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S Computer viruses and worms
P Cascading failures

® Epidemic algorithms

What are the features of the topology that determine how virulent the epidemic is?
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® Model description

P General topologies: Small outbreak

P Application to specific network topologies
P Star network
P Regular graphs
P Complete graph
P Erdés-Rényi graph

P pPower-law random graphs

P Large outbreak and existence of the giant component
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P Kermack and McKendrick (1927) approximation of a stochastic model by a deterministic

one in a homogeneous large population: basic reproductive number

P Utev et al. (1995, 2004) Poisson or normal limiting distributions for the number of

survivors

B Ball et al. (1997) Structured networks with two levels of mixing: local (within a

household) and global (between households)
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® Each node can be in one of three possibly states, susceptible (S), infective (1) or

removed (R)

D |nitially there is at least one infected node

P Assume first that I = 1. The evolution of the epidemic is described by the following
discrete-time model

P Each node that is infected at the beginning of a time slot attempts to infect each of

its neighbours with probability 3 independent of other infection attempts
O Each infected node is removed at the end of the time slot
$ X,(t) = lifnode v is infected at slot ¢
® Y,(t) = lifnode v is removed at ¢

Eventually there are no more infectives in the population: How many nodes are removed?
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and a;; = 0 otherwise.

Since A is a symmetric, non-negative matrix, all its eigenvalues are real, the eigenvalue with

the largest absolute value is positive (Perron-Frobenius)

If we assume that the graph is connected, then the spectral radius A1 (A) has multiplicity

one

Theorem Suppose SA1(A) < 1. Then

1
E[[¥ (00)]) < 75507 VX 0)

where | X (0)] is the number of initial infectives.
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Let A denote the adjacency matrix of the undirected graph G, i.e., a;; = 1 if (1,7j) € E

and a;; = 0 otherwise.

Since A is a symmetric, non-negative matrix, all its eigenvalues are real, the eigenvalue with

the largest absolute value is positive (Perron-Frobenius)

If we assume that the graph is connected, then the spectral radius A1 (A) has multiplicity

one

Theorem Suppose SA1(A) < 1. Then

E[]Y (00)]] <

\/n|X

— 11— 6)\1
where | X (0)] is the number of initial infectives.

Moreover, if the graph G is regular (i.e., each node has the same number of neighbours),

then E[|Y (00)[] < 151 X (0)
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To infect node v at ¢, there must be a chain of distinct nodes ug, u1, ..., 4 = v along

which the infection passes from some initial infective ug to v

P(Xv(t) — 1) < Z ﬁtXUO (O)

UQye.-yUt—1

Consequently, for GA1(A) < 1,

YN N (BA)E,X

veV veV t=0 ucV

iﬂ(m)tx 0

t=0

151 — BA)~1X(0)

1] II(I BA) | HX( )|l
v/ nlX(0)

=
=
g
||
=
S
8
||
A

IA

IA

1—5)\1
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have
BVl < =gt §_j ()T X (0)
= T ﬁl)\l(A) 172 ()T X (0)
- Sy YO~ T KO

1

Using the same ideas, one can prove that E[|Y (00)|] < 1—5)1\1(A) —pax | X(0)], for

min

general graphs.

Bounded degree graphs: Let A be the maximum degree. Using coupling arguments, one
- 1
can show that if GA < 1, E[[Y (00)[] < =55 |X(0)].

General infectious periods: If (1 — E[e™*]) A\1(A4) < 1 then the Theorem holds.
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The spectral radius of A is v/n — 1 with eigenvalue (v — 1,1,...,1)%. Let
Bvn—1=c<1
® Only the hub is infected

® The number of leaves infected before the hub is cured is Binom(3,n — 1) and

no other leaves can be infected subsequently (the epidemic dies out at { = 2)
E[lY(0)|]=14+08n—-1)=1+cvn—-1

$ Assume the hub is initially uninfected but & leaves are infected
O The hub becomes infected in the next time step with probability 1 — (1 — 3)*

® Then it infects a number of leaves which is Binom((3,n — 1 — k) and the

epidemic diesoutatt = 3
E[|Y (co)]] = k+[1 — (1= B)*][1 + B(n — 1 — k)] < [X(0)|(1 + 2¢)

® Thus the upper bound of the theorem is close to the best possible. Moreover this

illustrates the effect of initial conditions _p.on7
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Let GG be a regular graph with degree d then A1 (A) = d

If 3 < 1/d and there is a finite number of infected nodes initially, then the final size of

the epidemic is bounded by a constant

Hypercube The hypercube is used in distributed hash tables and applications, such as file

sharing

A hypercube is a graph G with vertex set {0, 1}, and where the edge (v, w) is present if

and only if the Hamming distance df (v, w) equals 1
Its spectral radius is \1(A) = logyn =1

if 8 < 1/ logy m, then the final size of the epidemic is bounded by a constant multiple

of the number of initial infectives.
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Early classical result on SIR epidemics based on mean field models has a threshold at

Ry = 1, where the basic reproduction number Ry = ﬁ(n — 1)

Spectral radius A\1(A) = n — 1, by Theorem, if 3(n — 1) < 1, then the final size of the
epidemic is bounded by 1/(1 — 3(n — 1)) times the initial number of infectives

Suppose 3(n — 1) = ¢ > 1and | X (0)| = 1 and let u be the initial infected node.

P et C,, denote the component containing « in the random subgraph of the complete
graph obtained by retaining each edge with probability 3: C, is the set of infected
nodes in the epidemic (F. Ball 1983, A. Barbour & D. Mollison 1990)

P By classical result on Bernoulli random graphs, the final size of the epidemic satisfies
P(|Y(00)| > (1 +0o(1))yn) =7, P(|Y(00)| = O(log(n)) = 1~
for any | X (0)| > 1, where v > 0 solves v 4+ e~ 7¢ = 1. Hence
E[Y (c0)[] = (1 + o(1))7*n.
Threshold ¢ = 1 for the final size of the epidemic starting with a constant number of initial

infectives, the final size is a constant independent of n if ¢ < 1, and a fraction of n if c_p>11%7
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Consider the graph G(n, p,, ) where np,, >> log(n), which leads to a connected graph
with high probability

Since the node degrees are Binom(n — 1, p,, ), Perron-Frobenius and the Chernoff
bound yield A1 (A) = (1 + o(1))np, w.h.p.

Applying Theorem, there is u such that if 3 < (1 — u)/npn there is a small outbreak
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Bernoulli random graph

Consider the graph G(n, p,, ) where np,, >> log(n), which leads to a connected graph
with high probability

Since the node degrees are Binom(n — 1, p,, ), Perron-Frobenius and the Chernoff
bound yield A1 (A) = (1 + o(1))np, w.h.p.
Applying Theorem, there is u such that if 3 < (1 — u)/npn there is a small outbreak

Define ¢,, = (n — 1)6pn. Consider an SIR epidemic on such a graph starting with one

node initially infected

The size of the epidemic is stochastically dominated by a (subcritical) branching process

with offspring distribution Binom(n — 1, Bpy,)

Lemma Iflimsup,,_,., ¢, = ¢ < 1, then for all n sufficiently large, E[|Y (o0)|] is

bounded by a constant that does not depend on n.

On the other hand, if lim inf,, .o ¢, = ¢ > 1, then E[|Y (00)|] > (1 + o(1))v*n

where v > 0 solves v + e~ 7¢ = 1 (Giant component).
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Power-law graphs (Scale-free networks)

P pPower law graph with exponent ~: Number of vertices with degree k is proportional to

k=

P Unlike classical random graphs, the number of vertices with degree k decays

exponentially in &k

P Power laws appear to be pervasive in nature and engineering networks (controversial!):

O Internet AS graph: v = 2.1 (Faloutsos,Faloutsos,Faloutsos 1999) (biased by

traceroute?)

P Distribution of hyperlinks on webpages (Barabasi et al.)

® Models for power law graphs: preferential attachment, Yule branching processes
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Power-laws (F. Chung model)

Let G(w) be a graph and w = (wq, w1, .. ., W,_1) the sequence of its average

degrees. The edge between the pair of vertices (z', ]) IS present with probability

Pij = e w; = c(ip + ) 71
1] 2221 wka 1

where
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degrees. The edge between the pair of vertices (z', ]) IS present with probability

Pij = e w; = c(ip + ) 71
1] 2221 wka 1

where

— 2 1 , d(v—2) 71

c= 7 dn~-1, zo:n( 4 ))
v -1 m(y —1)

By Chung, Lu and Vu 2004, under mild conditions the spectral radius of the graph is

y

(14 o(1))y/m, v > 2.5,

)\1(A) = <
(1+0(1)Cm3™7, 2<y<2.5.
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Power-laws (F. Chung model)

Let G(w) be a graph and w = (wq, w1, .. ., W,_1) the sequence of its average

degrees. The edge between the pair of vertices (i, ]) IS present with probability

Pij = e w; = c(ip + ) 71
1] 2221 wka 1

where

— 2 1 , d(v—2) 71

c=1 dn~-1, zo:n( gl ))
v -1 m(y —1)

By Chung, Lu and Vu 2004, under mild conditions the spectral radius of the graph is

y

(14 o(1))y/m, v > 2.5,

A(A) =
1(4) =< (1+0(1)Cm3™7, 2<y<2.5.

\

By Theorem, if GA1(A) < 1, then the size of the epidemic is bounded by /7 times the

size of the initial infective population
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L arge outbreak

Theorem (Chung, Lu 2002) For a random graph G(w) with expected degree sequence

having average expected degree d > 1, there is a unique giant component C' such that

D iccWi > (1 —cs) Doy wi, where ¢5 € (0, 1) is a constant that depends only on 6.
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having average expected degree d > 1, there is a unique giant component C' such that

D iccWi > (1 —cs) Doy wi, where ¢5 € (0, 1) is a constant that depends only on 6.

In words, the giant component contains a non-zero fraction of the total weight of all nodes.

Alternatively, this implies that it contains a non-zero fraction of the nodes.

Fix k (as a function of n) and consider the subgraph induced by the £ nodes with the largest
weight in the random graph G(ﬁw). The average expected degree of this subgraph is

easily seen to be

dy. ~ Bdn 1 k1.
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Theorem (Chung, Lu 2002) For a random graph GG (w) with expected degree sequence
having average expected degree d > 1, there is a unique giant component C' such that

D iccWi > (1 —cs) Doy wi, where ¢5 € (0, 1) is a constant that depends only on 6.

In words, the giant component contains a non-zero fraction of the total weight of all nodes.

Alternatively, this implies that it contains a non-zero fraction of the nodes.

Fix k (as a function of n) and consider the subgraph induced by the £ nodes with the largest
weight in the random graph G(ﬁw). The average expected degree of this subgraph is

easily seen to be

dy. ~ Bdn 1 k1.

Suppose first that v > 3. Then dj, is a non-decreasing function of k£, and its maximum
value, attained at £ = n, is (3d. This only yields the weak result that there is a large
epidemic if 3d > 1.
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Large outbreak (2 < v < 3)

d}. is a decreasing function of k. Fix 0 > 0. Defining /N to be the largest value of k for
which di, > 1 + 0, we see that

—1

N; — {(%)%J i,
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d}. is a decreasing function of k. Fix 0 > 0. Defining /N to be the largest value of k for
which di, > 1 + 0, we see that

~v—1

Ns = Klﬁ—jé)gnJ + 1,

Lemma Fix 8 > 0 be arbitrarily small. Then the expected size of the epidemic, starting
from an arbitrary initial infective, is bounded below by a constant multiple of n, where the

constant may be depend on 3.
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Large outbreak (2 < v < 3)

d}. is a decreasing function of k. Fix 0 > 0. Defining /N to be the largest value of k for
which di, > 1 + 0, we see that

~v—1

Ns = Klﬁ—jé)gnJ + 1,

Lemma Fix 8 > 0 be arbitrarily small. Then the expected size of the epidemic, starting
from an arbitrary initial infective, is bounded below by a constant multiple of n, where the

constant may be depend on 3.

O ~ > 3, 3d > 1 yields a large outbreak (weak result). However, between \1 and d the

initial condition seems to play a crucial role as in the star network case.

D2 v < 3, studying the epidemic on the subgraph of high degree nodes (close to an
Erdds-Rényi graph) and using above result one can show that there is a large epidemic

with high probability.
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® The results analyse the expected value of | Y (00)|: finer results (concentration around
the mean). Indeed, the cases of SIR with exponential and deterministic infectious

period [ can be treated using branching processes
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® Conjecture: the right threshold appears to be d = %" Z? .
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Conclusion

P The same threshold (\1 (A)) appears in the SIS (Susceptible-Infected-Susceptible)

model for the duration of the epidemic (Ganesh, Massoulie, Towsley, 2005)

P The results for the scale-free graph are unsatisfactory: using an alternative model
(Inhomogeneous graphs, Bollobas, Riordon, RSA, 2007) we may be able to retrieve

sharper results

® The results analyse the expected value of | Y (00)|: finer results (concentration around
the mean). Indeed, the cases of SIR with exponential and deterministic infectious

period [ can be treated using branching processes

~ 2
® Conjecture: the right threshold appears to be d = %

O Duration of such the epidemic (in the supercritical case) until it reaches an absorbing

state (diameter is a trivial lower bound)
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