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Real-life Networks

Application domains
@ Computer Science
@ Biology
@ Sociology
° ...

Models

@ Needed to simulate
real-life networks

@ Simple classes of random Web site
graphs not a good model
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Application domains
@ Computer Science
@ Biology
@ Sociology
° ...

Models

@ Needed to simulate
real-life networks

@ Simple classes of random
graphs not a good model

Food Web of Smallmouth Bass
Leech Little Rock Lake (Cannibal)
¥

1st Tropic Level ——V.
Mostly Phytoplankton 2nd Trophic Level
Many Zooplankton

Food web
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Application domains
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Real-life Networks

Application domains
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@ Needed to simulate
real-life networks

@ Simple classes of random
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Distinctive properties of real-life graphs

@ Number of edges
e Of the same order as the number of vertices
@ Connectivity
e Strong (Giant component)
@ Degree distribution
e Heavy tailed (Power law, Scale-free)
@ Mean distance
e Small
@ Clustering
e Strong



Existing models

Scale-free networks

@ Mean distance
[3 A.-L.Barabasi & R. Albert
Emergence of scaling in random
networks
Science 286, 509 (1999)

@ Clustering



Existing models

“Small world” networks

@ Degree distribution
o

@ Watts D. J. & Strogatz S. H.
Collective dynamics of “small-world”
networks
Nature 393, 440 (1998)



Apollonian networks

@ All properties satisfied
@ Inspired from the apollonian packings
@ Model is deterministic

[§ J.S.Andrade, Jr., H. J. Herrmann,
R. F. S. Andrade & L. R. da Silva
Apollonian Networks : Simultaneously Scale-Free, Small
World, Euclidean, Space Filling, and with Matching Graphs
Phys. Rev. Lett. 94, 018702 (2005)






A randomized variation

random Apollonian networks

[§ Tao Zhou, Gang Yan & Bing-Hong Wang
Maximal planar networks with large clustering coefficient
and power-law degree distribution
Physical Review E 71, 046141 (2005)

Algorithm
@ Initial state : a triangle

@ lterative state : Choose
atriangle and add to it a
point and link it to the
three vertices of the
triangle




A bijection with ternary increasing trees

RAN =

ArbreT = Q ou




The bijection
Random Apollonian Networks < Ternary Inc. Trees
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The bijection
Random Apollonian Networks < Ternary Inc. Trees




Random Apollonian network structures

Replace Ternary Increasing Trees with Ternary Trees

Properties
@ Same bijection
@ Same class of graphs
@ Different probability distribution
@ Similar properties
@ Simple combinatorial description of the model

What for ?
@ General methods for sampling
@ Efficient generation (Boltzmann)
@ Greater flexibility




Ternary tree generation
using the Boltzmann model




The Boltzmann model

Specifiable combinatorial classes

@ Basic operations :
Union, Product, Sequence, Cycle, Set

@ Recursive definitions

Properties
@ Uniform generation
@ Approximate size
@ Efficiency

[§ P Duchon, P. Flajolet, G. Louchard, G. Schaeffer
Boltzmann samplers for the random generation of
combinatorial structures



Algorithm for the generation of a ternary tree

T(2)=z+2T(2)3

Algorithm : TernaryTree(p)
if rand(0..1) < p then

Leaf
else
Node(TernaryTree(p), TernaryTree(p), TernaryTree(p))
end if
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Bivariate generating functions

u)y=>Y Coxulz" C(2) =) Cp2"
n,k n
Distribution of a parameter, fixed n

Cok _ [2"09]C(2.1)

Pr(Qn = k) =Pr(@=k/N=n) = 2 ° = =557

Distribution of a parameter under Boltzmann sampling

Pr(Q = k) = ZPr(Q = k/N = n) x Pr(N = n)

C,,k Cnx _ 2nCnix" _ [uK]C(x, u)
Z C(x)  C(x,1)

subcritical Pr(Q, = k) — CkPr(Q = k) when n —



Back to the network properties




Properties of the generated networks

By construction :
@ Number of edges
Equal to 3v — 6, where v the number of vertices
@ Connectivity
A single component

@ Mean degree
~6

Needing further investigation :
@ Degree distribution
@ Clustering
@ Mean distance




Degree

u marks the neighbors

@ of the center (root) : RD(z, u) = zu®T3(z, u)
@ of an external node : T(z,u) = 1+ zuT?(z,u) T(2)




Degree distribution

u marks the neighbors

@ of the center (root) : RD(z, u) = zu®T3(z, u)
@ of an external node : T(z,u) = 1 4 zuT?(z,u) T(2)

Proposition : Statistical properties
Same for :

@ the set of all subtrees of a
random tree

@ a set of random trees
independently generated with
a Boltzmann sampler
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Degree distribution

Mean value 6 and a Catalan form for the pgf :
Pr(D=3+k) = 8 215 (3?) ~ C (8)" (k +3)%?
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Sketch of proof

@ Ternary trees marked for degree :
T(z,u) =1+ zuT?(z,u)T(2)
@ Simulated by binary trees :
T(z,u) = B(zuT(z)), where B(t) = >_ Byt"
@ Schema is subcritical : pr < 1/4
o [UMB(2uT(2)) = prr* i ()




Conclusion

More flexibility :

Variants

A A




Higher dimension RANS

_3
Pr(Dg = d + k) ~ Ca (k+4%5) *
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Clustering

Definition : Clustering coefficient of a vertex of degree k

__ number of links between neighbors
C(k) - k(k—1)

o C(k) = 3575
@ Mean value over all vertices independent of size
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Mean distance

Simulation confirms a small mean distance (order v/N)
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