.

Analogously to this theorem for Minimum-Weight Path, the worst-case
running time that is required to solve Pathway Query for a (k−Nins)-vertex
query path can also be significantly improved by setting the number of colors
close to 1.3k.

Unfortunately, it seems difficult to algebraically solve for the value of x that
minimizes the right-hand side of (6). Numerical evaluation, however, suggests
that setting x close to 0.3k is an optimal choice to minimize the worst-case run-
ning time when solving Minimum-Weight Path or Pathway Query; concrete
evaluations of (6) can be used to determine whether to round the number 1.3k
up or down.

For a practical implementation, while we could fix the number of colors at
the worst-case optimum 1.3k, it is most likely beneficial to use even more colors
because various algorithmic tweaks and the underlying graph structure can keep
the running time of a single trial significantly below the worst-case estimate.
This in turn causes the increase in running time per trial by choosing more
colors to be even more overcompensated by a decrease in the total number of
trials needed, as is demonstrated in Figure 2 for the case of Minimum-Weight

Path. In fact, for a small path size of 8–10 we can choose the number of
colors to be the maximum our implementation allows (that is, 31), and get by
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· · ·
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Figure 3: Calculation of a lower weight bound for a length-k path when al-
ready |S| of the vertices are given.

with a very small number of trials (≈15–30). Based on such observations, our
implementation uses an adaptive approach to the number of colors, starting
with the maximum of 31 and decreasing this in case a trial runs out of memory.

3.2 Improvements for Minimum-Weight Path

As is standard practice in dynamic programming, we do not allocate memory
for the complete table and evaluate (3) recursively, but rather work layer-wise
starting from an initial set of entries. More precisely, we seed the table with
all entries corresponding to a one-vertex path ending at a vertex v, and then
repeatedly generate the next layer by extending all entries by one vertex, after
which the old layer can be discarded. This saves memory compared to hold-
ing a complete table and allows the improvements of Section 3.2.1. However,
it requires extra memory to carry along enough information in each entry to
reconstruct a solution; we show in Section 3.2.2 how to do this efficiently.

3.2.1 Lower Bounds and Cache Preheating

In a color-coding trial for solving Minimum-Weight Path, every vertex carries
entries for up to 2k+x color sets, each representing a partial colorful path with a
certain weight. Because each entry may get expanded to an exponentially large
collection of new entries, pruning even a small fraction of them can lead to a
significant speedup. The pruning strategy that we employ makes use of the fact
that we are only looking for a fixed number of minimum-weight paths. As soon
as we have found this number of candidates, we can always remove entries where
the weight of the corresponding partial path is certain to exceed the weight of
the worst known path in the current collection of paths when completed.

Consider an entry W (v, S) corresponding to some partial path. To obtain a
length-k path, we need to append another k − |S| edges. Thus, a trivial lower
bound for the total weight of a length-k path expanded from this entry would
be W (v, S) + (k − |S|)wmin, where wmin is the minimum weight of any edge in
the graph. We improve upon this simple bound by dividing the remaining path
length not into single edges, but rather—as illustrated in Figure 3—into three
segments, calculating a lower bound separately for each of them and summing
up these bounds.

The lower bound calculation is prepared in a preprocessing phase on the
uncolored graph. There, we determine by dynamic programming for every ver-
tex v and a range of lengths 1 ≤ i ≤ d the minimum weight wmin(v, i) of a path
of i edges that starts at the vertex v. If the paths are restricted to end only in
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Figure 4: Running time comparison with heuristic evaluation functions for dif-
ferent values of d (seeking the 20 lowest-weight paths in the yeast network of
Scott et al. [27] that differ in at least 30% of participating vertices).

a certain set of “goal vertices” (for example, when the signaling pathway candi-
dates are restricted to end in a transcription factor), we additionally determine
the minimum weight gmin(v, i) of a path of i edges starting in v and ending in
a goal vertex. After this preprocessing, to get a lower bound for the minimum
weight of a path with ℓ < k edges starting in v and ending in a goal vertex, we
can directly look up gmin(v, ℓ) whenever ℓ ≤ d. Since calculating wmin and gmin

takes O(nd) time and space in the worst case, we generally have to choose d < k.
We can still get a lower bound if ℓ > d. For example, if ℓ = c · d for some c ≥ 2,
we calculate

wmin(v, d) +
ℓ− 2d

d
·min

u∈V
wmin(u, d) + min

u∈V
gmin(u, d). (7)

If d does not evenly divide ℓ, we add a suitable correction term for the
middle segment. If ℓ < 2d, we additionally try all ways of dividing the bound
between wmin(v, ℓ1) and minu∈V gmin(u, ℓ2) for ℓ1 + ℓ2 = ℓ.

Clearly, there is a trade-off between the time invested in the preprocessing
(depending on d) and the time saved in the main algorithm. For the yeast
network of Scott et al. [27], setting d = 2 seems to be a good choice with
an additional second of preprocessing time. For d = 3, the preprocessing time
increases to 38 seconds, an amount of time that is only recovered when searching
for paths of length at least 19 (see Figure 4).

Using lower bounds is only effective once we have already found as many
paths as we are looking for. Therefore, it is important to quickly find some
low-weight paths early in the process. We achieve this acquisition of lower
bounds by prepending a number of trials with a thinned-out graph, that is, for
some 0 < t < 1, we consider a graph that contains only the t|E| lightest edges
of the input graph.4 Trials for a certain value of t are repeated with different
random colorings until the lower bound does not improve any more. By default,
t is increased in steps of 1/10; should we run out of memory, this step size is

4In particular in database applications, similar techniques are known as “preheating the
cache.”
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Figure 5: Representation of color sets at some node u with color 4. Inner nodes
contain the marker bit (leftmost box), the common suffix (branch bit in bold),
and two pointers to children. Leaf nodes contain the marker bit, the color set,
the weight, and the vertices of the path.

halved. This allows to successfully complete trials in the thinned out graphs,
making trials feasible on the original graphs by providing them with powerful
bounds for pruning.

3.2.2 Efficient Storage of Color Sets

Since one is not only interested in the weight of a solution, but in the vertices
(that is, proteins) that it consists of, it is common to not only store the weight
of a partial colorful path in Equation (3) but also a concrete sequence of vertices
that realizes this weight. This accounts for the bulk of the memory requirement
of a color-coding implementation, because k⌈log |V |⌉ bits per stored path are
required. We propose to save memory here by noting that it suffices to store
only the order in which the colors appear on a path: after completing a color
set at some vertex u, the path can be recovered by running a shortest path
algorithm (e.g., Dijkstra’s algorithm [6]) for the source vertex u while allowing
it to only travel edges that match the color order. This reduces the memory cost
per entry to k⌈log k⌉ bits, which, for our application, amounts to a saving factor
of about 2–4. Because of the resulting increase in computer cache effectiveness,
this usually also leads to a speedup except when either short path lengths are
used (where memory is not an issue anyway) or when many solution paths are
found and have to be reconstructed.

3.2.3 Data Structure

We represent color sets as a bit string of fixed length. This allows to use a
Patricia tree, that is, a compact representation of a radix tree [6] where any
node which is an only child is merged with its parent (see Fig. 5 for an example).

Inner nodes of the tree contain a color set. The highest 1-bit of this color
set is the branch bit. For all leaf nodes below an inner node, the bits below
the branch bits are equal to the corresponding bits in this inner node. The left
subtree contains color sets where the branch bit is 0, and the right subtree those
where it is 1. We additionally need a marker bit to distinguish inner nodes and
leaves. A leaf stores the complete color set, the weight of the corresponding
partial path, and the colors in the order of occurrence on the path (except for
the last one, which is redundant).

The height of the tree is naturally limited by the number of colors, so no
balancing is needed. This data structure allows for very quick insertions and
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iterations with a moderate memory overhead of, e.g., 12 bytes per color set on
a 32-bit system. Memory allocation time and space overhead is minimized by
using a memory pool.

The data structure has the additional advantage that it is possible to quickly
skip over color sets containing a certain color by noting that the corresponding
bit is set in the suffix at some inner node.

3.3 Specific Improvements for Pathway Query

If we wish to exploit the heuristic cutoffs and the resulting sparseness of the
dynamic programming table when solving an instance of Pathway Query, we
cannot use recurrence (4) from Section 2.2 directly; rather, the entries must
be built up inductively. For this purpose, the dimension of i is represented
implicitly by working layerwise from i = 1 to l and accessing only the previous
layer. The dimensions of v and θ are represented explicitly as an array, while
the values of S are covered by one Patricia tree per combination of v and θ. The
calculation of layer i + 1 from layer i starts by expand each entry W (v, i, θ, S)
with weight wi in layer i by possible matchings or deletions of a single vertex:

if {u, v} ∈ E ∧ color(u) /∈ S :

W (u, i + 1, θ, S ∪ {color(u)})← wi + w(u, v) + h(qi+1, u)

if θ < Ndel :

W (v, i + 1, θ + 1, S)← wi.

The update is skipped if an entry with lower weight is already present. Since
insertions do not increment i, we then have to update the table for layer i +
1 by entries with an arbitrary additional number of insertions. Each entry
W (v, i + 1, θ, S) with weight wi+1 (including those generated in this process) is
expanded:

if {u, v} ∈ E ∧ color(u) /∈ S ∧ |S| − (i + 1) < Nins :

W (u, i + 1, θ, S ∪ {color(u)})← wi+1 + w(u, v).

Fortunately, the Patricia tree structure allows to do the insertion updates
in a straightforward way: a single in-order walk of the tree will do, since any
newly inserted entry contains one more color and will therefore be encountered
later in the walk.

For initialization, all possibilities to delete 0, . . . , Ndel query vertices and
then match the next with v ∈ V have to be entered into the table. Alignments
starting with insertions are not considered, since they cannot be optimal.

A deletion is not allowed after an insertion, since alignments that only differ
in the order of deletions and insertions between two actual matches will have
the same score, and are not reasonable to differentiate for our application.

In order to use the heuristic lower bounds that we use for Minimum-Weight

Path (Section 3.2.1) also for Pathway Query, these have to be slightly adapted:
First, possible deletions have to be taken into account when considering the min-
imum additional edge that must be incurred. Second, we improve the heuristic
by adding the minimum match weight of all query vertices that are yet to be
matched (also considering possible deletions).

13



Table 1: Basic properties of the network instances yeast (Scott el al. [27])
and drosophila (Giot et al. [12]). The clustering coefficient is the probability
that {u, v} ∈ E for u, v, x ∈ V with {u, x} ∈ E and {x, v} ∈ E.

vertices edges clustering coefficient avg. degree max. degree

yeast 4 389 14 319 0.067 6.5 237
drosophila 7 009 20 440 0.030 5.8 175
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Figure 6: (a) Running times for yeast as reported by Scott et al. [27] (ad-
justed for speed difference of the testing machines) and measured with our
implementation. In both cases, paths must start at a membrane protein, and
end at a transcription factor. Memory requirements were, e. g., 3 MB for k = 10
and 242MB for k = 21.
(b) Comparison of the running times of our implementation when applied to
yeast and drosophila for various path lengths, seeking after either 20 or 100
minimum-weight paths that mutually differ in at least 30% of their vertices.
There were no restrictions as to the sets of start and end vertices.

4 Experimental Results

We have implemented the color-coding technique with the improvements de-
scribed in the last section. The source code of the program is available from
http://theinf1.informatik.uni-jena.de/colorcoding/; it is written in the
C++ programming language and consists of approximately 1700 lines of code.
The testing machine is an AMD Athlon 64 3400+ with 2.4GHz, 512KB cache,
and 1 GB main memory running under the Debian GNU/Linux 3.1 operating
system. The program was compiled with the GNU g++ 4.2 compiler using the
options “-O3 -march=athlon”.

4.1 Minimum-Weight Path

The real-world network instances used for speed measurements were the Sac-
charomyces cerevisiae interaction network used by Scott el al. [27] and the
Drosophila melanogaster interaction network described by Giot et al. [12]. Some
properties of these networks, which we will refer to as yeast and drosophila,
are summarized in Table 1.

To explore the sensitivity of the running time to various graph parameters
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Figure 7: Running time for our color-coding implementation on random net-
works, seeking after 20 minimum-weight paths. Unless a parameter is the vari-
able of a measurement, the following default values are used (we have empirically
found them to result in networks that are quite similar to yeast): 4 000 ver-
tices; degree distribution is a power law with exponential cutoff, that is, the
fraction pk of vertices with degree k satisfies pk ∼ kα · e−k/1.3 · e−45/k; the
default value for α is −1.6; edge weights are distributed as in yeast; the clus-
tering coefficient is 0.1. The data shown reports the average running time over
five runs each. (a) Dependency on the number of vertices. (b) Dependency
on the clustering coefficient. (c) Dependency on the parameter α of the power
law distribution. (d) Dependency on the distribution of edge weights for three
different distributions: A uniform [0, 1]-distribution, the distribution of yeast,
and the distribution of yeast under consideration of vertex degree.

(namely, the number of vertices, the clustering coefficient, the degree distribu-
tion, and the distribution of edge weights), the implementation was also run on
a testbed of random graph instances that were generated with the algorithm
described by Volz [31]. The results of all experiments and details as to the
experimental setting are given in Figures 6 and 7.

Note that Scott et al. [27] obtained their running times on a dual 3.0GHz
Intel Xeon processor with 4GB main memory. To make their running times
comparable with ours, Figure 6 does not report their original times here, but
divides them by 1.2 (which is a very conservative estimate in favor of Scott et
al. [27] that most likely overestimates the speed of our machine).

Only a few of the most difficult instances hit the predefined 768MB memory
limit and required additional preheating cycles.
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Discussion. Compared to the (machine-speed adjusted) running times from
Scott et al. [27], our implementation is faster by a factor of 10 to 2 000 on yeast

(see Figure 6a). Scott et al. discuss findings for paths up to a length of 10 which
they were able to find in about three hours. These can be found within seconds
by our implementation, allowing for interactive queries and displays. The range
of feasible path lengths is more than doubled.

Figure 6b shows that the running times for both yeast and drosophila

are roughly equal. The only exception is the search for the best 100 paths
within yeast which not only takes unexpectedly long but also displays step-
like structures. Most likely, these two phenomena can be attributed to the fact
that certain path lengths allow for much fewer well-scoring paths than others
in yeast, causing the lower-bound heuristic to be less effective. Figure 6b also
demonstrates that a major factor in the running time is actually the number of
paths that is sought after. This is because a larger number of paths worsens the
lower bound of the heuristic which cannot cut off as many partial solutions and
maintaining the list of paths and checking the “at least 30% of vertices must
differ” criterion becomes more involved.

Figures 7a, 7b, and 7d show that the running time of the color-coding algo-
rithm appears to be insensitive to the size of the graph (increasing linearly with
increasing graph size) as well as the clustering coefficient and the distribution
of edge weights. The somewhat unexpectedly high running times for graphs
with less than 500 vertices in Figure 7a are explained by the fact that the num-
ber of length-10 and length-15 paths in these networks is very low, causing the
heuristic lower bounds to be rather ineffective (this also explains why the effect
is worse for k = 15 than it is for k = 10).

Figure 7c shows that the algorithm is generally faster when the vertex degrees
are unevenly distributed. This comes as no surprise because for low-degree
vertices, fewer color sets have to be maintained in general and the heuristic lower
bounds are often better. For k = 15, two points in the curve require further
explanation: First, the drop-off in running time for α < −3 is explained by the
random graph “disintegrating” into small components. Second, the increased
running time for −3 ≤ α ≤ −2 is most likely due to a decrease in the total
number of length-15 paths as compared to larger values of α.

4.2 Pathway Queries

Method and Results. To evaluate the performance of our improved color-
coding for Pathway Query, we conducted experiments similar to those of
Shlomi et al. [29]: The data basis are their protein interaction networks of
S. cerevisiae and D. melanogaster as well as a matrix of protein similarity
scores described in [29]. To obtain query paths of various lengths ℓ = 4, . . . , 9,
we determined the set of the 100 minimum-weight paths of each length in the
S. cerevisiae network, using the constraint that no two paths of the same length
are allowed to overlap by more than 20 % of their vertices. We then determined
the best match for each of these query paths in the D. melanogaster network,
allowing up to 3 insertions and up to 3 deletions. Table 2 shows the obtained
running times for these queries.

Discussion. Shlomi et al. [29] were able to answer path queries for paths
of length 7 on average within 8 minutes on a Pentium 4 with 1.7GHz. On
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Path length Avg. Time [s] Max. Time [s] Successful Queries

4 2.24 2.57 98%
5 2.33 3.61 93%
6 3.00 23.02 81%
7 4.52 93.32 52%
8 7.49 225.61 31%
9 11.38 245.78 13%

Table 2: Running times for path queries in the D. melanogaster network. The
rightmost column gives the percentage of query paths for which a matching path
in the D. melanogaster network could be found.

average, our implementation solves these within a few seconds and is able to
answer queries even for length ℓ = 9 within reasonable time.5 In general, we
found the algorithm to be significantly slowed down if the network contains no
path that matches the query, which explains the large deviations between the
average and maximum required time as the query path length increases.

5 Conclusion

We have given various algorithmic improvements for the color-coding technique.
In the applications scenario of detecting signaling pathway candidates in protein
interaction networks, these enable the fast exploration of small pathway candi-
dates as well as finding much larger structures than previously possible. To some
extent, our work also closes the gap in practical experience with color-coding.

There remain two interesting open questions for future research: First, the
recently devised algorithms that are based on random partitions of a graph into
its subgraphs [3, 17] have a better worst-case bound than color-coding. It is not
clear whether this better bound carries over in practice because the random par-
tition approach has the exponential part of the running time “hard-coded” into
recursive function calls whereas color-coding is more dependent on the input
graph structure, which usually is favorable in this respect. As a second interest-
ing field for future research, one should further look into ways to derandomize
color-coding algorithms so efficiently that the resulting deterministic algorithms
are of practical use (recently, Chen et al. [5] made substantial progress in this
direction).
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