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Computer viruses and worms

Cascading failures

Epidemic algorithms

What are the features of the topology that determine how virulent the epidemic is?
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Talk outline

Model description

General topologies: Small outbreak

Application to specific network topologies

Star network

Regular graphs

Complete graph

Erdös-Rényi graph

Power-law random graphs

Large outbreak and existence of the giant component
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SIR model in epidemiology

Kermack and McKendrick (1927) approximation of a stochastic model by a deterministic

one in a homogeneous large population: basic reproductive number

Utev et al. (1995, 2004) Poisson or normal limiting distributions for the number of

survivors

Ball et al. (1997) Structured networks with two levels of mixing: local (within a

household) and global (between households)
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Assume first that I = 1. The evolution of the epidemic is described by the following
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Each node that is infected at the beginning of a time slot attempts to infect each of

its neighbours with probability β independent of other infection attempts

Each infected node is removed at the end of the time slot

Xv(t) = 1 if node v is infected at slot t

Yv(t) = 1 if node v is removed at t

Eventually there are no more infectives in the population: How many nodes are removed?
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Theorem Suppose βλ1(A) < 1. Then

E[|Y (∞)|] ≤ 1

1 − βλ1(A)

√

n|X(0)|

where |X(0)| is the number of initial infectives.

Moreover, if the graph G is regular (i.e., each node has the same number of neighbours),

then E[|Y (∞)|] ≤ 1
1−βλ1(A) |X(0)|
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P(Xv(t) = 1) ≤
∑

u0,...,ut−1

βtXu0
(0),

Consequently, for βλ1(A) < 1,

E[|Y (∞)|] =
∑

v∈V

P(Yv(∞) = 1) ≤
∑

v∈V

∞
∑

t=0

∑

u∈V

(βA)t
uvXu(0)

=
∞

∑

t=0

1
T (βA)tX(0)

= 1
T (I − βA)−1X(0)

≤ ‖1‖ ‖(I − βA)−1‖ ‖X(0)‖
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Using the same ideas, one can prove that E[|Y (∞)|] ≤ 1
1−βλ1(A)

x1
max

x1

min

|X(0)| , for

general graphs.

Bounded degree graphs: Let ∆ be the maximum degree. Using coupling arguments, one

can show that if β∆ < 1 , E[|Y (∞)|] ≤ 1
1−β∆ |X(0)|.

General infectious periods: If
(

1 − E[e−λI ]
)

λ1(A) < 1 then the Theorem holds.
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E[|Y (∞)|] = 1 + β(n − 1) = 1 + c
√

n − 1

Assume the hub is initially uninfected but k leaves are infected

The hub becomes infected in the next time step with probability 1 − (1 − β)k

Then it infects a number of leaves which is Binom(β, n − 1 − k) and the

epidemic dies out at t = 3

E[|Y (∞)|] = k + [1 − (1 − β)k][1 + β(n − 1 − k)] ≤ |X(0)|(1 + 2c)

Thus the upper bound of the theorem is close to the best possible. Moreover this

illustrates the effect of initial conditions
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Let G be a regular graph with degree d then λ1(A) = d

If β < 1/d and there is a finite number of infected nodes initially, then the final size of

the epidemic is bounded by a constant

Hypercube The hypercube is used in distributed hash tables and applications, such as file

sharing

A hypercube is a graph G with vertex set {0, 1}l, and where the edge (v, w) is present if

and only if the Hamming distance dH(v, w) equals 1

Its spectral radius is λ1(A) = log2 n = l

if β < 1/ log2 n, then the final size of the epidemic is bounded by a constant multiple

of the number of initial infectives.
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epidemic is bounded by 1/(1 − β(n − 1)) times the initial number of infectives

Suppose β(n − 1) = c > 1 and |X(0)| = 1 and let u be the initial infected node.

Let Cu denote the component containing u in the random subgraph of the complete

graph obtained by retaining each edge with probability β: Cu is the set of infected

nodes in the epidemic (F. Ball 1983, A. Barbour & D. Mollison 1990)

By classical result on Bernoulli random graphs, the final size of the epidemic satisfies

P
(

|Y (∞)| > (1 + o(1))γn
)

= γ, P
(

|Y (∞)| = O(log(n)
)

= 1 − γ

for any |X(0)| ≥ 1, where γ > 0 solves γ + e−γc = 1. Hence

E[|Y (∞)|] ≥ (1 + o(1))γ2n.

– p. 11/17



Complete graph
Early classical result on SIR epidemics based on mean field models has a threshold at

R0 = 1, where the basic reproduction number R0 = β(n − 1)

Spectral radius λ1(A) = n − 1, by Theorem, if β(n − 1) < 1, then the final size of the

epidemic is bounded by 1/(1 − β(n − 1)) times the initial number of infectives

Suppose β(n − 1) = c > 1 and |X(0)| = 1 and let u be the initial infected node.

Let Cu denote the component containing u in the random subgraph of the complete

graph obtained by retaining each edge with probability β: Cu is the set of infected

nodes in the epidemic (F. Ball 1983, A. Barbour & D. Mollison 1990)

By classical result on Bernoulli random graphs, the final size of the epidemic satisfies

P
(

|Y (∞)| > (1 + o(1))γn
)

= γ, P
(

|Y (∞)| = O(log(n)
)

= 1 − γ

for any |X(0)| ≥ 1, where γ > 0 solves γ + e−γc = 1. Hence

E[|Y (∞)|] ≥ (1 + o(1))γ2n.

Threshold c = 1 for the final size of the epidemic starting with a constant number of initial

infectives, the final size is a constant independent of n if c < 1, and a fraction of n if c > 1
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Consider the graph G(n, pn) where npn >> log(n), which leads to a connected graph

with high probability
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Bernoulli random graph

Consider the graph G(n, pn) where npn >> log(n), which leads to a connected graph

with high probability

Since the node degrees are Binom(n − 1, pn), Perron-Frobenius and the Chernoff

bound yield λ1(A) = (1 + o(1))npn w.h.p.

Applying Theorem, there is u such that if β < (1 − u)/npn there is a small outbreak

Define cn = (n − 1)βpn. Consider an SIR epidemic on such a graph starting with one

node initially infected

The size of the epidemic is stochastically dominated by a (subcritical) branching process

with offspring distribution Binom(n − 1, βpn)

Lemma If lim supn→∞ cn = c < 1, then for all n sufficiently large, E[|Y (∞)|] is

bounded by a constant that does not depend on n.

On the other hand, if lim infn→∞ cn = c > 1, then E[|Y (∞)|] ≥ (1 + o(1))γ2n

where γ > 0 solves γ + e−γc = 1 (Giant component).
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Power law graph with exponent γ: Number of vertices with degree k is proportional to

k−γ
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Power-law graphs (Scale-free networks)

Power law graph with exponent γ: Number of vertices with degree k is proportional to

k−γ

Unlike classical random graphs, the number of vertices with degree k decays

exponentially in k

Power laws appear to be pervasive in nature and engineering networks (controversial!):

Internet AS graph: γ = 2.1 (Faloutsos,Faloutsos,Faloutsos 1999) (biased by

traceroute?)

Distribution of hyperlinks on webpages (Barabasi et al.)
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Power-law graphs (Scale-free networks)

Power law graph with exponent γ: Number of vertices with degree k is proportional to

k−γ

Unlike classical random graphs, the number of vertices with degree k decays

exponentially in k

Power laws appear to be pervasive in nature and engineering networks (controversial!):

Internet AS graph: γ = 2.1 (Faloutsos,Faloutsos,Faloutsos 1999) (biased by

traceroute?)

Distribution of hyperlinks on webpages (Barabasi et al.)

Models for power law graphs: preferential attachment, Yule branching processes
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Power-laws (F. Chung model)

Let G(w) be a graph and w = (w0, w1, . . . , wn−1) the sequence of its average

degrees. The edge between the pair of vertices (i, j) is present with probability

pij =
wiwj

∑n
k=1 wk

, wi = c(i0 + i)
− 1

γ−1

where

c =
γ − 2

γ − 1
dn

1

γ−1 , i0 = n
( d(γ − 2)

m(γ − 1)

)γ−1
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Let G(w) be a graph and w = (w0, w1, . . . , wn−1) the sequence of its average

degrees. The edge between the pair of vertices (i, j) is present with probability

pij =
wiwj

∑n
k=1 wk

, wi = c(i0 + i)
− 1

γ−1

where

c =
γ − 2

γ − 1
dn

1

γ−1 , i0 = n
( d(γ − 2)

m(γ − 1)

)γ−1

By Chung, Lu and Vu 2004, under mild conditions the spectral radius of the graph is

λ1(A) =







(1 + o(1))
√

m , γ > 2.5,

(1 + o(1))Cm3−γ , 2 < γ < 2.5 .
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Let G(w) be a graph and w = (w0, w1, . . . , wn−1) the sequence of its average

degrees. The edge between the pair of vertices (i, j) is present with probability

pij =
wiwj

∑n
k=1 wk

, wi = c(i0 + i)
− 1

γ−1

where

c =
γ − 2

γ − 1
dn

1

γ−1 , i0 = n
( d(γ − 2)

m(γ − 1)

)γ−1

By Chung, Lu and Vu 2004, under mild conditions the spectral radius of the graph is

λ1(A) =







(1 + o(1))
√

m , γ > 2.5,

(1 + o(1))Cm3−γ , 2 < γ < 2.5 .

By Theorem, if βλ1(A) < 1, then the size of the epidemic is bounded by
√

n times the

size of the initial infective population
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Large outbreak

Theorem (Chung, Lu 2002) For a random graph G(w) with expected degree sequence

having average expected degree d > 1, there is a unique giant component C such that
∑

i∈C wi ≥ (1− cδ)
∑

i∈V wi, where cδ ∈ (0, 1) is a constant that depends only on δ.
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∑
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In words, the giant component contains a non-zero fraction of the total weight of all nodes.

Alternatively, this implies that it contains a non-zero fraction of the nodes.
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Theorem (Chung, Lu 2002) For a random graph G(w) with expected degree sequence

having average expected degree d > 1, there is a unique giant component C such that
∑

i∈C wi ≥ (1− cδ)
∑

i∈V wi, where cδ ∈ (0, 1) is a constant that depends only on δ.

In words, the giant component contains a non-zero fraction of the total weight of all nodes.

Alternatively, this implies that it contains a non-zero fraction of the nodes.

Fix k (as a function of n) and consider the subgraph induced by the k nodes with the largest

weight in the random graph G(βw). The average expected degree of this subgraph is

easily seen to be

dk ≃ βdn
3−γ

γ−1 k
γ−3

γ−1 .
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Large outbreak

Theorem (Chung, Lu 2002) For a random graph G(w) with expected degree sequence

having average expected degree d > 1, there is a unique giant component C such that
∑

i∈C wi ≥ (1− cδ)
∑

i∈V wi, where cδ ∈ (0, 1) is a constant that depends only on δ.

In words, the giant component contains a non-zero fraction of the total weight of all nodes.

Alternatively, this implies that it contains a non-zero fraction of the nodes.

Fix k (as a function of n) and consider the subgraph induced by the k nodes with the largest

weight in the random graph G(βw). The average expected degree of this subgraph is

easily seen to be

dk ≃ βdn
3−γ

γ−1 k
γ−3

γ−1 .

Suppose first that γ > 3. Then dk is a non-decreasing function of k, and its maximum

value, attained at k = n, is βd. This only yields the weak result that there is a large

epidemic if βd > 1.
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Large outbreak (2 < γ < 3)
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Large outbreak (2 < γ < 3)

dk is a decreasing function of k. Fix δ > 0. Defining Nδ to be the largest value of k for

which dk > 1 + δ, we see that

Nδ =
⌊( βd

1 + δ

)
γ−1

3−γ
n
⌋

+ 1,
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dk is a decreasing function of k. Fix δ > 0. Defining Nδ to be the largest value of k for

which dk > 1 + δ, we see that

Nδ =
⌊( βd

1 + δ

)
γ−1

3−γ
n
⌋

+ 1,

Lemma Fix β > 0 be arbitrarily small. Then the expected size of the epidemic, starting

from an arbitrary initial infective, is bounded below by a constant multiple of n, where the

constant may be depend on β.
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γ > 3, βd > 1 yields a large outbreak (weak result). However, between λ1 and d the

initial condition seems to play a crucial role as in the star network case.
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Large outbreak (2 < γ < 3)

dk is a decreasing function of k. Fix δ > 0. Defining Nδ to be the largest value of k for

which dk > 1 + δ, we see that

Nδ =
⌊( βd

1 + δ

)
γ−1

3−γ
n
⌋

+ 1,

Lemma Fix β > 0 be arbitrarily small. Then the expected size of the epidemic, starting

from an arbitrary initial infective, is bounded below by a constant multiple of n, where the

constant may be depend on β.

γ > 3, βd > 1 yields a large outbreak (weak result). However, between λ1 and d the

initial condition seems to play a crucial role as in the star network case.

2 < γ < 3, studying the epidemic on the subgraph of high degree nodes (close to an

Erdös-Rényi graph) and using above result one can show that there is a large epidemic

with high probability.
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the mean). Indeed, the cases of SIR with exponential and deterministic infectious

period I can be treated using branching processes

Conjecture: the right threshold appears to be d̃ =

P
i w2

iP
i wi

.
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Conclusion

The same threshold (λ1(A)) appears in the SIS (Susceptible-Infected-Susceptible)

model for the duration of the epidemic (Ganesh, Massoulie, Towsley, 2005)

The results for the scale-free graph are unsatisfactory: using an alternative model

(Inhomogeneous graphs, Bollobás, Riordon, RSA, 2007) we may be able to retrieve

sharper results

The results analyse the expected value of |Y (∞)|: finer results (concentration around

the mean). Indeed, the cases of SIR with exponential and deterministic infectious

period I can be treated using branching processes

Conjecture: the right threshold appears to be d̃ =

P
i w2

iP
i wi

.

Duration of such the epidemic (in the supercritical case) until it reaches an absorbing

state (diameter is a trivial lower bound)
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