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Introduction

Emergence of P2P comes from the need to share
large files efficiently

◮ Client/Server paradigm does not scale
◮ Neither with the size, nor with the load

P2P architectures:

◮ Rely on virtual and distributed networks (overlay network)

◮ A peer is a client and a server
◮ Incentives for peers to upload
◮ Files cut into chunks



Introduction

Examples of application:

◮ File sharing: Napster, Kazaa, BitTorrent, eDonkey, . . .
◮ Distributed computation, telephony, gaming, . . .

Problems triggered by P2P networks:

◮ Many CS problems:
◮ Dynamic topology of the overlay network
◮ Load balancing
◮ . . .

◮ Modeling P2P networks
◮ As a graph. . .
◮ . . . or as a queueing system
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Description of the P2P model

The system aims at modeling the new paradigm:

◮ A peer is a client and a server
◮ “Flash crowd” context

Very simple model:

◮ One file = one chunk
◮ Underlying graph is complete
◮ Peers do not leave the system



Dynamic of the model
t = 0:

◮ N clients
◮ One server offers the file
◮ Each clients starts an exponential clock ∼ exp(λ)

N clients



Dynamic of the model
First client arrives:

◮ Time of arrival = minN exp(λ) ∼ exp(Nλ)

◮ Service requirements i.i.d. ∼ exp(µ)

◮ Server serves only one client (FIFO)
◮ Server has infinite capacity

N − 1 clients



Dynamic of the model
X(t) clients still in the pool

◮ Next client ∼ exp
(
λX(t)

)

X(t) clients

µ

λX(t)



Dynamic of the model
X(t) clients still in the pool

◮ Next client ∼ exp
(
λX(t)

)

T1 = time when the first client finishes its download

◮ t < T1: clients arrive in the same server

X(t) clients

µ

λX(t)



Dynamic of the model
T1 = time when the first client finishes its download

◮ t = T1: client finishes its download. . .
◮ . . . and becomes a server

X(T1) clients



Dynamic of the model
For T1 < t < T2:

◮ Two possible servers: next server created at rate 2µ

◮ Policy on arrival: choose min? choose randomly? . . .

X(t) clients

µ

µ

?

?λX(t)



Dynamic of the model
At t = T2:

◮ Creation of the third server
◮ Exit may be from one of the two servers

X(T2) clients

?

?



Dynamic of the model
t > T2:

◮ . . .

X(t) clients

µ

µ

µ

?

?λX(t)

?



Discussion around simulations

Some simulations. . .
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Some simulations. . .

Two regimes

1. No empty servers

2. More and more empty servers



Discussion around simulations

Some simulations. . .

Two regimes

1. No empty servers

2. More and more empty servers

Why?

1. Many arrivals before a new server is created

2. Many servers created before new arrival



Discussion around simulations

From now on, we focus on the first regime

◮ What is its duration?

??



The random infinite urn model

Two stages:
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The random infinite urn model

Two stages:

1. Throw an infinite number of points (Ti)i≥1 with
Ti − Ti−1 ∼ exp

(
iµ
)

independently

0

exp(µ) exp(2µ) exp(3µ)

T1 T2 T3 T4 . . .
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Two stages:

1. Throw an infinite number of points (Ti)i≥1 with
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The random infinite urn model

Two stages:

1. Throw an infinite number of points (Ti)i≥1 with
Ti − Ti−1 ∼ exp

(
iµ
)

independently

2. Throw N points (Ej
λ)1≤j≤N with Ej

λ ∼ exp(λ) i.i.d.

Back to the P2P model:

◮ Ti = date of creation of the i-th server
◮ Ej

λ = date of arrival of the client labelled j

0 T1 T2 T3 T4 . . .



The random infinite urn model

Two stages:

1. Throw an infinite number of points (Ti)i≥1 with
Ti − Ti−1 ∼ exp

(
iµ
)

independently

2. Throw N points (Ej
λ)1≤j≤N with Ej

λ ∼ exp(λ) i.i.d.

Functionnal of interest:

ν = index of the first empty interval

0 T1 T2 T3 T4 . . .



Remarks

The balls are not independent. . .

. . . but they are independent conditionnally on (Ti)



The number of empty urns W

Define Wx
N as the number of empty urns among the x

first after throwing N balls

ν > x ⇐⇒ Wx
N = 0



The number of empty urns W

Define Wx
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The number of empty urns W

Define Wx
N as the number of empty urns among the x

first after throwing N balls

ν > x ⇐⇒ Wx
N = 0 =⇒ P (ν/k(N) > x) = P

(
Wxk(N)

N = 0
)

Goal:

◮ Find k(N) such that Wk(N)
N converges in distribution

◮ k(N) is the order of magnitude of ν: ν ≈ k(N)



Chen Stein’s inequality

◮ Wx
N can be written as a sum of indicator functions

◮ Chen Stein’s inequality applies, and gives for any n

∣∣∣∣P(Wn
N ∈ ·) − PEWn

N
(·)
∣∣∣∣ ≤ 1 −

VarWn
N

EWn
N

◮ If for some k(N), EWxk(N)
N ∼ VarWxk(N)

N and

EWxk(N)
N → ζ(x), then Wxk(N)

N asymptotically has a
Poisson distribution. . .

◮ . . . and P (ν/k(N) > x) −→ e−ζ(x)



Preliminary results

Easy computations:

◮ EWx
N =

x∑

i=1

E

[
(1 − Pi)

N
]

◮ Pi is the random probability for a ball to fall in urn i
conditionnally on (Tj)

◮ Pi = ρi−ρ−1 × Zi, with ρ = λ/µ

◮ Zi converges in distribution



Does Chen Stein hold on simpler problems? 1/2

First try: deterministic urns

Theorem:
If Pi ∼ αi−ρ−1, then ν/k(N) → β in distribution, with
k(N) = (N/ ln N)1/(ρ+1)



Does Chen Stein hold on simpler problems? 1/2

First try: deterministic urns

Theorem:
If Pi ∼ αi−ρ−1, then ν/k(N) → β in distribution, with
k(N) = (N/ ln N)1/(ρ+1)

Closely related result:
If Pi = 2−i−1, then Eν ∼ log2 N and Varν ∼ ξ

P. Flajolet and G. Nigel Martin, 1985



Does Chen Stein hold on simpler problems? 2/2

Second try: some randomness

Theorem:
If Pi = ρi−ρ−1Z̃i with Z̃i → exp(1), then ν/k(N) converges in
distribution to a distribution of Weibull , with
k(N) = N1/(ρ+2):

P(ν/k(N) > x) −→ e−(x/α)β



Does Chen Stein hold on simpler problems? 2/2

Second try: some randomness

Theorem:
If Pi = ρi−ρ−1Z̃i with Z̃i → exp(1), then ν/k(N) converges in
distribution to a distribution of Weibull , with
k(N) = N1/(ρ+2):

P(ν/k(N) > x) −→ e−(x/α)β

Remark:

◮ N1/(ρ+2) ≪ (N/ ln N)1/(ρ+1): randomness creates
empty urns



Still. . . Chen Stein does NOT hold

Theorem:
For ρ < 1/6 and k(N) = N1/(ρ+2):





EWxk(N)
N −→

xρ+2

ρ(ρ + 2)
EX∞

VarWxk(N)
N −→

xρ+2

ρ(ρ + 2)
EX∞ −

(
xρ+2

ρ(ρ + 2)

)2

VarX∞
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Theorem:
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Still. . . Chen Stein does NOT hold

Theorem:
For ρ < 1/6 and k(N) = N1/(ρ+2):

Hard





EWxk(N)
N −→

xρ+2

ρ(ρ + 2)
EX∞

VarWxk(N)
N −→

xρ+2

ρ(ρ + 2)
EX∞ −

(
xρ+2

ρ(ρ + 2)

)2

VarX∞

Remark:

◮ The condition ρ < 1/6 is partly an artefact, coming
from integrability conditions

◮ But ρ < 1 is not an artefact: for ρ ≥ 1, EX∞ = +∞



Conclusion

Original P2P model far from being solved. . .

Interesting and original urn model arises:

◮ Urns both infinite and random
◮ Uncommon functional: first empty urn



Thank you
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