
 CHAPTER  2

BASICS

2–1  Manipulating Rightmost Bits
Some of the formulas in this section find application in later chapters.

Use the following formula to turn off the rightmost 1-bit in a word, producing
0 if none (e.g., 01011000  01010000):

This can be used to determine if an unsigned integer is a power of 2 or is 0: apply
the formula followed by a 0-test on the result.

Use the following formula to turn on the rightmost 0-bit in a word, producing
all 1’s if none (e.g., 10100111  10101111):

Use the following formula to turn off the trailing 1’s in a word, producing x if
none (e.g., 10100111  10100000):

This can be used to determine if an unsigned integer is of the form , 0, or all
1’s: apply the formula followed by a 0-test on the result.

Use the following formula to turn on the trailing 0’s in a word, producing x if
none (e.g., 10101000  10101111):

Use the following formula to create a word with a single 1-bit at the position
of the rightmost 0-bit in x, producing 0 if none (e.g., 10100111  00001000):

Use the following formula to create a word with a single 0-bit at the position
of the rightmost 1-bit in x, producing all 1’s if none (e.g., 1010 1000 
11110111):
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12 BASICS 2–1
Use one of the following formulas to create a word with 1’s at the positions of
the trailing 0’s in x, and 0’s elsewhere, producing 0 if none (e.g., 01011000 
00000111):

The first formula has some instruction-level parallelism.
Use the following formula to create a word with 0’s at the positions of the

trailing 1’s in x, and 0’s elsewhere, producing all 1’s if none (e.g., 10100111 
11111000):

Use the following formula to isolate the rightmost 1-bit, producing 0 if none
(e.g., 01011000  00001000):

Use the following formula to create a word with 1’s at the positions of the
rightmost 1-bit and the trailing 0’s in x, producing all 1’s if no 1-bit, and the inte-
ger 1 if no trailing 0’s (e.g., 01011000  00001111):

Use the following formula to create a word with 1’s at the positions of the
rightmost 0-bit and the trailing 1’s in x, producing all 1’s if no 0-bit, and the inte-
ger 1 if no trailing 1’s (e.g., 01010111  00001111):

Use either of the following formulas to turn off the rightmost contiguous
string of 1’s (e.g., 01011100 ==> 01000000) [Wood]:

These can be used to determine if a nonnegative integer is of the form  for
some : apply the formula followed by a 0-test on the result.

De Morgan’s Laws Extended

The logical identities known as De Morgan’s laws can be thought of as dis-
tributing, or “multiplying in,” the not sign. This idea can be extended to apply to
the expressions of this section, and a few more, as shown below. (The first two are
De Morgan’s laws.)
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As an example of the application of these formulas,  =
 =  = 

Right-to-Left Computability Test

There is a simple test to determine whether or not a given function can be
implemented with a sequence of add’s, subtract’s, and’s, or’s, and not’s [War]. We
can, of course, expand the list with other instructions that can be composed from
the basic list, such as shift left by a fixed amount (which is equivalent to a
sequence of add’s), or multiply. However, we exclude instructions that cannot be
composed from the list. The test is contained in the following theorem.

THEOREM. A function mapping words to words can be implemented with
word-parallel add, subtract, and, or, and not instructions if and only if
each bit of the result depends only on bits at and to the right of each input
operand.

That is, imagine trying to compute the rightmost bit of the result by looking
only at the rightmost bit of each input operand. Then, try to compute the next bit
to the left by looking only at the rightmost two bits of each input operand, and
continue in this way. If you are successful in this, then the function can be com-
puted with a sequence of add’s, and’s, and so on. If the function cannot be com-
puted in this right-to-left manner, then it cannot be implemented with a sequence
of such instructions.

The interesting part of this is the latter statement, and it is simply the contra-
positive of the observation that the functions add, subtract, and, or, and not can all
be computed in the right-to-left manner, so any combination of them must have
this property.

To see the “if” part of the theorem, we need a construction that is a little awk-
ward to explain. We illustrate it with a specific example. Suppose that a function
of two variables x and y has the right-to-left computability property, and suppose
that bit 2 of the result r is given by

(1)
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We number bits from right to left, 0 to 31. Because bit 2 of the result is a function
of bits at and to the right of bit 2 of the input operands, bit 2 of the result is “right-
to-left computable.”

Arrange the computer words x, x shifted left two, and y shifted left one, as
shown below. Also, add a mask that isolates bit 2.

Now, form the word-parallel and of lines 2 and 3, or the result with row 1 (follow-
ing Equation (1)), and and the result with the mask (row 4 above). The result is a
word of all 0’s except for the desired result bit in position 2. Perform similar com-
putations for the other bits of the result, or the 32 resulting words together, and the
result is the desired function.

This construction does not yield an efficient program; rather, it merely shows
that it can be done with instructions in the basic list.

Using the theorem, we immediately see that there is no sequence of such
instructions that turns off the leftmost 1-bit in a word, because to see if a certain 1-
bit should be turned off, we must look to the left to see if it is the leftmost one.
Similarly, there can be no such sequence for performing a right shift, or a rotate
shift, or a left shift by a variable amount, or for counting the number of trailing 0’s
in a word (to count trailing 0’s, the rightmost bit of the result will be 1 if there are
an odd number of trailing 0’s, and we must look to the left of the rightmost posi-
tion to determine that).

A Novel Application

An application of the sort of bit twiddling discussed above is the problem of
finding the next higher number after a given number that has the same number of
1-bits. You might very well wonder why anyone would want to compute that. It
has application where bit strings are used to represent subsets. The possible mem-
bers of a set are listed in a linear array, and a subset is represented by a word or
sequence of words in which bit i is on if member i is in the subset. Set unions are
computed by the logical or of the bit strings, intersections by and’s, and so on.

You might want to iterate through all the subsets of a given size. This is easily
done if you have a function that maps a given subset to the next higher number
(interpreting the subset string as an integer) with the same number of 1-bits.

A concise algorithm for this operation was devised by R. W. Gosper [HAK,
item 175].1 Given a word x that represents a subset, the idea is to find the right-

1. A variation of this algorithm appears in [H&S] sec. 7.6.7.

x31 x30  x3 x2 x1 x0

x29 x28  x1 x0 0 0

y30 y29  y2 y1 y0 0

0 0  0 1 0 0

0 0  0 r2 0 0
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most contiguous group of 1’s in x and the following 0’s, and “increment” that
quantity to the next value that has the same number of 1’s. For example, the string
xxx0 1111 0000, where xxx represents arbitrary bits, becomes xxx1 0000 0111.
The algorithm first identifies the “smallest” 1-bit in x, with  giving
0000 0001 0000. This is added to x, giving r = xxx1 0000 0000. The 1-bit here is
one bit of the result. For the other bits, we need to produce a right-adjusted string
of  1’s, where n is the size of the rightmost group of 1’s in x. This can be
done by first forming the exclusive or of r and x, which gives 0001 1111 0000 in
our example.

This has two too many 1’s, and needs to be right-adjusted. This can be
accomplished by dividing it by s, which right-adjusts it (s is a power of 2), and
shifting it right two more positions to discard the two unwanted bits. The final
result is the or of this and r.

In computer algebra notation, the result is y in

(2)

A complete C procedure is given in Figure 2–1. It executes in seven basic
RISC instructions, one of which is division. (Do not use this procedure with

 that causes division by 0.)
If division is slow, but you have a fast way to compute the number of trailing

zeros function ntz(x), the number of leading zeros function nlz(x), or population
count (pop(x) is the number of 1-bits in x), then the last line of Equation (2) can be
replaced with one of the following formulas. (The first two methods can fail on a
machine that has modulo 32 shifts.)

unsigned snoob(unsigned x) {
   unsigned smallest, ripple, ones;
                                // x = xxx0 1111 0000
   smallest = x & -x;           //     0000 0001 0000
   ripple = x + smallest;       //     xxx1 0000 0000
   ones = x ^ ripple;           //     0001 1111 0000
   ones = (ones >> 2)/smallest; //     0000 0000 0111
   return ripple | ones;        //     xxx1 0000 0111
}

FIGURE 2–1.  Next higher number with same number of 1-bits.

s x x,–&=

n 1–

s x x–&
r s x+
y r x r  2>> 
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x 0;=

y r x r  2 ntz x( )+ >> 
u  | 

y r x r  33 nlz s( )– >> 
u  | 

y r 1 pop x r( ) 2– <<  1–  | 
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2–2  Addition Combined with Logical Operations
We assume the reader is familiar with the elementary identities of ordinary alge-
bra and Boolean algebra. Below is a selection of similar identities involving addi-
tion and subtraction combined with logical operations.

Equation (d) can be applied to itself repeatedly, giving 
and so on. Similarly, from (e) we have   So we can add or sub-
tract any constant, using only the two forms of complementation.

Equation (f) is the dual of (j), where (j) is the well-known relation that shows
how to build a subtracter from an adder.

Equations (g) and (h) are from HAKMEM memo [HAK, item 23]. Equation
(g) forms a sum by first computing the sum with carries ignored  and
then adding in the carries. Equation (h) is simply modifying the addition oper-
ands so that the combination  never occurs at any bit position; it is replaced
with 

a.

b.

c.

d.

e.

f.

g.

h.

i.

j.
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l.
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n.

o.
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r.

s.
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u.

v.
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It can be shown that in the ordinary addition of binary numbers with each bit
independently equally likely to be 0 or 1, a carry occurs at each position with
probability about 0.5. However, for an adder built by preconditioning the inputs
using (g), the probability is about 0.25. This observation is probably not of value
in building an adder, because for that purpose the important characteristic is the
maximum number of logic circuits the carry must pass through, and using (g)
reduces the number of stages the carry propagates through by only one.

Equations (k) and (l) are duals of (g) and (h), for subtraction. That is, (k) has
the interpretation of first forming the difference ignoring the borrows 
and then subtracting the borrows. Similarly, Equation (l) is simply modifying the
subtraction operands so that the combination  never occurs at any bit posi-
tion; it is replaced with 

Equation (n) shows how to implement exclusive or in only three instructions
on a basic RISC. Using only and-or-not logic requires four instructions

  Similarly, (u) and (v) show how to implement and and
or in three other elementary instructions, whereas using DeMorgan’s laws
requires four.

2–3  Inequalities among Logical and Arithmetic Expressions
Inequalities among binary logical expressions whose values are interpreted as
unsigned integers are nearly trivial to derive. Here are two examples:

These can be derived from a list of all binary logical operations, shown in Table 2–1.
Let  and  represent two columns in Table 2–1. If for each row

in which  is 1,  also is 1, then for all  
Clearly, this extends to word-parallel logical operations. One can easily read off
such relations (most of which are trivial) as , and so on.
Furthermore, if two columns have a row in which one entry is 0 and the other is 1,

TABLE 2–1.  THE 16 BINARY LOGICAL OPERATIONS

x y

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
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
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and another row in which the entries are 1 and 0, respectively, then no inequality
relation exists between the corresponding logical expressions. So the question of
whether or not  is completely and easily solved for all binary logi-
cal functions f and g.

Use caution when manipulating these relations. For example, for ordinary
arithmetic, if  and  then  but this inference is not valid if
“+” is replaced with or.

Inequalities involving mixed logical and arithmetic expressions are more
interesting. Below is a small selection.

The proofs of these are quite simple, except possibly for the relation 
 By  we mean the absolute value of  which can be computed

within the domain of unsigned numbers as  This relation
can be proven by induction on the length of x and y (the proof is a little easier if
you extend them on the left rather than on the right).

2–4  Absolute Value Function
If your machine does not have an instruction for computing the absolute value,
this computation can usually be done in three or four branch-free instructions.
First, compute  and then one of the following:

By “ ” we mean, of course,  or 
If you have a fast multiply by a variable whose value is 1, the following

will do:

f x y( ) g x y( )
u 

x y+ a z x, z y+ a,

a.

b.

c.

d.

e.

x y |   max x y( )
u

x y&  min x y( )
u 

x y |   x y   if the addition does not overflow+
u 

x y |   x y   if the addition overflows+>
u

x y– x y 
u 

x y– 
u 

x y . x y– x y,–
max x y( ) min x y( ).–

y x 31,>> 
s

abs

x y  y–

x y+  y

x 2x y& –

nabs

y x y –

y x–  y

2x y&  x–

2x x x+ x 1.<<

x 30>> 
s  1 |   x*
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2–5  Average of Two Integers

The following formula can be used to compute the average of two unsigned inte-
gers,  without causing overflow [Dietz]:

(3)

The formula below computes  for unsigned integers:

To compute the same quantities (“floor and ceiling averages”) for signed inte-
gers, use the same formulas, but with the unsigned shift replaced with a signed
shift.

For signed integers, one might also want the average with the division by 2
rounded toward 0. Computing this “truncated average” (without causing overflow)
is a little more difficult. It can be done by computing the floor average and then
correcting it. The correction is to add 1 if, arithmetically,  is negative and odd.
But  is negative if and only if the result of (3) with the unsigned shift replaced
with a signed shift, is negative. This leads to the following method (seven instruc-
tions on the basic RISC, after commoning the subexpression ):

Some common special cases can be done more efficiently. If x and y are signed
integers and known to be nonnegative, then the average can be computed as simply

 The sum can overflow, but the overflow bit is retained in the register
that holds the sum, so that the unsigned shift moves the overflow bit to the proper
position and supplies a zero sign bit.

If x and y are unsigned integers and  or if x and y are signed integers and
 (signed comparison), then the average is given by  These

are “floor averages,” e.g., the average of –1 and 0 is –1.

2–6  Sign Extension

By “sign extension,” we mean to consider a certain bit position in a word to be the
sign bit, and we wish to propagate that to the left, ignoring any other bits present.
The standard way to do this is with shift left logical followed by shift right signed.
However, if these instructions are slow or nonexistent on your machine, it can be

x y+  2 ,

x y&  x y  1>> 
u +

x y+  2

x y |   x y  1>> 
u –

x y+
x y+

x y

t x y&  x y  1>> 
s ;+

t t 31>> 
u  x y & +

x y+  1.>> 
u

x y,
u 

x y x y x–  1>> 
u .+
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done with one of the following, where we illustrate by propagating bit position 7
to the left:

The “+” above can also be “–” or “.” The second formula is particularly useful if
you know that the unwanted high-order bits are all 0’s, because then the and can
be omitted.

2–7  Shift Right Signed from Unsigned
If your machine does not have the shift right signed instruction, it can be com-
puted using the formulas shown below. The first formula is from [GM], and the
second is based on the same idea. These formulas hold for  and, if the
machine has mod 64 shifts, the last holds for  The last formula holds
for any n if by “holds” we mean “treats the shift amount to the same modulus as
does the logical shift.”

When n is a variable, each formula requires five or six instructions on a
basic RISC.

In the first two formulas,  analternative for the expression  is

If n is a constant, the first two formulas require only three instructions on
many machines. If  the function can be done in two instructions with

2–8  Sign Function
The sign, or signum, function is defined by

x 0x00000080+  0x000000FF&  0x00000080–

x 0x000000FF&  0x00000080  0x00000080–

x 0x0000007F&  x 0x00000080& –

0 n 31 
0 n 63. 

x 0x80000000+  n>> 
u  0x80000000 n>> 

u –

t 0x80000000 n;>> 
u x n>> 

u  t  t–

t x 0x80000000&  n;>> 
u x n>> 

u  t t+ –

x n>> 
u  x 31>> 

u – 31 n–<<  | 

t x 31>> 
u ;– x t  n>> 

u  t

0x80000000 n>> 
u

1 31 n.–<<

n 31,=
x 31>> 

u .–

sign x( )

1–    x 0,
0    x 0,=
1    x 0.






=
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It can be calculated with four instructions on most machines [Hop]:

If you don’t have shift right signed, then use the substitute noted at the end of
Section 2–7, giving the following nicely symmetric formula (five instructions):

Comparison predicate instructions permit a three-instruction solution, with
either

(4)

Finally, we note that the formula  almost works; it
fails only for 

2–9  Three-Valued Compare Function
The three-valued compare function, a slight generalization of the sign function, is
defined by

There are both signed and unsigned versions, and unless otherwise specified, this
section applies to both.

Comparison predicate instructions permit a three-instruction solution, an
obvious generalization of Equations (4):

A solution for unsigned integers on PowerPC is shown below [CWG]. On
this machine, “carry” is “not borrow.”

   subf  R5,Ry,Rx   # R5 <-- Rx - Ry.
   subfc R6,Rx,Ry   # R6 <-- Ry - Rx, set carry.
   subfe R7,Ry,Rx   # R7 <-- Rx - Ry + carry, set carry.
   subfe R8,R7,R5   # R8 <-- R5 - R7 + carry, (set carry).

x 31>> 
s  x– 31>> 

u  | 

x 31>> 
u – x– 31>> 

u  | 

x 0  x 0 ,  or–

x 0  x 0 .–

x– 31>> 
u  x 31>> 

u –
x 231.–=

cmp x y( )

1–    x y,
0    x y,=
1    x y.






=

x y  x y ,   or–

x y  x y .–
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If limited to the instructions of the basic RISC, there does not seem to be any
particularly good way to compute this function. The comparison predicates 

 and so on, require about five instructions (see Section 2–12), leading to a
solution in about 12 instructions (using a small amount of commonality in com-
puting  and ). On the basic RISC it’s probably preferable to use com-
pares and branches (six instructions executed worst case if compares can be
commoned).

2–10  Transfer of Sign
The transfer of sign function, called ISIGN in Fortran, is defined by

This function can be calculated (modulo ) with four instructions on most
machines:

2–11  Decoding a “Zero Means 2**n” Field
Sometimes a 0 or negative value does not make much sense for a quantity, so it is
encoded in an n-bit field with a 0 value being understood to mean , and a non-
zero value having its normal binary interpretation. An example is the length field
of PowerPC’s load string word immediate (lswi) instruction, which occupies
five bits. It is not useful to have an instruction that loads zero bytes, when the
length is an immediate quantity, but it is definitely useful to be able to load 32
bytes. The length field could be encoded with values from 0 to 31 denoting
lengths from 1 to 32, but the “zero means 32” convention results in simpler logic
when the processor must also support a corresponding instruction with a variable
(in-register) length that employs straight binary encoding (e.g., PowerPC’s lswx
instruction).

It is trivial to encode an integer in the range 1 to  into the “zero means ”
encoding—simply mask the integer with  To do the decoding without a
test-and-branch is not quite as simple, but below are some possibilities, illustrated
for a 3-bit field. They all require three instructions, not counting possible loads of
constants.

x y,
x y,

x y x y

ISIGN x y( )
abs x( )    y 0,
abs x( )–    y 0.




=

232

t y 31;>> 
s

ISIGN x y( ) abs x( ) t  t–=

 abs x( ) t+  t=

 
t x y  31;>> 

s

ISIGN x y( ) x t  t–=

 x t+  t=

2n

2n 2n

2n 1.–
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2–12  Comparison Predicates

A “comparison predicate” is a function that compares two quantities, producing a
single bit result of 1 if the comparison is true, and 0 if the comparison is false.
Below we show branch-free expressions to evaluate the result into the sign posi-
tion. To produce the 1/0 value used by some languages (e.g., C), follow the code
with a shift right of 31. To produce the  result used by some other languages
(e.g., Basic), follow the code with a shift right signed of 31.

These formulas are, of course, not of interest on machines such as MIPS and
our model RISC, which have comparison instructions that compute many of these
predicates directly, placing a 0/1-valued result in a general purpose register.

A machine instruction that computes the negative of the absolute value is
handy here. We show this function as “nabs.” Unlike absolute value, it is well
defined in that it never overflows. Machines that do not have nabs, but have the
more usual abs, can use  for  If x is the maximum negative num-

x 1–  7&  1+

x 7+  7&  1+

x 1–  8– |   9+

x 7+  8– |   9+

x 7+  8 |   7–

x 1–  8&  x+

8 x– 7& –

x– 8– |  –

1– 0

x y:= abs x y–( ) 1–

abs x y– 0x80000000+( )

nlz x y–( ) 26<<

nlz x y–( ) 5>> 
u –

x y– y x– |  
x y: nabs x y–( )

nlz x y–( ) 32–

x y– y x– | 

x y: x y–  x y  x y–  x & 

x y&  x y  x y– &  | 

nabs doz y x( )( )                             [GSO]

x y: x y |   x y  y x–  |  &

x y  1>> 
s  x y&                     [GSO]+

x y:<
u x y&  x y  x y– &  | 

x y&  x y |   x y– &  | 

x y:
u x y |   x y  y x–  |  &

abs x( )– nabs x( ).
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ber, this overflows twice, but the result is correct. (We assume that the absolute
value and the negation of the maximum negative number is itself.) Because some
machines have neither abs nor nabs, we give an alternative that does not use them.

The “nlz” function is the number of leading 0’s in its argument. The “doz”
function (difference or zero) is described on page 41. For   and so on,
interchange x and y in the formulas for   and so on. The add of
0x8000 0000 can be replaced with any instruction that inverts the high-order bit
(in x, y, or ).

Another class of formulas can be derived from the observation that the predi-
cate  is given by the sign of  and the subtraction in that expres-
sion cannot overflow. The result can be fixed up by subtracting 1 in the cases in
which the shifts discard essential information, as follows:

These execute in seven instructions on most machines (six if it has and not),
which is no better than what we have above (five to seven instructions, depending
upon the fullness of the set of logic instructions).

The formulas above involving nlz are due to [Shep], and his formula for the
 predicate is particularly useful, because a minor variation of it gets the

predicate evaluated to a 1/0-valued result with only three instructions:

Signed comparisons to 0 are frequent enough to deserve special mention.
Below are some formulas for these, mostly derived directly from the above.
Again, the result is in the sign position.

x y, x y,
x y, x y,

x y–

x y x 2 y 2 ,–

x y:

x y:<
u 

x 1>> 
s  y 1>> 

s – x y 1& & –

x 1>> 
u  y 1>> 

u – x y 1& & –

x y=

nlz x y–( ) 5.>> 
u

x 0:= abs x( ) 1–

abs x 0x80000000+( )

nlz x( ) 26<<

nlz x( ) 5>> 
u –

x x– |  

x x 1– &

x 0: nabs x( )

nlz x( ) 32–

x x– | 

x 1>> 
u  x               [CWG]–
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Signed comparisons can be obtained from their unsigned counterparts by
biasing the signed operands upwards by  and interpreting the results as
unsigned integers. The reverse transformation also works.2 Thus, we have

Similar relations hold for , , and so on. In these relations, one can use addi-
tion, subtraction, or exclusive or with  They are all equivalent, as they simply
invert the sign bit. An instruction like the basic RISC’s add immediate shifted is
useful, to avoid loading the constant 

Another way to get signed comparisons from unsigned is based on the fact
that if x and y have the same sign, then  whereas if they have oppo-
site signs, then  [Lamp]. Again, the reverse transformation also
works, so we have

where  and  are the sign bits of x and y, respectively. Similar relations hold
for , , and so on.

Using either of these devices enables computing all the usual comparison
predicates other than = and  in terms of any one of them, with at most three addi-
tional instructions on most machines. For example, let us take  as primitive,
because it is one of the simplest to implement (it is the carry bit from ). Then
the other predicates can be obtained as follows:

2. This is useful to get unsigned comparisons in Java, which lacks unsigned integers.

x 0: x

x 0: x x 1–  | 

x x– | 

x 0: x nabs x( )

x 1>> 
s  x–

x– x&

x 0: x

231

x y x 231+ y 231+<
u ,=

x y<
u x 231– y 231.–=

 
u 

231.

231.

x y x y,<
u =

x y x y>
u=

x y x y<
u   x31 y31   and =

x y<
u x y  x31 y31, =

x31 y31
 

u 

x y
u 

y x–
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Comparison Predicates from the Carry Bit

If the machine can easily deliver the carry bit into a general purpose register, this
may permit concise code for some of the comparison predicates. Below are listed
several of these relations. The notation carry(expression) means the carry bit gen-
erated by the outermost operation in expression. We assume the carry bit for the
subtraction  is what comes out of the adder for , which is the com-
plement of “borrow.”

For  use the complement of the expression for  and similarly for other
relations involving “greater than.”

The GNU Superoptimizer has been applied to the problem of computing pred-
icate expressions on the IBM RS/6000 computer and its close relative PowerPC
[GK]. The RS/6000 has instructions for abs(x), nabs(x), doz(x, y), and a number of
forms of add and subtract that use the carry bit. It was found that the RS/6000 can

x y y 231+ x 231+
u  =

x y x 231+ y 231+
u =

x y x 231+ y 231+
u  =

x y y 231+ x 231+
u =

x y<
u y x

u  =

x y>
u x y

u  =

x y
u y x

u =

x y– x y 1+ +

x y:= carry 0 x y– –( ), or carry x y+  1+( ), or

carry x y– 1–  1+( )

x y: carry x y–  1–( ), i.e., carry x y–  1– + 

x y: carry x 231+  y 231+ –( ), or carry x y–( ) x31 y31 

x y: carry y 231+  x 231+ –( ), or carry y x–( ) x31 y31 

x y:<
u carry x y–( )

x y:
u carry y x–( )

x 0:= carry 0 x–( ), or carry x 1+( )

x 0: carry x 1–( ), i.e., carry x 1– +( )

x 0: carry x x+( )

x 0: carry 231 x 231+ –( )

x y, x y,
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compute all the integer predicate expressions with three or fewer elementary (one-
cycle) instructions, a result that surprised even the architects of the machine. “All”
includes the six two-operand signed comparisons and the four two-operand
unsigned comparisons, all of these with the second operand being 0, and all in
forms that produce a 1/0 result or a –1/0 result. PowerPC, which lacks abs(x),
nabs(x), and doz(x, y), can compute all the predicate expressions in four or fewer
elementary instructions.

How the Computer Sets the Comparison Predicates

Most computers have a way of evaluating the integer comparison predicates to a
1-bit result. The result bit may be placed in a “condition register” or, for some
machines (such as our RISC model), in a general purpose register. In either case,
the facility is often implemented by subtracting the comparison operands and then
performing a small amount of logic on the result bits to determine the 1-bit com-
parison result.

Below is the logic for these operations. It is assumed that the machine com-
putes  as , and the following quantities are available in the result:

Co, the carry out of the high-order position
Ci, the carry into the high-order position
N, the sign bit of the result
Z, which equals 1 if the result, exclusive of Co, is all-0, and is otherwise 0

Then we have the following in Boolean algebra notation (juxtaposition denotes
and, + denotes or):

x y– x y 1+ +

V: Ci Co           (signed overflow)

x y:= Z

x y: Z

x y: N V

x y: N V  Z+

x y: N V Z

x y: N V

x y:<
u Co

x y:
u Co Z+

x y:>
u CoZ

x y:
u Co
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2–13  Overflow Detection
“Overflow” means that the result of an arithmetic operation is too large or too
small to be correctly represented in the target register. This section discusses
methods that a programmer might use to detect when overflow has occurred, with-
out using the machine’s “status bits” that are often supplied expressly for this pur-
pose. This is important, because some machines do not have such status bits (e.g.,
MIPS), and even if the machine is so equipped, it is often difficult or impossible to
access the bits from a high-level language.

Signed Add/Subtract

When overflow occurs on integer addition and subtraction, contemporary
machines invariably discard the high-order bit of the result and store the low-order
bits that the adder naturally produces. Signed integer overflow of addition occurs
if and only if the operands have the same sign and the sum has sign opposite to
that of the operands. Surprisingly, this same rule applies even if there is a carry
into the adder—that is, if the calculation is  This is important for the
application of adding multiword signed integers, in which the last addition is a
signed addition of two fullwords and a carry-in that may be 0 or +1.

To prove the rule for addition, let x and y denote the values of the one-word
signed integers being added, let c (carry-in) be 0 or 1, and assume for simplicity a
4-bit machine. Then if the signs of x and y are different,

or similar bounds apply if x is nonnegative and y is negative. In either case, by
adding these inequalities and optionally adding in 1 for c,

This is representable as a 4-bit signed integer, and thus overflow does not occur
when the operands have opposite signs.

Now suppose x and y have the same sign. There are two cases:

Thus,

x y 1.+ +

8– x 1, and– 
0 y 7, 

8– x y c+ + 7. 

a 
8– x 1– 
8– y 1– 

b 
0 x 7 
0 y 7 

a 
16– x y c+ + 1– 

b 
0 x y c+ + 15. 
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Overflow occurs if the sum is not representable as a 4-bit signed integer—
that is, if

 

In case (a), this is equivalent to the high-order bit of the 4-bit sum being 0, which
is opposite to the sign of x and y. In case (b), this is equivalent to the high-order bit
of the 4-bit sum being 1, which again is opposite to the sign of x and y.

For subtraction of multiword integers, the computation of interest is
 where again c is 0 or 1, with a value of 1 representing a borrow-in.

From an analysis similar to the above, it can be seen that overflow in the final
value of  occurs if and only if x and y have opposite signs and the sign of

 is opposite to that of x (or, equivalently, the same as that of y).
This leads to the following expressions for the overflow predicate, with the

result being in the sign position. Following these with a shift right or shift right
signed of 31 produces a 1/0- or a 1/0-valued result.

By choosing the second alternative in the first column, and the first alternative in
the second column (avoiding the equivalence operation), our basic RISC can eval-
uate these tests with three instructions in addition to those required to compute

 or . A fourth instruction (branch if negative) can be added to
branch to code where the overflow condition is handled.

If executing with overflow interrupts enabled, the programmer may wish to
test to see if a certain addition or subtraction will cause overflow, in a way that
does not cause it. One branch-free way to do this is as follows:

The assignment to z in the left column sets  if x and y have the
same sign, and sets  if they differ. Then, the addition in the second expres-
sion is done with  and y having different signs, so it can’t overflow. If x and
y are nonnegative, the sign bit in the second expression will be 1 if and only if

—that is, iff  which is the condition for over-
flow in evaluating  If x and y are negative, the sign bit in the second
expression will be 1 iff —that is, iff  which

a 
16– x y c+ + 9– 

b 
8 x y c+ + 15. 

x y– c,–

x y– c–
x y– c–

x y c+ +

x y  x y c+ +  x &

x y c+ +  x  x y c+ +  y &

x y– c–

x y  x y– c–  x &

x y– c–  x  x y– c–  y &

x y c+ + x y– c–

x y c+ +

z x y  0x80000000&

z x z  y+ c+  y &

x y– c–

z x y  0x80000000&

z x z  y– c–  y &

z 0x80000000=
z 0=

x z

x 231–  y c+ + 0 x y c+ + 231,
x y c.+ +

x 231+  y c+ + 0 x y c 231,–+ +
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again is the condition for overflow. The and with z ensures the correct result (0 in
the sign position) if x and y have opposite signs. Similar remarks apply to the
case of subtraction (right column). The code executes in nine instructions on the
basic RISC.

It might seem that if the carry from addition is readily available, this might
help in computing the signed overflow predicate. This does not seem to be the
case; however, one method along these lines is as follows.

If x is a signed integer, then  is correctly represented as an unsigned
number, and is obtained by inverting the high-order bit of x. Signed overflow in the
positive direction occurs if —that is, if 
This latter condition is characterized by carry occurring in the unsigned add
(which means that the sum is greater than or equal to ) and the high-order bit
of the sum being 1. Similarly,  overflow in the negative direction occurs if the
carry is 0 and the high-order bit of the sum is also 0.

This gives the following algorithm for detecting overflow for signed addition:

Compute  giving sum s and carry c.
Overflow occurred iff c equals the high-order bit of s.

The sum is the correct sum for the signed addition, because inverting the high-
order bits of both operands does not change their sum.

For subtraction, the algorithm is the same except that in the first step a sub-
traction replaces the addition. We assume that the carry is that which is generated
by computing  as  The subtraction is the correct difference for the
signed subtraction.

These formulas are perhaps interesting, but on most machines they would not
be quite as efficient as the formulas that do not even use the carry bit (e.g., over-
flow =  for addition, and  for subtraction,
where s and d are the sum and difference, respectively, of x and y).

How the Computer Sets Overflow for Signed Add/Subtract

Machines often set “overflow” for signed addition by means of the logic “the
carry into the sign position is not equal to the carry out of the sign position.” Curi-
ously, this logic gives the correct overflow indication for both addition and sub-
traction, assuming the subtraction  is done by  Furthermore, it is
correct whether or not there is a carry- or borrow-in. This does not seem to lead to
any particularly good methods for computing the signed overflow predicate in
software, however, even though it is easy to compute the carry into the sign posi-
tion. For addition and subtraction, the carry/borrow into the sign position is given
by the sign bit after evaluating the following expressions (where c is 0 or 1):

In fact, these expressions give, at each position i, the carry/borrow into position i.

x 231+

x y+ 231 x 231+  y 231+ + 3 231.

232

x 231  y 231 ,+

x y– x y 1.+ +

x y  s x & x y  d x &

x y– x y 1.+ +

carry

x y c+ +  x y 
borrow

x y– c–  x y 
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Unsigned Add/Subtract

The following branch-free code can be used to compute the overflow predicate for
unsigned add/subtract, with the result being in the sign position. The expressions
involving a right shift are probably useful only when it is known that  The
expressions in brackets compute the carry or borrow generated from the least sig-
nificant position.

For unsigned add’s and subtract’s, there are much simpler formulas in terms
of comparisons [MIPS]. For unsigned addition, overflow (carry) occurs if the sum
is less (by unsigned comparison) than either of the operands. This and similar for-
mulas are given below. Unfortunately, there is no way in these formulas to allow
for a variable c that represents the carry- or borrow-in. Instead, the program must
test c, and use a different type of comparison depending upon whether c is 0 or 1.

The first formula for each case above is evaluated before the add/subtract that may
overflow, and it provides a way to do the test without causing overflow. The sec-
ond formula for each case is evaluated after the add/subtract that may overflow.

There does not seem to be a similar simple device (using comparisons) for
computing the signed overflow predicate.

Multiplication

For multiplication, overflow means that the result cannot be expressed in 32 bits
(it can always be expressed in 64 bits, whether signed or unsigned). Checking for
overflow is simple if you have access to the high-order 32 bits of the product. Let
us denote the two halves of the 64-bit product by  and  Then
the overflow predicates can be computed as follows [MIPS]:

c 0.=

x y c, unsigned+ +

x y&  x y |   x y c+ + &  | 

x 1>> 
u  y 1>> 

u  x y&  x y |   c&  |   1& + +

 

x y– c, unsigned–

x y&  x y  x y– c– &  | 

x y&  x y |   x y– c– &  | 

x 1>> 
u  y 1>> 

u – x y&  x y |   c&  |   1& –

x y, unsigned+

x y<
u 

x y+ x<
u 

x y 1, unsigned+ +

x y
u 

x y 1+ + x
u 

x y, unsigned–

x y<
u 

x y– x>
u

x y– 1, unsigned–

x y
u 

x y– 1– x
u

hi x y( ) lo x y( ).
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One way to check for overflow of multiplication is to do the multiplication
and then check the result by dividing. Care must be taken not to divide by 0, and
there is a further complication for signed multiplication. Overflow occurs if the
following expressions are true:

The complication arises when  and  In this case the multiplica-
tion overflows, but the machine may very well give a result of  This causes
the division to overflow, and thus any result is possible (for some machines).
Therefore, this case has to be checked separately, which is done by the term

 The above expressions use the “conditional and” operator to
prevent dividing by 0 (in C, use the && operator).

It is also possible to use division to check for overflow of multiplication with-
out doing the multiplication (that is, without causing overflow). For unsigned inte-
gers, the product overflows iff  or  or, since x is an
integer,  Expressed in computer arithmetic, this is

For signed integers, the determination of overflow of  is not so simple.
If x and y have the same sign, then overflow occurs iff . If they have
opposite signs, then overflow occurs iff . These conditions can be tested
as indicated in Table 2–2, which employs signed division. This test is awkward to
implement, because of the four cases. It is difficult to unify the expressions very
much because of problems with overflow and with not being able to represent the
number .

The test can be simplified if unsigned division is available. We can use the
absolute values of x and y, which are correctly represented under unsigned integer
interpretation. The complete test can then be computed as shown below. The vari-
able  if x and y have the same sign, and  otherwise.

TABLE 2–2.  OVERFLOW TEST FOR SIGNED MULTIPLICATION

x y, unsigned
hi x y( ) 0

x y, signed

hi x y( ) lo x y( ) 31>> 
s 

Unsigned

z x y*

y 0 z yu x&


                

Signed

z x y*

y 0 x 231–=&  y 0 z y x&


  | 

x 231–= y 1.–=
231.–

y 0 x 231.–=&

xy 232 1,– x 232 1–  y ,
x 232 1–  y .

y 0 x&


 0xFFFFFFFF yu .>
u

x y*
xy 231 1–

xy 231–

 231+

c 231 1–= c 231=

y 0 y 0

x 0 x 0x7FFFFFFF y y 0x80000000 x

x 0 x 0x80000000 y x 0 y 0x7FFFFFFF x&

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The number of leading zeros instruction can be used to give an estimate of
whether or not  will overflow, and the estimate can be refined to give an
accurate determination. First, consider the multiplication of unsigned numbers. It
is easy to show that if x and y, as 32-bit quantities, have m and n leading 0’s,
respectively, then the 64-bit product has either  or  leading 0’s (or
64, if either  or ). Overflow occurs if the 64-bit product has fewer
than 32 leading 0’s. Hence,

For  overflow may or may not occur. In this case, the
overflow assessment can be made by evaluating . This will not over-
flow. Since xy is 2t or, if y is odd, 2t + x, the product xy overflows if . These
considerations lead to a plan for computing xy, but branching to “overflow” if the
product overflows. This plan is shown in Figure 2–2.

For the multiplication of signed integers, we can make a partial determination
of whether or not overflow occurs from the number of leading 0’s of nonnegative
arguments, and the number of leading 1’s of negative arguments. Let

   unsigned x, y, z, m, n, t;

   m = nlz(x);
   n = nlz(y);
   if (m + n <= 30) goto overflow;
   t = x*(y >> 1);
   if ((int)t < 0) goto overflow;
   z = t*2;
   if (y & 1) {
      z = z + x;
      if (z < x) goto overflow; 
   }
   // z is the correct product of x and y.

FIGURE 2–2.  Determination of overflow of unsigned multiplication.

c x y  31>> 
s  231+

x abs x( )

y abs y( )

y 0 x&


 c yu >
u

x y*

m n+ m n 1+ +
x 0= y 0=

nlz x( ) nlz y( )+ 32: Multiplication definitely does not overflow.
nlz x( ) nlz y( )+ 30: Multiplication definitely does overflow.

nlz x( ) nlz y( )+ 31,=
t x y 2=

t 231

m nlz x( ) nlz x( ), and+=

n nlz y( ) nlz y( ).+=
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Then, we have

There are two ambiguous cases: 32 and 33. The case  overflows
only when both arguments are negative and the true product is exactly 
(machine result is ), so it can be recognized by a test that the product has the
correct sign (that is, overflow occurred if ). When

, the distinction is not so easily made.
We will not dwell on this further, except to note that an overflow estimate for

signed multiplication can also be made based on  but
again there are two ambiguous cases (a sum of 31 or 32).

Division

For the signed division  overflow occurs if the following expression is true:

Most machines signal overflow (or trap) for the indeterminate form 
Straightforward code for evaluating this expression, including a final branch

to the overflow handling code, consists of seven instructions, three of which are
branches. There do not seem to be any particularly good tricks to improve on this,
but below are a few possibilities:

That is, evaluate the large expression in brackets, and branch if the result is less
than 0. This executes in about nine instructions, counting the load of the constant
and the final branch, on a machine that has the indicated instructions and that gets
the “compare to 0” for free.

Some other possibilities are to first compute z from

(three instructions on many machines), and then do the test and branch on
 in one of the following ways:

These execute in nine, seven, and eight instructions, respectively, on a machine
that has the indicated instructions. The last line represents a good method for
PowerPC.

m n+ 34: Multiplication definitely does not overflow.
m n+ 31: Multiplication definitely does overflow.

m n+ 33=
231

231–
m n m n*   0

m n+ 32=

nlz abs x( )( ) nlz abs y( )( ),+

x y,

y 0= x 0x80000000= y 1–=&  | 

0 0 .

abs y 0x80000000( ) abs x( ) abs y 0x80000000( )&  |   0

z x 0x80000000  y 1+  | 

y 0= z | 0=

y y– |   z z– |  &  0

nabs y( ) nabs z( )&  0

nlz y( ) nlz z( ) |   5>> 
u  0



2–13 OVERFLOW DETECTION 35
For the unsigned division , overflow occurs if and only if 
Some machines have a “long division” instruction (see page 198), and you

may want to predict, using elementary instructions, when it would overflow. We
will discuss this in terms of an instruction that divides a doubleword by a fullword,
producing a fullword quotient and possibly also a fullword remainder.

Such an instruction overflows if either the divisor is 0 or if the quotient cannot
be represented in 32 bits. Typically, in these overflow cases both the quotient and
remainder are incorrect. The remainder cannot overflow in the sense of being too
large to represent in 32 bits (it is less than the divisor in magnitude), so the test that
the remainder will be correct is the same as the test that the quotient will be correct.

We assume the machine either has 64-bit general registers, or it has 32-bit reg-
isters and there is no problem doing elementary operations (shifts, adds, and so
forth) on 64-bit quantities. For example, the compiler might implement a double-
word integer data type.

In the unsigned case the test is trivial: for  with x a doubleword and y a
fullword, the division will not overflow if (and only if) either of the following
equivalent expressions is true.

On a 32-bit machine, the shifts need not be done; simply compare y to the register
that contains the high-order half of x. To ensure correct results on a 64-bit machine,
it is also necessary to check that the divisor y is a 32-bit quantity (e.g., check that

).
The signed case is more interesting. It is first necessary to check that 

and, on a 64-bit machine, that y is correctly represented in 32 bits (check that
 Assuming these tests have been done, the table below

shows how the tests might be done to determine precisely whether or not the quo-
tient is representable in 32 bits, by considering separately the four cases of the div-
idend and divisor each being positive or negative. The expressions in the table are
in ordinary arithmetic, not computer arithmetic.

In each column, each relation follows from the one above it in an if-and-only-
if way. To remove the floor and ceiling functions, some relations from Theorem D1
on page 189 are used.

x yu y 0.=

x y

y 0 x y 32<< &

y 0 x 32>> 
u  y&

y 32>> 
u  0=

y 0

y 32<<  32>> 
s  y).=

x 0 y 0

x y 231

x y 231

x 231y

x 0 y 0

x y 231–

x y 231– 1–

x y 231– 1–

x 231y– y–

x 231 y–  y– +

x 0 y 0

x y 231–

x y 231– 1–

x y 231– 1–

x 231y– y–

x– 231y y+

x 0 y 0

x y 231

x y 231

x 231y

x– 231 y– 
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As an example of interpreting this table, consider the leftmost column. It
applies to the case in which  and  In this case the quotient is 
and this must be strictly less than  to be representable as a 32-bit quantity. From
this it follows that the real number x/y must be less than  or x must be less than

 This test can be implemented by shifting y left 31 positions and comparing
the result to x.

When the signs of x and y differ, the quotient of conventional division is
 Because the quotient is negative, it can be as small as 

In the bottom row of each column, the comparisons are all of the same type
(less than). Because of the possibility that x is the maximum negative number, in
the third and fourth columns an unsigned comparison must be used. In the first two
columns the quantities being compared begin with a leading 0-bit, so an unsigned
comparison can be used there too.

These tests can of course be implemented by using conditional branches to
separate out the four cases, doing the indicated arithmetic, and then doing a final
compare and branch to the code for the overflow or non-overflow case. However,
branching can be reduced by taking advantage of the fact that when y is negative,
–y is used, and similarly for x. Hence the tests can be made more uniform by using
the absolute values of x and y. Also, using a standard device for optionally doing
the additions in the second and third columns results in the following scheme.

Using the three-instruction method of computing the absolute value (see page 18),
on a 64-bit version of the basic RISC this amounts to 12 instructions, plus a condi-
tional branch.

2–14  Condition Code Result of Add, Subtract, and Multiply
Many machines provide a “condition code” that characterizes the result of integer
arithmetic operations. Often there is only one add instruction, and the character-
ization reflects the result for both unsigned and signed interpretation of the oper-
ands and result (but not for mixed types). The characterization usually consists of
the following: 

• Whether or not carry occurred (unsigned overflow)

• Whether or not signed overflow occurred

• Whether the 32-bit result, interpreted as a signed two’s-complement inte-
ger and ignoring carry and overflow, is negative, 0, or positive

x 0 y 0. x y ,
231

231,
231y.

x y . 231.–

x x=

y y=

 x y  63>> 
s  y&=

if x y 31<<  +<
u   then {will not overflow} 
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Some older machines give an indication of whether the infinite precision
result (that is, 33-bit result for add’s and subtract’s) is positive, negative, or 0.
However, this indication is not easily used by compilers of high-level languages,
and so has fallen out of favor.

For addition, only nine of the 12 combinations of these events are possible.
The ones that cannot occur are “no carry, overflow, result > 0,” “no carry, over-
flow, result = 0,” and “carry, overflow, result < 0.” Thus, four bits are, just barely,
needed for the condition code. Two of the combinations are unique in the sense
that only one value of inputs produces them: Adding 0 to itself is the only way to
get “no carry, no overflow, result = 0,” and adding the maximum negative number
to itself is the only way to get “carry, overflow, result = 0.” These remarks remain
true if there is a “carry in”—that is, if we are computing 

For subtraction, let us assume that to compute  the machine actually
computes  with the carry produced as for an add (in this scheme the
meaning of “carry” is reversed for subtraction, in that carry = 1 signifies that the
result fits in a single word, and carry = 0 signifies that the result does not fit in a
single word). Then for subtraction only seven combinations of events are possible.
The ones that cannot occur are the three that cannot occur for addition, plus “no
carry, no overflow, result = 0,” and “carry, overflow, result = 0.”

If a machine’s multiplier can produce a doubleword result, then two multiply
instructions are desirable: one for signed and one for unsigned operands. (On a
4-bit machine, in hexadecimal,  signed, and  unsigned.)
For these instructions, neither carry nor overflow can occur, in the sense that the
result will always fit in a doubleword.

For a multiplication instruction that produces a one-word result (the low-
order word of the doubleword result), let us take “carry” to mean that the result
does not fit in a word with the operands and result interpreted as unsigned inte-
gers, and let us take “overflow” to mean that the result does not fit in a word with
the operands and result interpreted as signed two’s-complement integers. Then
again, there are nine possible combinations of results, with the missing ones being
“no carry, overflow, result > 0,” “no carry, overflow, result = 0,” and “carry, no
overflow, result = 0.” Thus, considering addition, subtraction, and multiplication
together, ten combinations can occur.

2–15  Rotate Shifts
These are rather trivial. Perhaps surprisingly, this code works for n ranging from 0
to 32 inclusive, even if the shifts are mod-32.

If your machine has double-length shifts, they can be used to do rotate shifts.
These instructions might be written

x y 1.+ +
x y–

x y 1,+ +

F F 01= F F E1=

Rotate left n:    y x n<<  x 32 n– >> 
u  | 

Rotate right n:    y x n>> 
u  x 32 n– <<  | 
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   shldi RT,RA,RB,I
   shrdi RT,RA,RB,I

They treat the concatenation of RA and RB as a single double-length quantity, and
shift it left or right by the amount given by the immediate field I. (If the shift
amount is in a register, the instructions are awkward to implement on most RISCs
because they require reading three registers.) The result of the left shift is the high-
order word of the shifted double-length quantity, and the result of the right shift is
the low-order word.

 Using shldi, a rotate left of Rx can be accomplished by

   shldi RT,Rx,Rx,I

and similarly a rotate right shift can be accomplished with shrdi.
A rotate left shift of one position can be accomplished by adding the contents

of a register to itself with “end-around carry” (adding the carry that results from the
addition to the sum in the low-order position). Most machines do not have that
instruction, but on many machines it can be accomplished with two instructions:
(1) add the contents of the register to itself, generating a carry (into a status regis-
ter), and (2) add the carry to the sum.

2–16  Double-Length Add/Subtract
Using one of the expressions shown on page 31 for overflow of unsigned addition
and subtraction, we can easily implement double-length addition and subtraction
without accessing the machine’s carry bit. To illustrate with double-length addi-
tion, let the operands be  and , and the result be . Sub-
script 1 denotes the most significant half, and subscript 0 the least significant. We
assume that all 32 bits of the registers are used. The less significant words are
unsigned quantities.

This executes in nine instructions. The second line can be  permit-
ting a four-instruction solution on machines that have this comparison operator in
a form that gives the result as a 1 or 0 in a register, such as the “SLTU” (Set on
Less Than Unsigned) instruction on MIPS [MIPS].

Similar code for double-length subtraction  is

x1 x0  y1 y0  z1 z0 

z0 x0 y0+

c x0 y0&  x0 y0 |   z0&  |   31>> 
u

z1 x1 y1 c+ +

c z0 x0<
u  ,

x y– 

z0 x0 y0–

b x 0 y0&  x0 y0  z0&  |   31>> 
u

z1 x1 y1– b–
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This executes in eight instructions on a machine that has a full set of logical
instructions. The second line can be  permitting a four-instruction
solution on machines that have the “SLTU” instruction.

Double-length addition and subtraction can be done in five instructions on
most machines by representing the multiple-length data using only 31 bits of the
least significant words, with the high-order bit being 0 except momentarily when
it contains a carry or borrow bit.

2–17  Double-Length Shifts
Let  be a pair of 32-bit words to be shifted left or right as if they were a
single 64-bit quantity, with  being the most significant half. Let  be the
result, interpreted similarly. Assume the shift amount n is a variable ranging from
0 to 63. Assume further that the machine’s shift instructions are modulo 64 or
greater. That is, a shift amount in the range 32 to 63 or –32 to –1 results in an all-0
word, unless the shift is a signed right shift, in which case the result is 32 sign bits
from the word shifted. (This code will not work on the Intel x86 machines, which
have mod-32 shifts.)

Under these assumptions, the shift left double operation can be accomplished
as follows (eight instructions):

The main connective in the first assignment must be or, not plus, to give the cor-
rect result when  If it is known that  the last term of the first
assignment can be omitted, giving a six-instruction solution.

Similarly, a shift right double unsigned operation can be done with

Shift right double signed is more difficult, because of an unwanted sign prop-
agation in one of the terms. Straightforward code follows:

If your machine has the conditional move instructions, it is a simple matter to
express this in branch-free code, in which form it takes eight instructions. If the
conditional move instructions are not available, the operation can be done in ten

b x0 y0<
u  ,

x1 x0 
x1 y1 y0 

y1 x1 n<< x0 32 n– >> 
u x0 n 32– << |  | 

y0 x0 n<<

n 32.= 0 n 32, 

y0 x0 n>> 
u x1 32 n– << x1 n 32– >> 

u |  | 

y1 x1 n>> 
u

if n 32  then y0 x0 n>> 
u x1 32 n– << | 

else y0 x1 n 32– >> 
s

y1 x1 n>> 
s
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instructions by using the familiar device of constructing a mask with the shift right
signed 31 instruction to mask the unwanted sign propagating term:

2–18  Multibyte Add, Subtract, Absolute Value
Some applications deal with arrays of short integers (usually bytes or halfwords),
and often execution is faster if they are operated on a word at a time. For definite-
ness, the examples here deal with the case of four 1-byte integers packed into a
word, but the techniques are easily adapted to other packings, such as a word con-
taining a 12-bit integer and two 10-bit integers, and so on. These techniques are of
greater value on 64-bit machines, because more work is done in parallel.

Addition must be done in a way that blocks the carries from one byte into
another. This can be accomplished by the following two-step method:

1. Mask out the high-order bit of each byte of each operand and add (there
will then be no carries across byte boundaries).

2. Fix up the high-order bit of each byte with a 1-bit add of the two operands
and the carry into that bit.

The carry into the high-order bit of each byte is given by the high-order bit of
each byte of the sum computed in step 1. The subsequent similar method works
for subtraction:

These execute in eight instructions, counting the load of 0x7F7F7F7F, on a
machine that has a full set of logical instructions. (Change the and and or of
0x80808080 to and not and or not, respectively, of 0x7F7F7F7F.)

There is a different technique for the case in which the word is divided into
only two fields. In this case, addition can be done by means of a 32-bit addition fol-
lowed by subtracting out the unwanted carry. On page 30 we noted that the expres-
sion  gives the carries into each position. Using this and similar
observations about subtraction gives the following code for adding/subtracting two
halfwords modulo  (seven instructions):

y0 x0 n>> 
u x1 32 n– << x1 n 32– >> 

s  32 n–  31>> 
s &  |  | 

y1 x1 n>> 
s

Addition

s x 0x7F7F7F7F&  y 0x7F7F7F7F& +

s x y  0x80808080&  s
 

Subtraction

d x 0x80808080 |   y 0x7F7F7F7F& –

d x y  0x7F7F7F7F |   d

x y+  x y 

216
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Multibyte absolute value is easily done by complementing and adding 1 to
each byte that contains a negative integer (that is, has its high-order bit on). The
following code sets each byte of y equal to the absolute value of each byte of x
(eight instructions):

The third line could as well be . The addition of b in the fourth line
cannot carry across byte boundaries, because the quantity  has a high-order
0 in each byte.

2–19  Doz, Max, Min

The “doz” function is “difference or zero,” defined as follows:

It has been called “first grade subtraction” because the result is 0 if you try to take
away too much.3 If implemented as a computer instruction, perhaps its most
important use is to implement the max(x, y) and min(x, y) functions (in both signed
and unsigned forms) in just two simple instructions, as will be seen. Implementing
max(x, y) and min(x, y) in hardware is difficult because the machine would need
paths from the output ports of the register file back to an input port, bypassing the
adder. These paths are not normally present. If supplied, they would be in a region
that’s often crowded with wiring for register bypasses. The situation is illustrated
in Figure 2–3. The adder is used (by the instruction) to do the subtraction x – y. The

3. Mathematicians name the operation monus and denote it with The terms positive differ-
ence and saturated subtraction are also used.

Addition

s x y+

c s x y   0x00010000&
s s c–

Subtraction

d x y–

b d x y   0x00010000&
d d b+

a x 0x80808080&

b a 7>> 
u

m a b–  a | 
y x m  b+

// Isolate signs.

// Integer 1 where    is negative.

// 0xFF where    is negative.

// Complement and add 1 where negative.

x

x

m a a b–+
x m

Signed

doz x y( )
x y– ,   x y,

0,   x y.



=

Unsigned

dozu x y( )
x y– ,   x y,

u

0,   x y.<
u 





=

.–.
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high-order bits of the result of the subtraction (sign bit and carries, as described on
page 27) define whether x  y or x < y. The comparison result is fed to a multi-
plexor (MUX) which selects either x or y as the result to write into the target reg-
ister. These paths, from register file outputs x and y to the multiplexor, are not
normally present and would have little use. The difference or zero instructions can
be implemented without these paths because it is the output of the adder (or 0) that
is fed back to the register file.

Using difference or zero, max(x, y) and min(x, y) can be implemented in two
instructions as follows.

In the signed case, the result of the difference or zero instruction can be nega-
tive. This happens if overflow occurs in the subtraction. Overflow should be
ignored; the addition of y or subtraction from x will overflow again, and the result
will be correct. When doz(x, y) is negative, it is actually the correct difference if it
is interpreted as an unsigned integer.

Suppose your computer does not have the difference or zero instructions, but
you want to code doz(x, y), max(x, y), and so forth, in an efficient branch-free way.
In the next few paragraphs we show how these functions might be coded if your
machine has the conditional move instructions, comparison predicates, efficient
access to the carry bit, or none of these. 

If your machine has the conditional move instructions, it can get doz(x, y) in
three instructions, and destructive4 max(x, y) and min(x, y) in two instructions. For

FIGURE 2–3. Implementing max(x, y) and min(x, y).

4. A destructive operation is one that overwrites one or more of its arguments.

Register File

MUX

x y

Adder

Signed

max x y( ) y doz x y( )+=

min x y( ) x doz x y( )–=

Unsigned

maxu x y( ) y dozu x y( )+=

minu x y( ) x dozu x y( )–=
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example, on the full RISC,  can be calculated as follows (r0 is a per-
manent zero register):

    sub    z,x,y        Set z = x - y.
    cmplt  t,x,y        Set t = 1 if x < y, else 0.
    movne  z,t,r0       Set z = 0 if x < y.

Also on the full RISC,  can be calculated as follows:

    cmplt  t,x,y        Set t = 1 if x < y, else 0.
    movne  x,t,y        Set x = y if x < y.

The min function, and the unsigned counterparts, are obtained by changing the
comparison conditions.

These functions can be computed in four or five instructions using comparison
predicates (three or four if the comparison predicates give a result of –1 for “true”):

On some machines, the carry bit may be a useful aid to computing the
unsigned versions of these functions. Let  denote the bit that comes
out of the adder for the operation  moved to a GPR. Thus, 
= 1 iff  Then we have

On most machines that have a subtract that generates a carry or borrow, and
another form of subtract that uses that carry or borrow as an input, the expression

 can be computed in one more instruction after the subtraction of y
from x. For example, on the Intel x86 machines,  can be computed in
four instructions as follows:

   sub eax,ecx   ; Inputs x and y are in eax and ecx resp.
   sbb edx,edx   ; edx = 0 if x >= y, else -1.
   and eax,edx   ; 0 if x >= y, else x - y.
   add eax,ecx   ; Add y, giving y if x >= y, else x.

In this way, all three of the functions can be computed in four instructions (three
instructions for  if the machine has and with complement).

z doz x y( )

x max x y( )

doz x y( ) x y–  x y –&=

max x y( ) y doz x y( )+=

x y  x y –&  y=

min x y( ) x doz x y( )–=

x y  x y –&  y=

carry x y–( )
x y 1,+ + carry x y–( )

x y.

dozu x y( ) x y–  carry x y–( ) 1– & =

maxu x y( ) x x y–  carry x y–( ) 1– & –=

minu x y( ) y x y–  carry x y–( ) 1– & +=

carry x y–( ) 1–
minu x y( )

dozu x y( )
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A method that applies to nearly any RISC is to use one of the above expres-
sions that employ a comparison predicate, and to substitute for the predicate one of
the expressions given on page 23. For example:

These require from seven to ten instructions, depending on the computer’s instruc-
tion set, plus one more to get max or min.

These operations can be done in four branch free basic RISC instructions if it
is known that  (that is an expression in ordinary arithmetic,
not computer arithmetic). The same code works for both signed and unsigned inte-
gers, with the same restriction on x and y. A sufficient condition for these formulas
to be valid is that, for signed integers,  and for unsigned inte-
gers, 

Some uses of the difference or zero instruction are given below. In these, the
result of doz(x, y) must be interpreted as an unsigned integer.

1. It directly implements the Fortran IDIM function.

2. To compute the absolute value of a difference [Knu7]:

Corollary:  (other three-instruction solutions
are given on page 18).

3. To clamp the upper limit of the true sum of unsigned integers x and y to
the maximum positive number  [Knu7]:

4. Some comparison predicates (four instructions each):

d x y–

doz x y( ) d d x y  d x &   31>> 
s &=

dozu x y( ) d x y&  x y  d&  |   31>> 
s &=

231– x y– 231 1– 

230– x y 230 1,– 
0 x y 231 1.– 

doz x y( ) dozu x y( ) x y–  x y–  31>> 
s &= =

max x y( ) maxu x y( ) x x y–  x y–  31>> 
s & –= =

min x y( ) minu x y( ) y x y–  x y–  31>> 
s & += =

x y– doz x y( ) doz y x( ),       signed arguments,+=

dozu x y( ) dozu y x( ),   unsigned arguments.+=

x doz x 0( ) doz 0 x( )+=

232 1– 

dozu x y( ).

x y doz x y( ) doz x y( )– |   31,>> 
u=

x y>
u dozu x y( ) dozu x y( )– |   31.>> 

u=
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5. The carry bit from the addition x + y (five instructions):

The expression doz(x, –y), with the result interpreted as an unsigned integer, is
in most cases the true sum x + y with the lower limit clamped at 0. However, it fails
if y is the maximum negative number.

The IBM RS/6000 computer, and its predecessor the 801, have the signed ver-
sion of difference or zero. Knuth’s MMIX computer [Knu7] has the unsigned ver-
sion (including some varieties that operate on parts of words in parallel). This
raises the question of how to get the signed version from the unsigned version, and
vice versa. This can be done as follows (where the additions and subtractions sim-
ply complement the sign bit):

Some other identities that may be useful are:

The relation  fails if either x or y, but not both, is the max-
imum negative number.

2–20  Exchanging Registers
A very old trick is exchanging the contents of two registers without using a third
[IBM]:

This works well on a two-address machine. The trick also works if  is
replaced by the  logical operation (complement of exclusive or), and can be made
to work in various ways with add’s and subtract’s:

carry x y+( ) x y>
u dozu x y( ) dozu x y( )– |   31.>> 

u= =

doz x y( ) dozu x 231 y 231++( ),=

dozu x y( ) doz x 231 y 231––( ).=

doz x y( ) doz y x( ),=

dozu x y( ) dozu y x( ).=

doz x y––( ) doz y x( )=

x x y
y y x
x x y

x x y+
y x y–
x x y–

                    

x x y–
y y x+
x y x–

                    

x y x–
y y x–
x x y+
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Unfortunately, each of these has an instruction that is unsuitable for a two-address
machine, unless the machine has “reverse subtract.”

This little trick can actually be useful in the application of double buffering,
in which two pointers are swapped. The first instruction can be factored out of the
loop in which the swap is done (although this negates the advantage of saving a
register):

Exchanging Corresponding Fields of Registers

The problem here is to exchange the contents of two registers x and y wherever a
mask bit  and to leave x and y unaltered wherever  By “corre-
sponding” fields, we mean that no shifting is required. The 1-bits of m need not be
contiguous. The straightforward method is as follows:

By using “temporaries” for the four and expressions, this can be seen to require
seven instructions, assuming that either m or  can be loaded with a single
instruction and the machine has and not as a single instruction. If the machine is
capable of executing the four (independent) and expressions in parallel, the execu-
tion time is only three cycles.

A method that is probably better (five instructions, but four cycles on a
machine with unlimited instruction-level parallelism) is shown in column (a)
below. It is suggested by the “three exclusive or” code for exchanging registers.

The steps in column (b) do the same exchange as that of column (a), but column
(b) is useful if m does not fit in an immediate field, but  does, and the machine
has the equivalence instruction.

Still another method is shown in column (c) above [GLS1]. It also takes five
instructions (again assuming one instruction must be used to load m into a regis-
ter), but executes in only three cycles on a machine with sufficient instruction-
level parallelism.

Outside the loop:  t x y
Inside the loop:  x x t

y y t

mi 1,= mi 0.=

x' x m&  y m&  | 

y y m&  x m&  | 
x x'

m

(a)

x x y

y y x m& 
x x y

(b)

x x y

y y x m |  
x x y

          (c)

t x y  m&
x x t
y y t

m
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Exchanging Two Fields of the Same Register

Assume a register x has two fields (of the same length) that are to be swapped,
without altering other bits in the register. That is, the object is to swap fields B and
D, without altering fields A, C, and E, in the computer word illustrated below. The
fields are separated by a shift distance k.

Straightforward code would shift D and B to their new positions, and com-
bine the words with and and or operations, as follows:

Here, m is a mask with 1’s in field D (and 0’s elsewhere), and m is a mask with
1’s in fields A, C, and E. This code requires 11 instructions and six cycles on a
machine with unlimited instruction-level parallelism, allowing for four instruc-
tions to generate the two masks.

A method that requires only eight instructions and executes in five cycles,
under the same assumptions, is shown below [GLS1]. It is similar to the code in
column (c) on page 46 for interchanging corresponding fields of two registers.
Again, m is a mask that isolates field D.

The idea is that  contains  in position D (and 0’s elsewhere), and  con-
tains  in position B. This code, and the straightforward code given earlier,
work correctly if B and D are “split fields”—that is, if the 1-bits of mask m are not
contiguous.

Conditional Exchange

The exchange methods of the preceding two sections, which are based on exclu-
sive or, degenerate into no-operations if the mask m is 0. Hence, they can perform
an exchange of entire registers, or of corresponding fields of two registers, or of
two fields of the same register, if m is set to all 1’s if some condition c is true, and
to all 0’s if c is false. This gives branch-free code if m can be set up without
branching.

A B C D Ex:

k

t1 x m&  k<<=

t2 x k>> 
u  m&=

x x m&  t1 t2 |  | =

t1 x x k>> 
u   m&=

t2 t1 k<<=

x x t1 t2 =

t1 B D t2
B D
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2–21  Alternating among Two or More Values

Suppose a variable x can have only two possible values a and b, and you wish to
assign to x the value other than its current one, and you wish your code to be inde-
pendent of the values of a and b. For example, in a compiler x might be an opcode
that is known to be either branch true or branch false, and whichever it is, you
want to switch it to the other. The values of the opcodes branch true and branch
false are arbitrary, probably defined by a C #define or enum declaration in a
header file.

The straightforward code to do the switch is

    if (x == a) x = b;
    else x = a;

or, as is often seen in C programs,

    x = x == a ? b : a;

A far better (or at least more efficient) way to code it is either

If a and b are constants, these require only one or two basic RISC instructions. Of
course, overflow in calculating  can be ignored.

This raises the question: Is there some particularly efficient way to cycle
among three or more values? That is, given three arbitrary but distinct constants a,
b, and c, we seek an easy-to-evaluate function f that satisfies

It is perhaps interesting to note that there is always a polynomial for such a
function. For the case of three constants,

(5)

(The idea is that if  the first and last terms vanish, and the middle term
simplifies to b, and so on.) This requires 14 arithmetic operations to evaluate, and
for arbitrary a, b, and c, the intermediate results exceed the computer’s word size.
But it is just a quadratic; if written in the usual form for a polynomial and evalu-

x a b x,   or–+
x a b x. 

a b+

f a  b,=

f b  c,   and=

f c  a.=

f x  x a–  x b– 
c a–  c b– 

---------------------------------a
x b–  x c– 
a b–  a c– 

---------------------------------b
x c–  x a– 
b c–  b a– 

---------------------------------c.+ +=

x a,=
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ated using Horner’s rule,5 it would require only five arithmetic operations (four
for a quadratic with integer coefficients, plus one for a final division). Rearrang-
ing Equation (5) accordingly gives

This is getting too complicated to be interesting, or practical.
Another method, similar to Equation (5) in that just one of the three terms

survives, is

This takes 11 instructions if the machine has the equal predicate, not counting
loads of constants. Because the two addition operations are combining two 0 val-
ues with a nonzero, they can be replaced with or or exclusive or operations.

The formula can be simplified by precalculating  and  and then
using [GLS1]:

Each of these operations takes eight instructions, but on most machines these are
probably no better than the straightforward C code shown below, which executes
in four to six instructions for small a, b, and c.

Pursuing this matter, there is an ingenious branch-free method of cycling
among three values on machines that do not have comparison predicate instruc-
tions [GLS1]. It executes in eight instructions on most machines.

Because a, b, and c are distinct, there are two bit positions,  and , where
the bits of a, b, and c are not all the same, and where the “odd one out” (the one

5. Horner’s rule simply factors out x. For example, it evaluates the fourth-degree polynomial
 as  For a polynomial of

degree n it takes n multiplications and n additions, and it is very suitable for the multiply-add
instruction.

   if (x == a) x = b;
   else if (x == b) x = c;
   else x = a;

ax4 bx3 cx2 dx e+ + + + x x x ax b+  c+  d+  e.+

f x  1
a b–  a c–  b c– 

-------------------------------------------------- a b– a b c– b c a– c+ + x2=

 a b– b2 b c– c2 c a– a2+ + x+

 a b– a2b b c– b2c c a– ac2+ +  + .

f x  x = c –  a&  x = a –  b&  x = b –  c& .+ +=

a c– b c,–

f x  x = c –  a c– &  x = a –  b c– &  c,   or+ +=

f x  x = c –  a c &  x = a –  b c &  c. =

n1 n2
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whose bit differs in that position from the other two) is different in positions 
and  This is illustrated below for the values 21, 31, and 20, shown in binary.

Without loss of generality, rename a, b, and c so that a has the odd one out
in position  and b has the odd one out in position  as shown above. Then
there are two possibilities for the values of the bits at position  namely

 = (0, 1, 1) or (1, 0, 0). Similarly, there are two possibilities for the
bits at position  namely  = (0, 1, 0) or (1, 0, 1). This makes four
cases in all, and formulas for each of these cases are shown below.

Case 1.  = (0, 1, 1),  = (0, 1, 0):

Case 2.  = (0, 1, 1),  = (1, 0, 1):

Case 3.  = (1, 0, 0),  = (0, 1, 0):

Case 4.  = (1, 0, 0),  = (1, 0, 1):

In these formulas, the left operand of each multiplication is a single bit. A
multiplication by 0 or 1 can be converted into an and with a value of 0 or all 1’s.
Thus, the formulas can be rewritten as illustrated below for the first formula.

Because all variables except x are constants, this can be evaluated in eight instruc-
tions on the basic RISC. Here again, the additions and subtractions can be
replaced with exclusive or.

This idea can be extended to cycling among four or more constants. The
essence of the idea is to find bit positions   at which the bits uniquely
identify the constants. For four constants, three bit positions always suffice. Then

n1
n2.

1 0 1 0 1    c

1 1 1 1 1    a

1 0 1 0 0    b

 n1   n2   

n1 n2,
n1,

an1
bn1

cn1
  

n2, an2
bn2

cn2
  

an1
bn1

cn1
   an2

bn2
cn2

  

f x  xn1
a b– * xn2

c a– * b+ +=

an1
bn1

cn1
   an2

bn2
cn2

  

f x  xn1
a b– * xn2

a c– * b c a–+ + +=

an1
bn1

cn1
   an2

bn2
cn2

  

f x  xn1
b a– * xn2

c a– * a+ +=

an1
bn1

cn1
   an2

bn2
cn2

  

f x  xn1
b a– * xn2

a c– * c+ +=

f x  x 31 n1– <<  31>> 
s  a b– & x 31 n2– <<  31>> 

s  c a–  b+&+=

n1, n2, ,
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(for four constants) solve the following equation for s, t, u, and v (that is, solve the
system of four linear equations in which  is a, b, c, or d, and the coefficients

 are 0 or 1):

If the four constants are uniquely identified by only two bit positions, the equation
to solve is

2–21  A Boolean Decomposition Formula

In this section we have a look at the minimum number of binary Boolean opera-
tions, or instructions, that suffice to implement any Boolean function of three, four,
or five variables. By a “Boolean function” we mean a Boolean-valued function of
Boolean arguments.

Our notation for Boolean algebra uses “+” for or, juxtaposition for and,  for
exclusive or, and either an overbar or a prefix ¬ for not. These operators can be
applied to single-bit operands or “bitwise” to computer words. Our main result is
the following theorem.

THEOREM.  If f(x, y, z) is a Boolean function of three variables, then it can be
decomposed into the form g(x, y)  zh(x, y), where g and h are Boolean functions
of two variables.6

Proof [Ditlow]. f(x, y, z) can be expressed as a sum of minterms and then  and
z can be factored out of their terms, giving

Because the operands to “+” cannot both be 1, the or can be replaced with exclu-
sive or, giving

where we have twice used the identity 

6. Logic designers will recognize this as Reed-Muller, aka positive Davio, decomposition.
According to Knuth [Knu4, 7.1.1], it was known to I. I. Zhegalkin [Matematicheskii Sbornik
35 (1928), 311-369]. It is sometimes referred to as the Russian decomposition.

f x 
xni

f x  xn1
s xn2

t xn3
u v+ + +=

f x  xn1
s xn2

t xn1
xn2

u v.+ + +=

z

f x y z ( ) zf0 x y  zf1 x y .+=

f x y z   zf0 x y  zf1 x y =

 1 z f0 x y  zf1 x y =

 f0 x y  zf0 x y  zf1 x y  =

 f0 x y  z f0 x y  f1 x y  ,=

a b c ac bc.=
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This is in the required form with  and  =
  incidentally, is  with  and  is

 with 

COROLLARY. If a computer’s instruction set includes an instruction for each of
the 16 Boolean functions of two variables, then any Boolean function of three vari-
ables can be implemented with four (or fewer) instructions.

One instruction implements  another implements  and these are
combined with and and exclusive or.

As an example, consider the Boolean function which is 1 if exactly two of x, y,
and z are 1:

Before proceeding, the interested reader might like to try to implement f with four
instructions, without using the theorem.

From the proof of the theorem,

which is four instructions.
Clearly, the theorem can be extended to functions of four or more variables.

That is, any Boolean function  can be decomposed into the form
 Thus, a function of four variables can

be decomposed as follows:

This shows that a computer that has an instruction for each of the 16 binary Bool-
ean functions can implement any function of four variables with ten instructions.
Similarly, any function of five variables can be implemented with 22 instructions.

However, it is possible to do much better. For functions of four or more vari-
ables there is probably no simple plug-in equation like the theorem gives, but
exhaustive computer searches have been done. The results are that any Boolean
function of four variables can be implemented with seven binary Boolean instruc-
tions, and any such function of five variables can be implemented with 12 such
instructions [Knu4, 7.1.2].

g x y  f0 x y = h x y 
f0 x y  f1 x y . f0 x y , f x y z   z 0,= f1 x y 
f x y z   z 1.=

g x y , h x y ,

f x y z   xyz xyz xyz.+ +=

f x y z   f0 x y  z f0 x y  f1 x y  =

 xy z xy xy xy+  =

 xy z x y+ ,=

f x1 x2  xn   
g x1 x2  xn 1–  ( ) xnh x1 x2  xn 1–  ( ).

f w x y z    g w x y   zh w x y  ,    where=

g w x y   g1 w x  yh1 w x    and=

h w x y   g2 w x  yh2 w x .=
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In the case of five variables, only 1920 of the  functions
require 12 instructions, and these 1920 functions are all essentially the same func-
tion. The variations are obtained by permuting the arguments, replacing some
arguments with their complements, or complementing the value of the function.

Implementing Instructions for all 16 Binary Boolean Operations

The instruction sets of some computers include all 16 binary Boolean operations.
Many of the instructions are useless in that their function can be accomplished with
another instruction. For example, the function f(x, y) = 0 simply clears a register,
and most computers have a variety of ways to do that. Nevertheless, one reason a
computer designer might choose to implement all 16 is that there is a simple and
quite regular circuit for doing it.

Refer to Table 2–1 on page 17, which shows all 16 binary Boolean functions.
To implement these functions as instructions, choose four of the opcode bits to be
the same as the function values shown in the table. Denoting these opcode bits by

   and  reading from the bottom up in the table, and the input registers
by x and y, the circuit for implementing all 16 binary Boolean operations is
described by the logic expression

For example, with = = = = 0, the instruction computes the zero func-
tion, f(x, y) = 0. With = 1 and the other opcode bits 0 it is the and instruction.
With = = 0 and = = 1 it is exclusive or, and so forth.

This can be implemented with n 4:1 MUXs, where n is the word size of the
machine. The data bits of x and y are the select lines, and the four opcode bits are
the data inputs to each MUX. The MUX is a standard building block in today’s
technology, and it is usually a very fast circuit. It is illustrated below.

The function of the circuit is to select c0, c1, c2, or c3 to be the output, depending on
whether x and y are 00, 01, 10, or 11, respectively. It is like a four-position rotary
switch.

Elegant as this is, it is somewhat expensive in opcode points, using 16 of them.
There are a number of ways to implement all 16 Boolean operations using only
eight opcode points, at the expense of less regular logic. One such scheme is illus-
trated in Table 2–3.

225 4,294,967,296=

c0, c1, c2, c3,

c0xy c1xy c2xy c3xy.+ + +

c0 c1 c2 c3
c0

c0 c3 c1 c2

  4:1
MUX

select

x y

c0

c1
c2

c3

output
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The eight operations not shown in the table can be done with the eight instruc-
tions shown, by interchanging the inputs or by having both register fields of the
instruction refer to the same register. See exercise 12.

IBM’s POWER architecture uses this scheme, with the minor difference that
POWER has or with complement rather than complement and or. The scheme
shown in Table 2–3 allows the last four instructions to be implemented by comple-
menting the result of the first four instructions, respectively.

Historical Notes

The algebra of logic expounded in George Boole’s An Investigation of the Laws of
Thought (1854)7 is somewhat different from what we know today as “Boolean
algebra.” Boole used the integers 1 and 0 to represent truth and falsity, respec-
tively, and he showed how they could be manipulated with the methods of ordinary
numerical algebra to formalize natural language statements involving “and,” “or,”
and “except.” He also used ordinary algebra to formalize statements in set theory
involving intersection, union of disjoint sets, and complementation. He also for-
malized statements in probability theory, in which the variables take on real num-
ber values from 0 to 1. The work often deals with questions of philosophy, religion,
and law.

Boole is regarded as a great thinker about logic, because he formalized it,
allowing complex statements to be manipulated mechanically and flawlessly with
the familiar methods of ordinary algebra.

Skipping ahead in history, there are a few programming languages that include
all 16 Boolean operations. IBM’s PL/I (ca. 1966) includes a built-in function
named BOOL. In BOOL(x, y, z), z is a bit string of length four (or converted to that

TABLE 2–3. EIGHT SUFFICIENT BOOLEAN INSTRUCTIONS

Function 
Values Formula

Instruction
Mnemonic (Name)

0001 and

0010 andc (and with complement)

0110 xor (exclusive or)

0111 or

1110 nand (negative and)

1101 cor (complement and or)

1001 eqv (equivalence)

1000 nor (negative or)

7. The entire 335-page work is available at www.gutenberg.org/etext/15114.

xy

xy

x y
x y+

xy

xy, or x y+

x y , or x y

x y+
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if necessary), and x and y are bit strings of equal length (or converted to that if nec-
essary). Argument z specifies the Boolean operation to be performed on x and y.
Binary 0000 is the zero function, 0001 is xy, 0010 is  and so forth.

Another such language is Basic for the Wang System 2200B computer (ca.
1974), which provides a version of BOOL that operates on character strings rather
than on bit strings or integers [Neum].

Still another such language is MIT PDP-6 Lisp, later called MacLisp [GLS1].

Exercises

1. David de Kloet suggests the following code for the snoob function, for
 where the final assignment to y is the result:

This is essentially the same as Gosper’s code (page 15), except the right shift is
done with a while-loop rather than with a divide instruction. Because division is
usually costly in time, this might be competitive with Gosper’s code if the while-
loop is not executed too many times. Let n be the length of the bit strings x and y,
k the number of 1-bits in the strings, and assume the code is executed for all values
of x that have exactly k 1-bits. Then for each invocation of the function, how many
times, on average, will the body of the while-loop be executed?

2. The text mentions that a left shift by a variable amount is not right-to-left
computable. Consider the function  [Knu8]. This is a left shift by a
variable amount, but it can be computed by

which are all right-to-left computable operations. What is going on here? Can you
think of another such function?

3. Derive Dietz’s formula for the average of two unsigned integers,

xy,

x 0,

y x x x–& +

x x y&

while x 1&  = 0( ) x x 1>> 
s

x x 1>> 
s

y y x | 

x x 1& <<

x x 1& *x,   or+

x x x 1& – & ,+

x y&  x y  1>> 
u .+
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4. Give an overflow-free method for computing the average of four unsigned
integers, 

5. Many of the comparison predicates shown on page 23 can be simplified
substantially if bit 31 of either x or y is known. Show how the seven-instruction
expression for  can be simplified to three basic RISC, non-comparison,
instructions if  

6. Show that if two numbers, possibly distinct, are added with “end-around
carry,” the addition of the carry bit cannot generate another carry out of the high-
order position.

7. Show how end-around carry can be used to do addition if negative num-
bers are represented in one’s-complement notation. What is the maximum number
of bit positions that a carry (from any bit position) might be propagated through?

8. Show that the MUX operation, (x & m) | (y & ~m), can be done in three
instructions on the basic RISC (which does not have the and with complement
instruction).

9. Show how to implement  in four instructions with and-or-not logic.

10. Given a 32-bit word x and two integer variables i and j (in registers), show
code to copy the bit of x at position i to position j. The values of i and j have no
relation, but assume that 

11. How many binary Boolean instructions are sufficient to evaluate any n-
variable Boolean function if it is decomposed recursively by the method of the the-
orem?

12. Show that alternative decompositions of Boolean functions of three vari-
ables are

(a)  (the “negative Davio decomposition”), and
(b) 

13. It is mentioned in the text that all 16 binary Boolean operations can be
done with the eight instructions shown in Table 2-3, by interchanging the inputs or
by having both register fields of the instruction refer to the same register. Show
how to do this.

14. Suppose you are not concerned about the six Boolean functions that are
really constants or unary functions, namely f(x, y) = 0, 1, x, y,  and  but you
want your instruction set to compute the other ten functions with one instruction.
Can this be done with fewer than eight binary Boolean instruction types
(opcodes)?

15. Exercise 13 shows that eight instruction types suffice to compute any of
the 16 two-operand Boolean operations with one R-R (register-register) instruc-
tion.  Show that six instruction types suffice in the case of R-I (register-immediate)

a b c d+ + +  4 .

x y
u 

y31 0.=

x y

0 i j 31. 

f x y z ( ) g x y( ) zh x y( )=
f x y z ( ) g x y( ) z h x y( )+ .=

x, y,
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instructions. With R-I instructions, the input operands cannot be interchanged or
equated, but the second input operand (the immediate field) can be complemented
or in fact set to any value at no cost in execution time. Assume for simplicity that
the immediate fields are the same length as the general-purpose registers.

16. Show that not all Boolean functions of three variables can be implemented
with three binary logical instructions.
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