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Abstract: We describeYASS– a new tool for finding local similarities in DNA sequences. The
YASSalgorithm first scans the sequence(s) and creates on the fly groups ofseeds(small exact repeats
obtained by hashing) according to statistically-founded criteria. Then it tries to extend those groups
into similarity regions on the basis of a new extension criterion.

The method can be seen as a compromise between single-seed (BLAST) and multiple-seed
(FASTA, BLAT) approaches, and achieves a gain in both sensitivity and selectivity. The method
is flexible and can be made more efficient by using spaced seeds, and in particular transition-
constrained spaced seeds.

We provide examples of applyingYASStoSaccharomyces CerevisiaeandDrosophila Melanogaster
chromosomes.
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YASS: Recherche de similarit́ees dans les śequences d’ADN

Résuḿe : Nous pŕesentonsYASS– un nouvel outil par la recherche locale de similaritées dans les
séquences d’ADN. L’algorithme deYASSparcours la śequence dans un premier temps, et crée des
groupes de graines (petites réṕetitions exactes obtenues par hachage) selon des critères reposant sur
des propríet́ees statistiques. Dans un deuxième temps, il essaie d’étendre ces groupes en régions de
similaritées selon un nouveau critère d’extension.

La methode proposée peutêtre vue commme un compromis entre les stratégiesà une seule
graine (BLAST) et cellesà multiples graines (FASTA, BLAT), elle atteind des gains̀a la fois sur la
sensibilit́ee et la selectivit́e. La ḿethode reste flexible et peutêtre rendue encore plus efficace en
utilisant des graines espacées, particulìerement en considérant des graines espacées contenant des
elements sṕecifiques contraints aux transitions.

Nous donnons des examples d’utilisation deYASSsur des chromosomes deSaccharomyces
CerevisiaeetDrosophila Melanogaster.

Mots-clés : YASS, alignement local, graines espacées, transitions
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1 Introduction

The well-known Smith-Waterman algorithm [20] provides an exact solution to the problem of com-
puting optimal local alignments. However, its time complexity is high (O(n2), reducible toO( h.n

2

logn )
whereh is the sequence entropy [8]), and rapid heuristic algorithms have been proposed to find sig-
nificant approximately repeated sequences (similarity regions). All those algorithms are based on a
common principle: at the first stage, they search for one or more small exact repeats (calledseeds)
assumed to occur in approximate repeats. The second stage attempts to extend those seeds to com-
pute longer approximate repeats.

Typical representatives of this approach areFASTA [14, 15] andBLAST [2], that both start
with identifying, using hash methods, small exact matches of fixed size. However, they differ in
the way they treat those seeds to extend them into similarity regions.FASTA looks for groups of
closely-located seedson the same dot plot diagonaltrying to identify a longer similarity region.
In contrast,BLAST systematically tries to extend eachseed(considered to be ahit) to a possible
HSP (High Scoring Pair), using anX-drop algorithm. A modifieddouble-seedcriterion has been
proposed inGapped BLAST [3], that defines a hit as two non-overlapping seeds occurring on the
same diagonal.

Different extensions of these two methods have been proposed by other algorithms.ASSIRC[23]
applies a random walk heuristics to perform the extension phase. Another generalization concerns
the form ofseeds: FLASH [7] and more recentlyPatternHunter [16] considerspaced seeds,
that require matches to occur at certain positions within a given length, according to a pre-specified
seed motif. Double-seed and spaced seeds approaches have been combined inBLASTZ[19, 18].

Other methods try to take advantage of powerful string matching techniques, in particular by
using a suffix tree data structure and a linear algorithm for constructing it [22]. This is done in
REPuter [13] andMUMmer[9], to construct respectively local or global alignments.

Other tools have been designed to compute special type of alignments:MEGABLAST[24] or
SSAHA[17] are specialized in finding large and highly similar regions;SIM4 [10] or BLAT [11] are
oriented to computingspliced alignments, useful in mapping RNA transcripts on the genomic DNA;
finally, BLASTX[21] is designed to match DNA queries against a protein database.

Other related tools have the goal of findingtandem repeats. One such software isTandem
Repeat Finder [4], that is also based on collecting seeds with a hashing technique, using a group
criterion adapted to identifying tandemly-repeated sequences. Some ideas of this approach will be
used in this paper.mreps [12] is another program for finding tandem repeats with substitution
errors, based on efficient combinatorial algorithms.

Our Approach

The two-stage approach described above implies a dilemma between the sensitivity and selectivity.
Sensitivity can be measured by the probability that a good alignment (one with a high score) is
found by the algorithm. Selectivity can be associated with the number of candidatehits computed
at the first stage that don’t yield significant approximate repeats at the extension stage (smaller this
number, higher the selectivity). Choosing weaker criteria for defining a hit (e.g. decreasing the seed
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4 Noé & Kucherov

size) increases the sensitivity but makes the algorithm less selective and increases the time spent on
extending spurious hits. To cope with this problem and to increase the efficiency, some algorithms try
to speed up the extension stage by using an heuristics [23], others introduce an additional treatment
to rapidly filter out those hits that are unlikely to produce a significant local alignment [18]. On the
other hand, choosing a more stringent criteria for defining a hit (e.g. increasing the seed size) makes
the first stage more selective, saves time, but can miss significant similarities and therefore results in
a less sensitive algorithm.

Therefore, finding an optimal trade-off between the sensitivity and selectivity while keeping the
efficiency is a key issue for the entire approach. For example, the double-seed method ofGapped
BLAST has been shown more to be sensitive thanBLAST for HSPs with a bit-score of at least 33
bits (for the default seed size 13 forBLASTNand 11 forGapped BLAST), but also more selective,
as less time is spent on treating randomly occurring hits.

In this work, we generalize this approach and propose an algorithm based on a flexiblemultiple-
seed criterionthat allows anarbitrary number of possibly overlapping seeds. Moreover, seeds are
not required to occur on the same dot plot diagonal. In other words, we admit a variation of the
distance between corresponding seeds in each copy, which allows us to account for indels occurring
in inter-seed intervals.

Considering multiple seeds and trying to group them has the advantage of catching the whole
range of a similarity region rather than spotting a single part of it. For the sensitivity reasons, we use
a smaller seed size. This implies generating more seeds at the first stage, but only a small fraction of
them form groups verifying the extension criterion and is therefore processed by the extension step.

Overall, the sensitivity is increased due to a smaller seed size and the flexibility of the extension
criterion, and the selectivity is preserved as the criterion requires the presence of several seeds to
trigger the extension. The criterion is easy to verify, and the extra time spent on computing smaller
seeds at the first stage is greatly compensated by the gain in time spent on computing similarity
regions from the seeds.

The paper is organized as follows. Section 2 presents an overview of theYASSalgorithm.
Section 3 defines the criteria used to group seeds, and describes the grouping algorithm. Section 4
deals with the extension criterion and sensitivity improvements. Section 5 concerns spaced seeds and
model improvements. Sections 6 describe results and experiments, as well as possible optimizations
of the method.

2 Algorithm Overview

The initial step of the algorithm consists of collecting the information about all possible seeds con-
tained in the input sequence(s). This is done in the traditional manner: given a sizek, we store in a
hash table the positions of allk-words occurring in the sequence. For eachk-word, the hash table
contains a linked list of its positions in the sequence.

After this preparatory step, the algorithm is composed of two parts. The first part is alinking
algorithm. It considersseeds, i.e. repeatedk-words extracted from the hash table, and processes
them to formgroups of seeds, according to criteria based on the distances between corresponding
k-words.

INRIA



YASS: Similarity search in DNA sequences 5

The second part is anextension algorithmthat triggers and performs the extension of some of
the constructed groups of seeds. Triggering the extension is driven by a selection criterion, called
group criterion, based on thetotal nucleotide size of the group(note that seeds can overlap). Groups
of seeds verifying this criterion are actually submitted for extension. In contrast to theX-drop al-
gorithm ofBLAST, this criterion is very easy to check and virtually no time is spent on verifying it.
Selected groups are then extended to form similarity regions. For that, respective inter-seed regions
are aligned using a dynamic programming algorithm. Besides, an additional heuristic procedure is
applied in order to check whether the region consists actually of one or several sub-regions of higher
score. This is done in order to correct the artifact of the group criterion that consists of possible
binding of closely-located high-scoring regions that “shadow” a low-scoring region in between.

Linking and extension algorithms are run in turn in order to keep the currently stored set of
groups small enough.

3 Linking Algorithm

We first introduce some notations used in this part. We are looking for local similarities between a
DNA query sequenceQ[1..m] and a DNA subject sequenceT [1..n]. Each of those sequences can
be considered as a succession ofm − k + 1 (respectivelyn − k + 1) substrings of sizek, called
k-words. Two matchingk-wordsQ[j..j + k − 1] andT [i..i + k − 1] form aseed, denoted<i, j>.
Two distances betweenk-words are considered:

i1 i2 j2 j2

<    ,    >i1 j1 <    ,    >i2 j2

( , )D <    ,    >i1 j1 <    ,    >i2 j2

<    ,    >( )i2 j2d

<    ,    >( )i1 j1d

T Q

Figure 1:intra-seed and inter-seed distances

• Given a seed<i, j>, the intra-seeddistanced(<i, j>) is n + j − i. It can be seen as the
distance between thek-wordsQ[j..j + k − 1] andT [i..i+ k − 1] if Q is concatenated toT
(see Figure 1),

• Given two seeds<i1, j1> and<i2, j2>, wherei1 < i2 andj1 < j2, the inter-seeddistance
D(<i1, j1>,<i2, j2>) is the maximum betweeni2 − i1 andj2 − j1.

Two seeds<i1, j1> and<i2, j2> are linked (grouped) together if
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6 Noé & Kucherov

• the inter-seeddistance is below a thresholdρ (D(<i1, j1>,<i2, j2>) ≤ ρ),

• the variation between the twointra-seeddistancesd(<i1, j1>) andd(<i2, j2>) is below a
thresholdδ (|d(<i1, j1>)− d(<i2, j2>)| ≤ δ).

The first inter-seed condition insures that the seeds are close enough to each other. The second
intra-seed condition requires that in both seeds the twok-words occurapproximatelyat the same
distance from each other. In other words, the two seeds are located atclose diagonals. Allowing
a variation between intra-seed distances accounts for indels that might have occurred between the
correspondingk-words inside a similarity region (see Figure 1).

Parametersρ andδ, used in the above conditions, are estimated according to statistical models
of the DNA sequence that we describe now.

Statistical models

Substitutions. Two similar DNA regions are assumed to stem from a duplication of a common an-
cestor sequence, followed by individual independent substitution events occurring in each duplicated
copy. Under this assumption, the two regions have an equal length and their alignment is a sequence
of matched and mismatched pairs of nucleotides. We then model this alignment by a sequence of
i.i.d Bernoulli variables, with the probabilityp for a match and(1− p) for a mismatch. To estimate
the inter-seed distance, we have to estimate the distance between twosuccessive runs of at leastk
matchesin the Bernoulli sequence. It obeys the geometric distribution of orderk called theWaiting
time distribution[1]:

P{Dk = x} =


0 for 0≤x<k
pk for x= k

(1−p)pk[1−
∑x−k−1
i=0 P{Dk = i}] for x>k

Using this distribution, we defineρ such that the probabilityP{Dk ≤ ρ} is high (the default value
is 0.95 but can be changed by the user).

Note that the Waiting time distribution allows us to estimate another useful parameter: the num-
ber of runs of matches of size at leastk inside a Bernoulli sequence of lengthx. In a Bernoulli
sequence of lengthx, the probability of the eventIp,x,r of having exactlyr non-overlappingruns of
matches of size at leastk is given by the following recursive formula:

P{Ip,x,r} = P{Ip,x−1,r}+ pk(1−p)
(
P{Ip,x−k−1,r−1} − P{Ip,x−k−1,r}

)
This gives the probability of having exactlyr non-overlappingseeds of size at leastk inside a

repeat of sizex. The recurrence starts with the caser = 0 in which caseP{Ip,x,0} = P{Dk >
x− k} and is computed through the Waiting time distribution.

The distributionP{Ip,x,r} allows to infer a lower bound on the number of non-overlapping seeds
expected to be found inside a similarity region. In particular, we will use this bound as a first estimate
of the group criterion introduced later in Section 4.

INRIA



YASS: Similarity search in DNA sequences 7

Indels. Indels(insertion/deletion of nucleotides) are responsible for a diagonal shift of seeds viewed
on a dot plot alignment. In other words, they modify the relationd(<i1, j1>) = d(<i2, j2>) by
adding a possible (small) bias. To estimate a typical shift size, we use a method similar to one
proposed in [4] for tandem repeats.

The method assumes that a single nucleotide indel can occur with an equal probabilityq at each
of l nucleotides separating two consecutive seeds. Under this assumption, estimating the diagonal
shift produced by indels is done through a discrete one-dimensionalrandom walkmodel, where the
probability of moving left or right is equal toq, and the probability of staying in place is1− 2q. Our
goal is to bound, with a given probability, the deviation from the starting point.

The probability of ending the random walk at positioni after l steps is given by the following
sum:

(l−i)/2∑
j=0

l!
j!(j + i)!(l − (2j + i))!

p2j+i
i (1− 2pi)l−(2j+i)

A direct computation of multi-monomial coefficients quickly leads to a memory overflow, and
to avoid this, we used an indirect method based on generating functions. Consider the function
P (x) = qx+(1−2q)+ q

x and consider the powerP l(x) = al.x
l+ · · ·+a-l.x-l. Then the coefficient

ai computes precisely the above formula, and therefore gives the probability of ending the random
walk at positioni afterl steps. We then have to sum up coefficientsai for i = 0, 1, -1, 2, -2, . . . , l, -l
until we reach a given threshold probability (0.95 by default). The obtained valuel is then taken as
the parameterδ used to bound the maximal diagonal shift between two seeds.

Linking Algorithm

We now describe our linking algorithm that processes seeds on the fly and creates groups according
to the inter- and intra-seed criteria described above. The algorithm is given on Figure 2.

Along the generation of seeds, we store each seed<i, j> in a tableD according to its intra-seed
distanced(<i, j>) (actually, only positioni is stored). Verifying if a newly generated seed should
be linked with previously computed ones is done in the following way:

• First, we look for previously computed seeds verifying the intra-seed criterion (line04). For
that, we retrieve from tableD the seeds with an intra-seed distance belonging to the interval
[d(<i, j>)− δ..d(<i, j>) + δ], in the increasing order of its difference fromd.

• From these candidate seeds, we select the first one which satisfies the inter-seed condition
(line 06).

A group is completed if its last linked seed has an inter-seed distance of more thanρ + δ from the
current seed.

RR n◦ 4852



8 Noé & Kucherov

Figure 2:Linking algorithm

01 forall k-wordw = T [i..i+ k − 1] (1 ≤ i ≤ n−k+1) do
02 forall j such thatT [j..j + k − 1] matchesw do
03 d← i− j
04 for dobs ∈ [d, d+1, d−1, . . . , d+δ, d−δ] do
05 i′ ← D[dobs]
06 if i− i′ < ρ then
07 j′ ← i′ − dobs
08 group together<i′, j′> and<i, j>
09 break //the dobs loop
10 endif
11 endfor
13 D[d]← i
13 endforall
14 endforall

4 Extension algorithm

The linking algorithm presented in the previous section forms groups of seeds potentially belonging
to the same similarity region. Among those groups, groups containing a large number of seeds with
small intra-seed distances represent large and high-scored similarities. However, many groups will
contain a smaller number of seeds, possibly separated by larger inter-seed distances. Those groups
either correspond to similarities with a lower score, or do not correspond to any similarity at all (i.e.
don’t belong to an alignment with a sufficiently big score). How can we distinguish between those
two cases, without performing an alignment algorithm, and without missing many similarities with
a low but sufficient score?

For this purpose, we introduce another criterion. This criterion selects groups that will be actually
extended. The criterion, calledgroup criterion, is based on thegroup size– the overall nucleotide
size of all seeds of the group. Note that seeds of a group can overlap, and therefore the group size is
not just the number of seeds timesk, but can be generally smaller.

Allowing overlapping seeds is an important point that brings a flexibility to our method. Note
that other popular multiple-seed methods (Gapped BLAST, BLAT) consider only non-overlapped
seeds fixing their minimal number to two. Overlapped seeds allow a trade-off between those two
options, increasing the sensitivity of the usual multiple-seed approach (with respect to low-scoring
similarities) without provoking a tangible increase in the number of useless extensions. In the next
section, we will provide quantitative measures comparing the sensitivity of theYASSgroup criteria
with BLASTandGapped BLAST.

Note thatFASTAandBLASTmethods are somewhat opposite, as each one spends most of its
time doing what the other does quickly.FASTAspends most of the time on generating and counting
potential seeds along the same diagonal (extension stage is strait-forward), whereasBLASTNcon-

INRIA



YASS: Similarity search in DNA sequences 9

centrates on extendingeachseed (seed generation is comparatively fast). Figure 3 shows thatYASS
reaches a trade-off between those two approaches, as it spends approximately equal time for each of
the two stages. This can be seen as an evidence thatYASSprovides an optimal distribution between
the two complementary parts of the work. Figure 3 focuses on comparing chromosomes V and IX
of S.Cerevisiae, and shows the running times for different seed size and group size, together with
corresponding values ofδ andρ parameters used in the linking algorithm. All experiments reported
in this work have been done on a Pentium IV 2 GHz computer.

Figure 3: ComparingS.Cerevisiaechromosome V (576 869 bp) vs chromosome IX (439 885 bp).
tlink, talign andttotal indicate the time spent on respectively the linking algorithm, extension algo-
rithm and both.

size cpu time
seed group δ ρ tlink talign ttotal

9 13 135 5 2s 3s 5s
9 11 135 5 2s 6s 8s
8 13 97 4 7s 6s 13s
8 11 97 4 7s 11s 18s
7 13 69 4 22s 35s 47s
7 11 69 4 22s 41s 63s

Comparison of methods

Similarity of two DNA regions is traditionally measured by the alignment score (or similarity score)
under some scoring system. Unless otherwise stated, we use the standardBLASTscoring system:
+1 for a match and -3 for a mismatch. Choosing another scoring system does not change the nature
of the results. Furthermore, in this section we consider gapless alignements only. If we fix a score
of such an alignement, we can infer a dependency between its length and the identity rate (fraction
of matched characters). Figure 4 shows the relation for some typical score value. It illustrates that
for a fixed score, short similarities will match very well while long ones will have the identity rate
tending to 75% (depending on the scoring system).

To estimate the sensitivity of a similarity search method, we fix a score and measure the proba-
bility of hitting a similarity of a certain length,among all similarities of this length and of the given
score. Furthermore, the probability is measured onmaximal scoring sequences. Those are sequences
such that none of its substrings reaches a greater score.

In particular, we measure the probability of finding one seed of size 11 (defaultBLASTsingle-
seed criterion) in comparison to multiple-seed search. Searching for two seeds of size 9 using the
double-seed criterion ofGapped BLAST in similarity regions scoring 25 is more sensitive if the
sequences are long (see Figure 5). On the other hand, the single-seedBLASTstrategy works better
for short (and therefore highly identical) sequences.

We now apply our group criterion with seed size 9 (same as forGapped BLAST) and group size
13. This is less selective than theGapped BLASTcriterion, as it includes any two non-overlapping
seeds but also includes pairs of overlapping seeds with an overlap at most 5. According to Figure 5,

RR n◦ 4852



10 Noé & Kucherov

0.75

0.8

0.85

0.9

0.95

1

0 15 30 45 60 75 90 105 120 135 150 165 180 195

id
en

tit
y 

ra
te

length

score 25 (bitscore 49.90)
score 35 (bitscore 69.67)
score 50 (bitscore 99.32)

Figure 4:Dependency between length and identity rate of gapless fixed-score alignments

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250 300 350 400

hi
t p

ro
ba

bi
lit

y

sequence length

Hit probability for sequences of score 25 (bitscore 49.90)

single seed of size 11 (BLAST)

2 disjoint seeds of size 9 (Gapped BLAST)

seeds size 9, group size 13 (YASS)

Figure 5:Hit probability as a function of length of fixed-score alignements

INRIA



YASS: Similarity search in DNA sequences 11

the method outperforms both methods above: it is more sensitive than the single-seed (size 11)
criterion even for short similarities, and than the non-overlapping double-seed (size 9) criterion for
large similarities.

To estimate the selectivity of different methods, we compute the probability of a hit at a given
position in a random i.i.d. Bernoulli sequence (see [11]). For our approach, this probability is
2.1·10−8, which improves the one ofBLAST(2.4·10−7) by more than ten. InGapped BLAST, this
probability (7.28·10−9) is smaller than the one for our method, as theGapped BLASTdouble-seed
criterion is strictly stronger than ours. On the other hand,Gapped BLAST is much less sensitive
on short sequences.

To be able to still compareGapped BLASTwith our approach, we chose a parameter configu-
ration such that both algorithms have the same selectivity (10−6). This is achieved by choosing seed
size 8 forGapped BLASTand group size 11 forYASS(while keeping seed size 9).

In this setting, and for sequences of a fixed score (25 in our experiment),YASS turns out to
be more sensitive for sequences up to 80 bp, whileGapped BLAST becomes more sensitive for
longer sequences (data not shown). Also,YASSis more efficient in this case, asGapped BLAST
tends to compute more spurious individual seeds that are not followed by a second hit, which takes
a considerable part of the execution time. On the other hand, since theYASSseed size is smaller by
one nucleotide, the number of spurious individual seeds at the first step is then divided by 4 on large
sequences.

Let us now analyze the comparative behavior of theYASSgroup criterion for other score values.
Figure 6 shows the hit probability of the group criterion (seed size 9, group size 13) and the single-
seed criterion ofBLAST (seed size 11). Figure 6 shows that for alignments of score larger than

seed size: 9
group size: 13
(YASS)

single seed of
size 11 (BLAST)

16202428323640444852566064687276

16
24

32
40

48
56

64
72

80

score

10 20 30 40 50 60 70 80
length

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

hit probability

Figure 6:Sensibility of single-seed (BLAST) vs group criterion (YASS) for different score values
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12 Noé & Kucherov

25 (that are generally of interest for DNA sequences), theYASScriterion is more sensitive than
that ofBLAST for all alignment lengths. If the score becomes smaller, the group criterion becomes
less sensible for shorter sequences but is still more sensitive for larger ones (score 20 on Figure 6).
However, for such a small score the sensitivity of both methods is weak (under0.8). For yet smaller
scores (score 16 on Figure 6), both methods fail except for very short sequences, in which case
the single-seed method turns out to be preferable. In practice, detecting so low-scoring similarities
requires reducing the seed size.

5 Spaced seeds

So far we have assumed that nucleotide mutations occur independently along similarity regions.
However, this assumption is not always justified. In particular, in protein-coding regions, the third
codon base is more prone to mutations than the first and the second one.

A way to take this observation into account is to usespaced seeds. In contrast to classical seeds
that correspond tok contiguous nucleotide matches, spaced seeds are represented by ashapewhich
specifies positions at which matches must occur. For example,#.## specifies that two 4-words form
a seed, if matches occur at the first, third and fourth positions but not necessarily at the second one.
A seed is characterized by itsweightw (number of#) and itsspanl (total length), and is completely
defined by its shape. The choice of the shape is important and directly affects the efficiency of the
seed.

Spaced seeds have been shown to considerably improve the sensitivity, not only on protein-
coding regions but also on general unconstraint DNA sequences. Spaced seeds have been designed
and systematically used inPatternHunter [16], and have also been studied, from a more the-
oretical perspective, in [6]. The recent work [5] proposed a tool, calledMandala , for designing
most sensitive spaced seeds according to a mutational model specified by a boolean Markov chain.
YASSis compatible with the spaced seed approach and allows the user to propose his own seed

shape. Note that applying the group criterion in the case of overlapping spaced seeds is less trivial,
as the total number of matches depends not only on the relative placement of the seeds but also on
the shape itself. To count this number on-line,YASSuses an appropriate finite automaton computed
from the seed shape.

PatternHunter combines spaced seeds with the double-seed criterion, allowing a possi-
ble overlap between the two seeds. The approach is very efficient in both selectivity and sensi-
tivity, in comparison to methods based on contiguous seeds. However, its efficiency depends on
the choice of the shape, as it determines the possible number of matched nucleotides in overlapped
seeds (which, in turn, directly affects the selectivity). For example, possible self-overlaps of the
seed###..#.#..##.## (of weight 9) have the number of matched nucleotides varying from 14 to 18.
Spaced seeds designed for aligning coding regions usually have a regular structure (typically, every
third position is a space). On the other hand, unrestricted self-overlaps of such regular motifs may
result in a large interval of the number of matches, including low values which can provoke more
infertile hits and therefore worsen the selectivity.

In this context, theYASSgroup criterion provides an advantage of suppressing hits obtained
by a small number of matches. This can in general improve the selectivity without sacrificing the

INRIA
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Figure 7:Hit probability of spaced seeds. The solid line represents the hit probability for a single
seed of weight 11 (implemented inPatternHunter ). The other lines correspond to a seed of
weight 9, and theYASSgroup criterion, for different group sizes. Note that any overlap of this seed
with itself yields at least 14 matched nucleotides, and therefore setting the group size to 14 amounts
to the double-seed criterion ofPatternHunter

sensitivity. Figure 7 shows a comparisons of the sensitivity of spaced seeds for different group sizes.
In particular, setting the group size to 16 yields the sensitivity close in practice to the one for group
size 14 (PatternHunter case) – both allow to detect more than99.9% of alignements scoring
25. On the other hand, setting the group size to 16 greatly improves the selectivity, as the number
of infertile hits is roughly divided by 16. Another interesting fact shown on Figure 7 is that even for
the group size as large as20, theYASSmethod is still more sensitive than the single-seed method,
when only 11 nucleotides are required to match.

An improvement proposed byYASShere is the possibility to specify spaced seed positions that
admit only transitions (mutationsA↔ G, C↔ T) rather than any mutations. This allows to improve
the sensitivity/selectivity ratio, as transitions are known to occur more frequently in DNA sequences
than transversions – in particular, transitions occurring at the third codon base don’t change the
resulting amino-acid in most of the cases. Introducing this feature led us to modify the definition of
the weight of a seed and to consider thebit-weightdefined ascard(#) + 0.5 · card(@).

As an illustration, Table 1 shows comparative results for a contiguous seed, a regular spaced seed,
and a spaced seed with transition constraints, of the same bit-weight (11 and 9). The results shown
have been obtained onDrosophila Melanogasterchromosome II. For each of the seeds,YASSwas
applied with the group size 20. The table illustrates that spaced seeds improve both the sensitivity
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14 Noé & Kucherov

Figure 8:Similarity region in chromosomes V vs IX ofS.cerevisiae. RunningBLAST takes 4s with
seed size 11 (default) and over 30s with seed size 10. The region shown is found byBLAST with
seed size 10 only, as it does not contain 11 contiguous matches. It takesYASS13s to identify this
region (seed size 8, group size 13), and this time can be decreased to 6s using spaced seeds adapted
to gene comparison (see Section 5).

*(270758-271079)(257865-258186) score:27 Ev: 0.000240824 s: 322/322 f
* V.fas (forward strand) / IX.fas (forward strand)
* mutations per triplet 9, 18, 58 (1.44e-12) | ts : 45 tv : 40

|270760 |270770 |270780 |270790 |270800 |270810 |270820 |270830 |270840 |270850 |270860 |270870 |270880 |270890
CTTCCATTTCCATGTCAACGCCTAATGGCAATGCTGCAACAGCAACGCATGATCTGGCAGGTTTGTGAGTATTGAAGTACTTGGCGTAAACGGAGTTAAACTCAGCAAAGTGATTGATATCTGCCAAGAAAATGTTAACT
||||||||||.|:.|||||....||:||.||:|::||||||:||||.||:|||||:|||||.||.||.||.|:|||||..||||||||:||.|||||.||.||.|||||||::||:||.||:||||||||:|.|||.|||
CTTCCATTTCTAAATCAACATTCAAAGGTAAGGAAGCAACACCAACACAGGATCTTGCAGGCTTATGGGTGTGGAAGTGTTTGGCGTATACAGAGTTGAATTCGGCAAAGTTTTTCATGTCAGCCAAGAATACGTTGACT

|257870 |257880 |257890 |257900 |257910 |257920 |257930 |257940 |257950 |257960 |257970 |257980 |257990

|270900 |270910 |270920 |270930 |270940 |270950 |270960 |270970 |270980 |270990 |271000 |271010 |271020 |271030
TTTACGACCCTGTCCAATGAGGAATTGCTTGCTTCTAGAACATTCTTAATGTTTTGAATCACCTGTTCAGCCTTATCAGCAATGGAACCTTCAACTAACTTGTTGTCTGGGGTCACTGGAATTTGGCCAGAAAGGAAAAT
||:||:|.:.||||.||:||.|||||.|||:||:|||..|.||||||||.||||||||::||.|||||.|||||:||||:.||.|||||||:|||:..||||||.|||||.||::::||.|||||.|||||:|:|:|:|.
TTGACTATATTGTCTAAAGAAGAATTACTTTCTGCTAAGATATTCTTAACGTTTTGAAAAACTTGTTCGGCCTTCTCAGAGATAGAACCTTGAACAGGCTTGTTATCTGGAGTATAAGGGATTTGACCAGACACGTACAC

|258010 |258020 |258030 |258040 |258050 |258060 |258070 |258080 |258090 |258100 |258110 |258120 |258130

|271040 |271050 |271060 |271070
CAAATTGTTCACTTTCATGGCATGGGAGTATGAAGCCGCA
:||||||||:.|.|||||.||:||||||||:||.||:|||
AAAATTGTTGGCCTTCATAGCTTGGGAGTAAGAGGCGGCA

|258150 |258160 |258170

Figure 9:Protein sequences corresponding to cDNAs of Figure 8

MVTTLTPVICESAPAAAASYSHAMKVNNLIFLSGQIPVTPDNKLVEGSIADKAEQVIQNIKNVLEASNSSLDRVVKVNIFLADINHFAEFNSVYAKYFNTHKPARSCVAVAALPLGVDMEMEAIAAERD*
+TTLTPV + APPAAASYSQAMK NN +++SGQIP TPDNK V+GSI++KAEQV QN+KN+L SNSSLD +VKVN+FLAD+ +FAEFNSVYAK+F+THKPARSCV VA+LPL VD+EME IA E++

MFLRNSVLRTAPVLRRGITTLTPVSTKLAPPAAASYSQAMKANNFVYVSGQIPYTPDNKPVQGSISEKAEQVFQNVKNILAESNSSLDNIVKVNVFLADMKNFAEFNSVYAKHFHTHKPARSCVGVASLPLNVDLEMEVIAVEKN*

Table 1: Effect of seed size and motif illustrated onDrosophila Melanogasterchromosome II
(20 302 692 bp).#seeds is the number of individual seed occurrences,#groups the number of ob-
tained groups,#alignments the number of groups submitted to extension (after applying the group
size criterion), and#results the number of resulting alignments

weight cpu time results
seed motif grp tlink talign ttotal #seeds #groups #alignments #results

11 contiguous 20 239s 291s 530s 477621164 99229643 3552479 72245
11 ###.#..#.#..##.### 20 101s 71s 172s 104861618 2199996 1434228 201438
11 #@##@##...@##@## 20 109s 62s 171s 108420076 2472847 974097 219547

9 contiguous 20 778s 361s 1139s 1656484859 342604276 4473824 518852
9 ###..#.#..##.## 20 615s 225s 840s 1329158627 36719691 5635528 534555
9 @#@##@#.#.@## 20 651s 111s 762s 1225490772 48722375 3380259 536310

and the selectivity considerably over contiguous seeds. The selectivity can be associated with the
number of performed alignements (column#alignements) and the sensitivity with the number of
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significant similarities found (#results). On the other hand, introducing transition constraints allows
an additional increment in both the selectivity and the sensitivity, as well as a gain in the execution
time. It is interesting to note that the number of occurrences of individual seeds (#seeds) is smaller
for the transition-constrained seed than for the regular spaced seed, while it is inverse for the number
of groups formed by those seeds (#groups). This can be interpreted by that occurrences of transition-
constrained seeds tend to be better grouped and therefore are more suitable to the group criterion
we use. Furthermore, the number of performed alignments (#alignements) is again smaller for
transition-constrained seeds, which means that the group criterion does a very good job by cutting
out a big part of candidate groups.

6 Results and Experiments

Program

Table 2:Comparisons ofS.Cerevisiaechromosomes obtained with seed size 9 and group size 13.

sequence size cpu time results
Query Text m n tlink talign ttotal #seeds #groups #align. #results

IV IV 1531912 1531912 13s 16s 29s 27835943 5575829 334732 37807
IX IV 439885 1531912 5s 6s 11s 10231800 2060951 123657 13829
V IV 576869 1531912 7s 9s 16s 13665079 2735724 165224 19508
XVI IV 948061 1531912 12s 14s 26s 22758709 4562398 274390 30988
IX IX 439885 439885 1s 2s 3s 2156446 430731 27016 3434
V IX 576869 439885 2s 2s 4s 3787759 759558 46546 5439
XVI IX 948061 439885 3s 3s 6s 6283229 1262067 76097 8589
V V 576869 576869 2s 2s 4s 3772422 752608 46338 5822
XVI V 948061 576869 4s 5s 9s 8394013 1676487 101319 11945
XVI XVI 948061 948061 5s 6s 11s 10469937 2099612 127230 14456

The method described in the previous sections has been implemented inYASS (Yet Another
Similarity Searcher) software.

The executable code is available at http://www.loria.fr/˜noe/, currently for Sun Solaris 5, dUnix
on DEC Alpha, Linux on i386 and Microsoft Windows. Detailed results of runningYASSon largest
S.Cerevisiaechromosomes are given in Table 2.

Further options and example

As already mentioned before, transitions occur generally more frequently than transversions. In
particular, transition mutations of the codon third base of coding regions don’t change the resulting
amino acid most of the time. For this reason,YASShas an option of changing the scoring system and
assigning a smaller penalty to transition substitutions than to transversions. Using this option,YASS
was able to identify a similarity region on chromosomes V vs IX ofS.Cerevisiae, shown in Figure 8.
This region is not found byBLAST (even with corresponding modifications of the scoring system),
since it does not contain a contiguous seed of size 11. In this example, a clear bias is observed in
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16 Noé & Kucherov

mutations at each of the three positions of the reading frame (58 mismatches of the third nucleotide,
and only 9 and 18 mismatches of respectively the first and the second nucleotide). This suggests that
the found regions of similarity are coding. A closer examination of the annotation ofS.Cerevisiae
(http://pedant.gsf.de/) reveals that they are coding for the following proteins:

• HMF1 — Heat-shock induce-able Inhibiter of cell Growth hypothetical protein.

• MMF1 — required for maintenance of mitochondrial DNA hypothetical protein.

Those two homologous proteins belong to the same super-family HI0719, and have a high sequence
similarity (see Figure 9).

Conclusion

We have presented an efficient strategy for finding similarity regions in DNA sequences, imple-
mented inYASSsoftware. The method is based on a multiple-seed hit criterion, allowing over-
lapping seeds. Occurring seeds are linked into groups, and this process is governed by parameters
automatically computed according to statistical models. A new group criterion is then applied to
select groups which are submitted to the extension stage. The method can be combined with the
spaced seed approach, reaching an additional gain in sensitivity.
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