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Introduction

Emergence of P2P comes from the need to share
large files efficiently

» Client/Server paradigm does not scale
» Neither with the size, nor with the load

P2P architectures:

» Rely on virtual and distributed networks (overlay network)
» A peeris a client and a server

» Incentives for peers to upload
» Files cut into chunks



Introduction

Examples of application:

» File sharing: Napster, Kazaa, BitTorrent, eDonkey, ...

» Distributed computation, telephony, gaming, ...

Problems triggered by P2P networks:

» Many CS problems:
» Dynamic topology of the overlay network
» Load balancing
L

» Modeling P2P networks

» As agraph...
» ...0r as aqueueing system



P2P model

Description
Simulations

Random infinite urn model

Presentation
Chen Stein’s inequality
Results



Description of the P2P model

The system aims at modeling the new paradigm:

» A peeris a client and a server
» “Flash crowd” context

Very simple model:

» One file = one chunk
» Underlying graph is complete
» Peers do not leave the system



Dynamic of the model
t=20:
» N clients
» One server offers the file
» Each clients starts an exponential clock  ~ exp(\)




Dynamic of the model
First client arrives:

» Time of arrival = miny exp(A) ~ exp(NA)
» Service requirements i.i.d. ~ exp(u)
» Server serves only one client (FIFO)

B

» Server has infinite capacity



Dynamic of the model
X(t) clients still in the pool

» Next client ~ exp (AX(t))

.
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Dynamic of the model
X(t) clients still in the pool

» Next client ~ exp (AX(t))

T, = time when the first client finishes its download

» t < Tq: clients arrive in the same server

.
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Dynamic of the model
T, = time when the first client finishes its download

» t = T4: client finishes its download. ..
» ...and becomes a server

il




Dynamic of the model
ForT; <t< Ty

» Two possible servers: next server created at rate 2u
» Policy on arrival: choose min? choose randomly? ...

- e
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Dynamic of the model
Att =T,

» Creation of the third server
» Exit may be from one of the two servers




Dynamic of the model
t>T,:

> ...




Discussion around simulations

Some simulations. . .
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Some simulations. . .

Two regimes

1. No empty servers
2. More and more empty servers



Discussion around simulations

Some simulations. . .

Two regimes

1. No empty servers
2. More and more empty servers

Why?

1. Many arrivals before a new server is created
2. Many servers created before new arrival



Discussion around simulations

From now on, we focus on the first regime

» What is its duration?

?? I




The random infinite urn model

Two stages:
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Ti — Ti—1 ~ exp (in) independently

exp(u) exp(2u) exp(3p)
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The random infinite urn model

Two stages:

1. Throw an infinite number of points  (T;);>1 with
Ti — Ti—1 ~ exp (in) independently

2. Throw N points (EjA)lngN with EjA ~ exp(A) i.id.

Back to the P2P model:

» T; = date of creation of the i-th server
» E) = date of arrival of the client labelled |




The random infinite urn model

Two stages:

1. Throw an infinite number of points  (T;);>1 with
Ti — Ti—1 ~ exp (in) independently

2. Throw N points (EjA)lngN with EjA ~ exp(A) iid.

Functionnal of interest:

v = index of the first empty interval




Remarks

The balls are not independent. ..

... but they are independent conditionnally on (T)



The number of empty urns W

Define WY, as the number of empty urns among the X
first after throwing N balls

v>x<= W =0
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The number of empty urns W

Define W} as the number of empty urns among the  x
first after throwing N balls

v>x<=W =0 —

Goal:

P (v/K(N) > x) = P (w,ﬁk‘“‘) — o)

» Find k(N) such that W,'f,(N) converges in distribution

» Kk(N) is the order of magnitude of v: v = k(N)




Chen Stein’s inequality

» WY can be written as a sum of indicator functions
» Chen Stein’s inequality applies, and gives for any

VarWy
[POWG € ) — Pewg (]| <1— B
» If for some k(N), EWQK(N) -~ Warwak('\') and

EWSMN s ¢(x), then W™ asymptotically has a

Poisson distribution. . .
> ...and P (v/k(N) > x) —s e ¢



Preliminary results

Easy computations:
X
> EWS = > E [(1— Pi)N}
i=1

» P, is the random probability for a ball to fall in urn
conditionnally on  (Tj)

> P = pi=P7l x Z,with p=X\/p

» Z; converges in distribution



Does Chen Stein hold on simpler problems? 1/2

First try: deterministic urns

Theorem:
If P, ~ ai™”~%, then v/k(N) — g3 in distribution, with
k(N) = (N/In N)¥/(p+D)



Does Chen Stein hold on simpler problems? 1/2

First try: deterministic urns

Theorem:
If P, ~ ai™”~%, then v/k(N) — g3 in distribution, with
k(N) = (N/In N)¥/(p+D)

Closely related result:
If P, = 2='—1, then Ev ~ log, N and Varyv ~ £

[4 P.Flajolet and G. Nigel Martin, 1985



Does Chen Stein hold on simpler problems? 2/2

Second try: some randomness

Theorem: N

If P, = pi—P~1Z; with Z; — exp(1), then v /k(N) converges in
distribution to a  distribution of Weibull , with

k(N) = N1/(p+2)-

P(v/K(N) > X) —> e~ */@)?



Does Chen Stein hold on simpler problems? 2/2

Second try: some randomness

Theorem: N

If P, = pi—P~1Z; with Z; — exp(1), then v /k(N) converges in
distribution to a  distribution of Weibull , with

k(N) = N1/(p+2)-

P(v/K(N) > X) — e~ (x/@)”

Remark:

» NY(P+2) <« (N/InN)Y/(P+D: randomness creates
empty urns



Still. . . Chen Stein does NOT hold

Theorem:
For p < 1/6and k(N) = N/ (p+2);
K xP1+2
EWS™N — = _EX,
p(p+2)

XP+2 XP+2
Varwﬁk(N) AR, ;)G [ —
p(p+2) p(p+2)

) VarXeo
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Still. . . Chen Stein does NOT hold

Theorem:

For p < 1/6and k(N) = N/ (p+2);
K xP1+2

EWS™N — = _EX,
o p(p+2)
ar
xk(N) XP+2 XP+2
VarWy — ———— X — | ————— | VarXs
p(p+2) p(p+2)

Remark:

» The condition p < 1/6is partly an artefact, coming
from integrability conditions

» But p < 1is not an artefact: for p > 1, EXoo = +00



Conclusion

Original P2P model far from being solved. ..

Interesting and original urn model arises:

» Urns both infinite and random
» Uncommon functional:  first empty urn



Thank you
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