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1 The Cramer-Lundberg, renewal and per-

turbed reserves models:

Xt = x + p t− S(t) + Y (t) (1)

S(t) =

N(t)∑

i=1

Zi

where x denotes the initial reserve of an insurance com-

pany, p is the premium rate per unit of time, the i.i.d.

random variables Zi with distribution function B(x) are

the ”claims”, and Nt is a counting process 1). Alterna-

tively, we have a SDE with constant coefficients

dXt = pdt− dS(t) + dY (t) .

A more realistic model, including an interest rate r, is

the GOU

dXt = (p + rXt)dt− dS(t) + dY (t)

1Quite similar to the classical risk model is the M/G/1 workload model used in queueing
theory, where only upward jumps are allowed ( the stationary distribution of the M/G/1
workload coincides with that of the ruin problem).



2 The ruin problem

Let τ+
y , τy denote the times of first pas-

sage:

τ+
y := inf{t ≥ 0 : Xt ≥ y}

and

τy := inf{t ≥ 0 : Xt < y}
When y = 0, τ := τ0 = inf{t ≥ 0 :
Xt < 0} is also called ruin time.

Classical risk theory is concerned with
the harder downwards first-passage in
the ”non-smooth exit” direction, espe-
cially with the finite-time ruin or sur-
vival probabilities

ψ(t, x) = Px[τ ≤ t]

ψ(t, x) = Px[τ > t] = 1 − ψ(t, x).

Analytical results are sometimes avail-
able for the ”ultimate/perpetual” ruin
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probability

ψ(x) = Px[τ <∞]

and for the ”killed” probabilities of pas-
sage before an independent exponential
horizon E(q) of rate q:

ψq(x) = Px[τ ≤ E(q)] (2)

=

∫ ∞

0

qe−qtPx[τ ≤ t]dt =

∫ ∞

0

e−qtψ(dt, x) = Exe
−qτ

Since killed ruin probabilities are the Laplace-Carson transform in time of ψ(t, x), their knowledge

allows recovering the finite time ruin probabilities by inversion of the Laplace transform numerically/by

Erlangization/by Laguerre transforms.

Example 1 With exponential claim sizes
of intensity µ, the ultimate ruin proba-
bility is:

ψ(x) = Ce−γx where γ = µ− λ/p > 0, C =
λ

µp
< 1.

Formulas involving matrix exponentials
are available more generally when the
claims are phase-type (with rational Laplace
transform).
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The distinction between crossings up
and down appears already in one-dimensional
diffusion/BD theory, where the space
of ”q− harmonic functions, i.e. so-
lutions of the ”Sturm-Liouville equation”
with given boundary values

Γf (x) − qf (x) = 0, q > 0 (3)

is two-dimensional, and may be gen-
erated by an increasing and a de-
creasing positive solutions (unique
up to a constant) ϕ±q (x), which will be
called monotone solutions.

In diffusion theory, these monotone
solutions intervene for example in the
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Laplace transform of the hitting time:

ψq(y|x) =





Exe
−qτ+

y =
ϕ+
q (x)

ϕ+
q (y)

, x ≤ y

Exe
−qτy =

ϕ−q (x)

ϕ−q (y)
, x ≥ y

(these may be derived either from (3)
+ boundary conditions, or by optional
stopping of the martingales e−qtϕ±q (Xt)).

”Spectrally-negative” processes like (1) continue to have a special increasing q− harmonic function
(which in the Levy case is simply exponential), and a multiplicative structure for first-passage upwards,
in the direction of the ”smooth exit”.

Below, we will study more stringent survival requirements, like the ”regulated survival probability”

ψ(d)(x) that the risk process X(t) never crosses under the piecewise-linear barrier b(t) = (x− dt)+.

t

x

x− dt

X(t)

Figure 1: Regulated survival
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3 Levy processes, Levy-Khyncin, Wiener-Hopf.

When Nt is Poisson, the reserves process (1) is an exam-

ple of Levy process without upward jumps/spectrally

negative. Typically, results about Levy process maybe

expressed in terms of the cumulant generating func-

tion/symbol/kernel κ(θ):

κ(θ) := t−1 log
(
E

[
eθX(t)

])

A related important function is the inverse q+ = Φ(q) of κ(θ), i.e. the largest nonnegative solution
θ = Φ(q) of ”Lundberg’s equation”

κ(θ) − q = 0, ∀q ≥ 0, (4)

included the analyticity domain Θ = {θ ∈ R : κ(θ) <∞}.

Example 2 The cumulant exponent of the Cramer-Lundberg model X(t) = X(0)+µ t+σWt −
P

Nt

i=1 Zi

”perturbed” by an independent standard Brownian motion W is:

κ(θ) =
σ2θ2

2
+ µθ + λ(b̂[θ] − 1)

The absence of jumps or the presence of only phase-type jumps in one direction simplifies considerably
the analysis of Levy models 2.

4 Asymptotic one dimensional results

The cgf κ(θ) of a spectrally negative Levy process Xt is well defined on some maximal open domain (l,∞)

including the positive half axis. The cases l < 0, κ(l) ≥ 0, l < 0, κ(l) < 0, and l = 0, known respectively

as Cramer’s type, ”almost exponential” and subexponential, give rise to different asymptotic behavior.

2While general Levy processes require a ”Wiener-Hopf factorization” of (??), in the
”spectrally one-sided/phase-type cases this reduces to finding a finite number of nonneg-
ative/nonposative roots; furthermore, this may be achieved via matrix computations, by
representing the symbol in matrix-exponential form. The generator of a Levy process,
which is an integro-differential operator maybe also be viewed as G = κ(D), where D is
the first derivative, and where this expression is to be interpreted in the sense of pseudo-
differential operators (in the case of Feller processes, this becomes G = κ(x, D)).
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Under the Cramer assumption ∃γ > 0, κ(−γ) =

0, κ′(−γ) > −∞ the asymptotic behavior is exponential

lim
x→∞

ψ(x)

e−γx
= C, C = −κ′(0)/κ′(−γ) (5)

$\kappa(\th)$

$−\gamma$
θ

Figure 2: spectrally negative cgf/symbol/kernel

Assume that κ(θ) is steep, let v > 0, and let θv, θ
′
v ∈

Θo be defined by θv < θ′v, κ
′(θv) = −v and κ(θv) =

κ(θ′v). θv is known as Cramer shift, and θ′v as its conjugate

The asymptotic behavior of the finite-time ruin probabilities

ψ(t, x) = Px(τ < t) has first been obtained by Arfwedson (1955) via the

saddle-point method. Later, Hoglund (1990) noted similar results for the

“late ruin probabilities”

w(t, x) = P (t ≤ τ (x) <∞) = ψ(x) − ψ(t, x)

The modern proof uses the exponential family of

measures {P (c)} defined by shifting the cgf

κ(c)(θ) := κ(θ + c) − κ(c)
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or by the Radon-Nikodym derivative Λ(c):

dP (c)

dP

∣∣∣∣
Ft

= Λ(c)(t) := exp (c(X(t) −X(0)) − κ(c)t)

(6)

for θ ∈ Θ := {θ : κ(θ) < ∞}. The basic idea is that

asymptotic conditioning on rare events may often be ex-

pressed in terms of the exponential family.

4.1 Approximations for finite-time ruin probabilities
and the limit laws for the process before/after ruin

We show now that the limit laws of X(t) condi-

tioned on t < τ and on t > τ , respectively, as x and

t tend to infinity such that x/t = v, are given by

Ψv(dx) = c(v)−1[eθ
′
vx − eθvx]1(0,∞)(x)dx, (7)

Ψv(dx) = |c(v)|−1[eθvx1(0,∞)(x) + eθ
′
vx1(−∞,0)(x)]dx,

where 0 < v < −κ′(−γ), θv < θ′v < 0 for Ψv and v >

−κ′(γ), θv < 0 < θ′v, for Ψv, respectively, and where c(v)

is the function appearing in Arfwedson’s correction term

(53).

Theorem 1 Suppose that there exists a γ > 0 such

that κ(−γ) = 0, κ′(−γ) < 0, and that κ(θ) is steep.
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Then the following hold true:

Ψv = d− lim
t→∞

Pvt(X(t) ∈ · |τ > t), (8)

Ψv = d− lim
t→∞

Pvt(X(t) ∈ · |τ < t), (9)

where d− lim denotes convergence in distribution.

Proof of Theorem 1: We show that the mgfs of the

probability measures on the right-hand side of (8) con-

verge to that of Ψv, by using the mgf of Ψv: fv(c) :=
θv
θv+c

· θ′v
θ′v+c

, c < −θv, and

P (c)
x (t < τ <∞) = P (c)

x (t < τ )

κ∗,(c)(v) = κ∗(v) + κ(c) + cv

Ex[e
cX(t)1{t<τ}] = ecx+κ(c)tP (c)

x (t < τ <∞).

Using now θ
(c)
v = θv − c and θ

(c)′
v = θ′v − c, we find

from Theorem 5 that for c < −θv:

lim
t→∞

Evt(e
cX(t)|t < τ ) = D(c)(v)/D(v) =

θ
(c)′
v − θ

(c)
v

|θ(c)
v θ

(c)′
v |

|θ′vθv|
θ′v − θv

= fv(c),

�
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5 The ” degenerate” proportional reinsurance

model

Our motivation is a particular two-dimensional risk model

in which two companies split the cumulative claim pro-

cess S(t) in proportions δ1 and δ2, and receive premi-

ums at rates p1 and p2, respectively. Assuming w.l.o.g.

δ1 = δ2 = 1, we arrive by scaling at the two-dimensional

”degenerate” risk process X = (X1, X2) where Xi, the

risk processes of the i’th company, are:

X1(t) = x1 + p1t− S(t), X2(t) = x2 + p2t− S(t)

where S(t) is a spectrally negative Levy process.

We let ρ := ES(1) (which in the classical case com-

pound Poisson case is given by λEσ1). As usual in perpet-

ual ruin problems, we assume that pi > ρ, which implies

that Xi(t) → ∞ a.s. as t→ ∞ (i = 1, 2).

To avoid trivialities, we assume that p1 6= p2; if, say

the first company receives larger premiums per claimed

amount, i.e.:

p1 > p2

the second company (to be called reinsurer) will be more

prone to ruin. We show however that this may be coun-

terbalanced by larger initial reserves x2 > x1.
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Figure 3: Geometrical considerations

6 Multidimensional ruin problems in the quad-

rant

Several ruin times may be of interest, like the first time τor

when (at least) one insurance company is ruined, or the

first time τsim when the insurance companies experience

simultaneous ruin:

τor(x1, x2) := inf{t ≥ 0 : X1(t) < 0 or X2(t) < 0}
τsim(x1, x2) := inf{t ≥ 0 : X1(t) < 0 and X2(t) < 0}.

We study the ultimate/killed ruin probabilities:

ψor(x1, x2) = P [τor(x1, x2) < E(q)] (10)

ψsim(x1, x2) = P [τsim(x1, x2) < E(q)] (11)

ψand(x1, x2) = P(x1,x2) [(τ1(x1) < E(q)) ∩ (τ2(x2) < E(q))]

= ψ1(x1) + ψ2(x2) − ψor(x1, x2) ≥ ψsim(x1, x2).(12)
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7 Exact ultimate/killed ruin probabilities

A key observation is that the ”or” and ”sim” ruin times

τ are also equal to

τ (x1, x2) = inf{t ≥ 0 : S(t) > b(t)}

t

x1

R
2
−− R

2
+−

x1 + tp1

x2 + tp2

S(t) ≈ tρ

x2

Figure 4: The piecewise-linear barrier corresponding to the degenerate two-
dimensional first passage problem: bmin(t) = mini=1,2{xi + pit}, bmax(t) =
maxi=1,2{xi + pit}.

If x2 ≤ x1, the barriers are linear

bmin(t) = x2 + p2t, bmax(t) = x1 + p1t

ψor(x1, x2) = ψ2(x2), ψsim(x1, x2) = ψ1(x1)
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Solution in the upper cone Cc = {x : x2 > x1}.
Let

T = T (x1, x2) =
(x2 − x1)+
p1 − p2

(13)

denote the deterministic time of entering the lower

cone x2 ≤ x1. In the ”or” case, survival requires staying

below the barrier x1 + p1t between the times 0 and T

and subsequently staying below the barrier x2 +p2t after

time T . Therefore, we find by conditioning at time T :

ψor(x1, x2) =

∫ ∞

0

ψ1(dz, T |x1)ψ2(x2 + p2T − z)

where

ψi(dz, T |x) := P0(S(t) ≤ x+pit,∀t ∈ [0, T ], S(T ) ∈ dz)

is the density at time T of the paths S(T ) which ”survive”

the upper barrier x+ pit. It it convenient to reformulate

this in terms of the one dimensional survival characteris-

tics of the two coordinates of our reserves process Xi(t).

Theorem 2 Let X(t) = (xi+pit−S(t), i = 1, 2) be

a two-dimensional Lévy process with common cumu-

lative claims S(t) given by an arbitrary Lévy process,

let

Ii(t) = inf
0≤s≤t

Xi(s) ∧ 0
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denote the coordinates’ infima, and suppose that x2 >

x1, p2 < p1.

a) The two-dimensional ruin probabilities (10) are

given by:

ψsim(x1, x2) = P (τ2(x2) ≤ T ) + P (τ2(x2) > T, inf
s>T

X1(s) < 0)

= P (τ2(x2) ≤ T ) + E[1τ2(x2)>T ψ1(X2(T ))] (14)

ψor(x1, x2) = P (τ1(x1) ≤ T ) + P (τ1(x1) > T, inf
s>T

X2(s) < 0)

= P (τ1(x1) ≤ T ) + E[1τ1(x1)>T ψ2(X1(T ))] (15)

ψand(x1, x2) = P (T < τ1(x1) <∞) + P (τ1(x1) ≤ T, τ2(x2) <∞).(16)

b) The two-dimensional survival probabilities asso-

ciated to the or/sim ruin problems (10) are given by:

ψsim(x1, x2) =

∫ ∞

0

ψ2(dz, T |x2)ψ1(z),

ψor(x1, x2) =

∫ ∞

0

ψ1(dz, T |x1)ψ2(z)

where ψi(dz, T |xi) are the coordinate-wise densities

of the ”non-ruined” paths ψi(dz, T |xi) = Pxi
(Ii(T ) ≥

0, Xi(T ) ∈ dz).

Not surprisingly, we have explicit killed versionsψor,q(x1, x2), ...

as well. We are also able to compute their double Laplace

transform in space (and even invert it analytically by

complex integration in the case of exponential claims).
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8 Phase type and exponential claims

Corollary 1 Suppose S is a compound Poisson pro-

cess with phase-type jumps (β,B), i.e. P [σ > x] =

βeBx1. If x2 > x1, it holds that

ψor(x1, x2) = Px1(I1(T ) < 0) + η2

∫ ∞

0

eQ2zψ1(dz, T |x1)1,

ψsim(x1, x2) = Px2(I2(T ) < 0) + η1

∫ ∞

0

eQ1zψ2(dz, T |x2)1,

where Qi = B + bηi and ηi = λ
pi
β(−B)−1.

Notes: 1) In this particular case (with 0 being the

only nonnegative root of the symbol, the Wiener-Hopf

factorization requires only a matrix inversion.

2) The expression for the ”downwards phase-generator”

Q has an obvious probabilistic interpretation [5].

In the case of exponential ultimate ruin probabilities,

the previous result may be further simplified:

Corollary 2 Suppose S is a compound Poisson pro-

cess with exponential jumps, or spectrally positive.
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Then it holds that

ψsim(x1, x2) = ψ2(x2, T ) + ψ1(x1)ψ
(−γ1)

2 (x2, T )

ψor(x1, x2) = ψ1(x1, T ) + ψ2(x2)ψ
(−γ2)

1 (x1, T )

ψand(x1, x2) = w1(x1, T ) + ψ2(x2)ψ
(−γ2)
1 (x1, T )

Below, we will obtain a ”three terms asymptotic ex-

pansion theorem”, corresponding roughly to:

ψ(x1, x2) ≈ P [τ1 < τ2] + P [τ2 < τ1] + P [τ1 ≈ τ2],

which will follow from the fact that the exact results es-

tablished in the exponential case continue to be true for

the Cramer case, asymptotically!

Proposition 1 Fix v ∈ (0,∞), and let x1, x2 → ∞
such that x2/T (x1, x2) = v, v 6= −κ′2(−γi) i = 1, 2.

If there exist exist θv, θ
(1)
v , θ

(2)
v ∈ Θo such that θv <

θ
(1)
v < θ

(2)
v and κ′2(θv) = −v, κ2(θv) = κ2(θ

(2)
v ), κ1(θv) =

κ1(θ
(1)
v ), it holds that

ψor(x1, x2) ≈ ψ1(x1, T ) + C̃2(v)e
−γ2x2ψ

(−γ2)

1 (x1, T ),(17)

ψsim(x1, x2) ≈ ψ2(x2, T ) + C̃1(v)e
−γ1x1ψ

(−γ1)

2 (x2, T ),(18)

where, for i = 1, 2,

C̃i(v) =

{
Ci if −κ′2(−γi) < v

c3−i(v, γi)−1[ψ∗
i (θv) − ψ∗

i (θ
(3−i)
v )] if 0 < v < −κ′2(−γi),
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where

c1(v, c) =
θ

(1)
v − θv

(θ
(1)
v + c)(θv + c)

, c2(v, c) =
θ

(2)
v − θv

(θ
(2)
v + c)(θv + c)

and ψ∗
i is the Laplace transform of ψi(x).

9 General two dimensional Cramer type asymp-

totics.

We investigate the asymptotics in the case that the ini-

tial reserves tend to infinity along a ray x1/x2 = a with

a < 1. While this will be achieved here by classical one-

dimensional results (Arfwedson-Hoglund), our exam-

ple is also an interesting illustration of first-passage

two-dimensional large deviations theory.

We assume throughout that the Cramér assumption

hold true for X1 and X2, that is, there exist γ1, γ2 > 0

with (−γ1, 0) and (0,−γ2) ∈ ∂C i.e.

κ(−γ1, 0) = κ(0,−γ2) = 0 . (19)

In order to guarantee that the asymptotic constants are positive we require that
the following inequality is satisfied (coordinatewise)

∇κ(θ) > −∞ for θ = (−γ1, 0), (0,−γ2) (20)

where ∇κ = (∂1κ, ∂2κ) denotes the gradient of κ. In view of the strict convexity of
κ, it follows that the set C is strictly convex, which by the supporting hyperplane
theorem implies that, for fixed θ′ ∈ C, it holds that

[θ − θ′] · ∇κ(θ′) ≤ 0 for all θ ∈ C, (21)

where · denotes the inner-product.
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Example 3 If S(t) is a Lévy process and Xi(t) = pit − S(t) (with the cumulant
generating functions κi), then the joint cumulant generating function κ of (X1,X2)
is related to κ1 and κ2 by

κ(θ1, θ2) = κ1(θ1 + θ2) − θ2(p1 − p2) = κ2(θ1 + θ2) + θ1(p1 − p2).

The two-dimensional degenerate Lévy process X = (X1,X2) satisfies then the
Cramér-conditions if there exist constants γi > 0 (i = 1, 2) such that

κi(−γi) = 0. (22)

Proposition 2 Suppose that the Cramér assumptions

hold, that is, there exist γ1, γ2 > 0 such that

0 = κ(−γ1, 0) = κ(0,−γ2),
∂κ

∂u
(u, v)

∣∣∣∣
(u,v)=(−γ1,0)

+
∂κ

∂v
(u, v)

∣∣∣∣
(u,v)=(0,−γ2)

> −∞

and let a > 0. Then, as t→ ∞,

ψand(x1, x2) = o(C2e
−γ2x2 + C1e

−γ1x1) (23)

ψor(x1, x2) ∼ C2e
−γ2x2 + C1e

−γ1x1. (24)

9.1 Large deviations heuristic.

Heuristically, large deviations for a process X uses two

principles:

a) viewed from far away, the paths along which rare

events are realized concentrate typically along a finite

number of locally dominating paths, which are the

solutions of a deterministic variational problem.
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b) the velocities along the ”escape paths” may be viewed

as expected drifts of measures belonging to the exponen-

tial family of the process.

Informally, we say that rare events happen due to a

change of measure to one of the (most likely) measures

in the exponential family; these are computed using the

Cramer set, and may be useful also for deriving asymp-

totic correction terms: precise large deviations.

Set hit= negative quadrant

x 2 =0

x 1=0

C 1

C 2

Three possible types of hitting trajectories

Figure 5: Typical paths hitting the negative quadrant.

In the intersection cone C1∩C2, three types of ruin are

possible, suggesting maybe:

ψor(x1, x2) ≈ ψ1(x1) + ψ2(x2) + ψ0(x1, x2)

19



Definition 1 The Cramer set is defined as the set of all

θ satisfying

κ(θ) ≤ 0

m 2

m1

M 1

M 2

m

2)

(−γ1, 0)

(0,−g

1

2

D

D

Figure 6: The Cramer set, the direct twists and the dominant points for
hitting the negative quadrant

For the quadrant hitting problem, the most important

shifts are the intersections different from the origin of the

Cramer set with the axes, γ(2) = (0,−γ2) and γ(1) =

(−γ1, 0).

Definition 2 a) The ”boundary influence” cones for ”or”

ruin are the subsets Ci of the nonnegative quadrant gen-

erated by the axis xi = 0 and by the negatives of the

20



”dominating directions” κ′(γ(i)), providing these inter-

sect the quadrant. Thus,

C1 = {x : x1/x2 ≤ s1} C2 = {x : x1/x2 ≥ s2}

where

s1 :=
κ′1(−γ1)

κ′2(−γ1)
s2 :=

κ′1(−γ2)+
κ′2(−γ2)

(25)

b) The ”boundary influence” cones for ”sim” ruin are

the subsets

D1 = Cc1,D2 = Cc2.

10 Cramer type two terms large deviations

results.

One key point of the degenerate setup is an equivalent

description of the cones partition D1 ∪D0 ∪D2 in terms

of comparisons with the time T .

Lemma 1 The partition Cc = D1 ∩D0 ∩ D2 is equiv-

alent to the partition:

Cc =





{T1 < T2 < T} = {0 < a(x) < s2} = D2

{T1 < T < T2} = {s2 < a(x) < s1} = D0

{T < T2 < T1} = {s1 < a(x) < 1} = D1

21



Note: By this result precise asymptotics will be ob-

tained directly from Arfwedson’s one-dimensional result,

in the case of exponential ultimate ruin probabilities.

The leading term asymptotics of the two-dimensional

ruin probabilities will be expressed in terms of the usual

”one dimensional large deviations cast”: the adjustment

coefficients γi of Xi, and γ(a) given for 0 < a < 1 by

γ(a) = κ∗2(−va)/va where va := (p1 − p2)/(1 − a).

We write f ≈ g+h if limx→∞(f−g)/h(x) = limx→∞(f−
h)/g(x) = 1.

Theorem 3 Let S be a compound Poisson process.

Assume that (22) holds with κ′1(−γ1) > −∞ and that

there exist θv, θ
′
v ∈ Θo

2 with θv < θ′v, κ
′
2(θv) = −v =

−va and κ2(θv) = κ2(θ
′
v). Then it holds as K → ∞,

ψsim(aK,K) ∼





C1e
−γ1aK if (aK,K) ∈ D

(D#(va) +D′(va))K−1/2e−γ(a)K if (aK,K) ∈ D
C2e

−γ2K if (aK,K) ∈ D

where C1 and C2 are given the Cramer-Lundberg con-
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stants (5) and

D′(w) =
θ′w − θw
|θwθ′w|

√
w√

2πκ′′1(θw)
, (26)

D#(w) =

[
1

θw
− 1

θ′w
+

κ′1(0)

κ1(θ′w)
− κ′1(0)

κ1(θw)

] √
w√

2πκ′′1(θw)
.(27)

Next we turn to the ruin probability ψand. The asymp-

totics for ψand will be formulated in terms of the cone

D̂2 = {(x1, x2) ∈ R
2
+ : x1 < x2ŝ2} D̂0 = R

2
+\[D1∪D̂2],

where ŝ2 = κ′1(−γ̂2)/κ
′
2(−γ̂2) with γ̂2 the largest root

of κ1(−s) = κ1(−γ2). In view of the definition of ŝ2

it follows that if κ′1(−γ2) > 0 then D̂2 6= ∅ = D2 and

otherwise the cones D2 and D̂2 coincide. In the next

result it will be shown that if (aK,K) is contained in

either D1 or D2, ψsim(aK,K) and ψand(aK,K) are of

the same order.

Proposition 3 If x1, x2 → ∞ such that x2/T (x1, x2) =

v, v 6= −κ′2(−γ̂2), it holds that

ψand(x1, x2) ≈ ψ1(x1) − ψ1(x1, T ) + {C1(v)e
−γ2x2ψ

(−γ2)
2 (x2, T )

+C2(v)e
−γ2x2−γ̃x1ψ

(−γ̂2)
1 (x1, T )}, (28)
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where γ̃ = γ̂2 − γ2 and

C1(v) =

{
0 if 0 < v < −κ′2(−γ̂2)

|c1(v, γ2)|−1 · ψ∗
2(θ

′
v) if v > −κ′2(−γ̂2),

C2(v) =

{
C2

κ′1(−γ2)

κ′1(−γ̂2)
if 0 < v < −κ′2(−γ̂2)

|c2(v, γ̂2)|−1 · [ψ∗
2(θ

⋆
v) − θ−1

v ] if v > −κ′2(−γ̂2).

Theorem 4 Suppose that the assumptions of Theo-

rem 3 hold true and that there exists a θ⋆v > θv such

that κ1(θv) = κ1(θ
⋆
v). Then it holds that, as K → ∞,

ψand(aK,K) ∼





C1e
−γ1aK if (aK,K) ∈ D

(D⋆(va) −D†(va))K−1/2e−γ(a)K if (aK,K) ∈ D̂
Ĉ2e

−(aγ̂2+(1−a)γ2)K if (aK,K) ∈ D̂

where

Ĉ2 = C2κ
′
1(−γ2)/κ

′
1(−γ̂2),

and D⋆(w) and D†(w) are respectively given by (26)

and (27) with θ′w replaced by θ⋆w and κ1 replaced by κ2.

11 Examples

We now develop two explicit examples that illustrate the

results shown in the previous sections.
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11.1 Cramér-Lundberg model with exponential jumps

Let X be a drift p minus a compound Poisson process

with rate λ and exponential jump sizes with mean µ start-

ing at x. Then, the characteristic function of X reads as

κ(θ) = pθ − λθ/(µ+ θ) and, if p > λ
µ
, the ultimate ruin

probability is equal to ψ(x) = Ce−γx, where the adjust-

ment coefficient is γ = µ− λ/p and C = λ/(µp). More

generally, it was shown by Asmussen (1984), Knessl and

Peters (1994) (with p = 1) and Pervozvansky (1998) that

the finite time ruin probability ψ(x, t) is given by

ψ(x, t) = 1−ψ(x, t) = [1−Ce−γx]I(γ>0)+w(x, t), (29)

where

w(x, t) =
1

π

√
λ

µp

∫ s+

s−
ea(q)x−qt sin(b(q)x− φ(q))

dq

q

(30)

with s± = (
√
λ±√

µp)2, φ(q) = arccos
(
pµ+λ−q
2
√
λµp

)
and

a(q) =
λ− µp− q

2p
, b(q) =

√
4pqµ− (λ− µp− q)2

2p
.(31)

Further, we note that, under P (c), X is still a drift p mi-

nus a compound Poisson process with exponential jumps

with the changed rates λc = λ µ
µ+c

and µc = µ + c. In

25



particular, λ−γ = µ p and µ−γ = λ/p are the parameters

under P (−γ).
In view of the previous paragraph, we see that, under

P (−γ1), the drift of X2 is always negative, κ
(−γ1)′
2 (0) =

κ′2(−γ1) < 0. Also, under P (−γ2), the adjustment pa-

rameter of X1 is positive if and only if ρ > ρ∗ := p2
2/p1

and is then equal to

γ̃ = γ̂2 − γ2 =
µ

p2

(
ρ− p2

2

p1

)
, (32)

and the asymptotic constant C̃ satisfies Ĉ2 = C̃C2 = p2
p1

.

Inserting the expressions (29) – (31) (with the proper

choices of parameters) into Corollary ?? leads then to

explicit expressions for ψand, ψsim and ψor.

It is a matter of calculus to verify that

s1 =

p21
ρ
− p1

p21
ρ − p2

, s2 =
(
p22
ρ
− p1)+

p22
ρ − p2

, and, if ρ > ρ∗, ŝ2 =
ρ
p21
p22
− p1

ρ
p21
p22
− p2

.

Also, by invoking Corollary ?? or by a direct calculation

we see that

Ci(v) ≡
λ

µpi
= Ci, i = 1, 2.

Inserting these quantities into Propositions 1 and 3 yields

explicit asymptotics expansions for ψand, ψsim and ψor.
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11.2 Brownian motion with drift

If X(t) = mt + B(t) where B(t) is standard Brownian

motion, then its characteristic exponent reads as κ(θ) =
1
2θ

2 + mθ. If m > 0, ψ(x) = e−γx, where γ = 2m

is the adjustment coefficient. Further, under P (c), X

is still Brownian motion, but the drift changes to m +

c. The drift of the measure associated to c = −γ is

−m, i.e. the Brownian motion switches its drift. In

view of the Corollary ?? and the well known first-passage

distribution of Brownian motion with drift,

ψ(x, t) = Φ

(
x +mt√

t

)
− e−2mxΦ

(−x +mt√
t

)
(33)

we find that if x2 > x1, then:

ψor(x1, x2) = P (τ1(x1) ≤ T ) + e−2p2x2 P (−2p2)(τ1(x1) > T )

= 1 − Φ (a(x1, p1)) + e−2p1x1Φ (a(−x1, p1))

+ e−2p2x2 ×
[
Φ (a(x1, p1 − 2p2)) − e−2x1(p1−2p2)Φ (a(−x1, p1 − 2p2

ψsim(x1, x2) = P (τ2(x2) ≤ T ) + e−2p1x1 P (−2p1)(τ2(x1) > T )

= 1 − Φ (a(x2, p2)) + e−2p2x2Φ (a(−x2, p2))

+ e−2p1x1 ×
[
Φ (a(x2, p2 − 2p1)) − e−2x2(p2−2p1)Φ (a(−x2, p2 − 2p1

ψand(x1, x2) = Φ (a(x1, p1)) − 1 + e−2p1x1 (1 − Φ (a(−x1, p1)))

+ e−2p2x2 ×
[
e−2x1(p1−2p2)Φ (a(−x1, p1 − 2p2)) + 1 − Φ (a(x1, p1 −
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where a(x, p) = [x + pT ]/
√
T and Φ denotes the cu-

mulative standard normal distribution function. In view

of the facts that Φ(−x) = 1 − Φ(x) and 1 − Φ(x) ∼
(2π)−1/2x−1 exp(−x2/2) as x → ∞, it follows from (35)

and (36) that if x1, x2 tend to infinity with x1/x2 = a

then

ψand(x1, x2) ≈





e−2p2x2−2(p1−2p2)
+x1 + o(ava) if 0 < a < ŝ2

o(ava) if ŝ2 < a < s1

e−2p1x1 + o(ava) if s1 < a < 1,

(37)

ψsim(x1, x2) ≈





e−2p2x2 + δ(va) if 0 < a < s2

δ(va) if s2 < a < s1

e−2p1x1 + δ(va) if s1 < a < 1,

(38)

where

o(v) =

[
2v

p2
1 − v2

+
2v

v2 − (p1 − 2p2)2

] √
v√

2πx1

e−x1(v+p1)
2/[2v],

δ(v) =

[
2v

v2 − p2
2

+
2v

(p2 − 2p1)2 − v2

] √
v√

2πx2

e−x2(v+p2)
2/[2v]

and

s1 =
p1

2p1 − p2
, s2 =

(2p2 − p1)+
p2

, and, if p1 > 2p2, ŝ2 =
p1 − 2p2

2p1 − 3p2

The asymptotics of ψsim agree with the asymptotics of the

steady state distribution of a tandem queue calculated in

Lieshout and Mandjes [?].
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By straightforward calculations it can be verified that,

if S is a Brownian motion, then Ci = 1 and θv = −v−p2,

θ′v = v − p2, θ
⋆
v = v + p2 − 2p1 and

C̃i(v) = 1, κ∗i (−v) =
(v + pi)

2

2
, κ∗1(−ava) = κ∗2(−va)

for i = 1, 2. Inserting these quantities in (18) — (28) and

comparing with (37) and (38) it follows that Propositions

1 and 3 and Theorems 3 and 4 remain valid if S is a

Brownian motion.

A Proof of Proposition 2

The proof of Proposition 2 is based on the following esti-

mates:

Lemma 2 The following hold true:

(i) max{ψ1(x1), ψ2(x2)} ≤ ψor(x1, x2) ≤ ψ1(x1) +

ψ2(x2)

(ii) ψor(x1, x2) = ψ1≤2(x1, x2)+ψ2≤1(x1, x2)−ψ1=2(x1, x2)

where

ψi≤j(x1, x2) := P (τi(xi) ≤ τj(xj), τi(xi) <∞)

and

ψ1=2(x1, x2) := P (τ1(x1) = τ2(x2) <∞).
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Lemma 3 Suppose that (23) holds and write γa,β :=

βaγ1 + (1 − β)γ2.

(i) If aγ1 = γ2 it holds that, as K → ∞,

ψ1<2(aK,K) ∼ C1e
−γ1aK, ψ2<1(aK,K) ∼ C2e

−γ2K

(39)

(ii) For a > 0 and β ∈ (0, 1), ψsim(aK,K) = o(e−γa,βK)

(K → ∞).

We have made all preparations to complete the proof of

Proposition 2:

Proof of Proposition 2: First note that, in view of

the Cramér-Lundberg asymptotics (5) and equation (12)

the asymptotics in (24) imply those in (23). The rest of

the proof is therefore devoted to establishing (24).

In view of (5) and Lemma 2(i), it follows that, if γ1a >

γ2 [resp. γ1a < γ2], the lower bound and upper bound in

Lemma 2(i) are of the same order of magnitude, C2e
−γ2K

[resp. C1e
−γ1aK ], as K → ∞. Thus (24) is valid if

γ1a 6= γ2.

Next we turn to the case γ1a = γ2. Since ψ1=2 is dom-

inated by ψsim and γa,β = γ2 = aγ1 if aγ1 = γ2, it fol-

lows, by appealing to Lemma 3(ii), that ψ1=2(aK,K) =

o(e−γ2K) = o(e−γ1aK) as K → ∞. In view of Lemma

2(ii) and Lemma 3(i) it therefore follows that (24) is also

valid if aγ1 = γ2. �
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Proof of Lemma 2: The estimates follow in view of

the observations that,

{τi(xi) <∞} ⊂ {τor(x1, x2) <∞} ⊂ ∪2
i=1{τi(xi) <∞} for i = 1, 2, and

{τor(x1, x2) <∞} = A1 ∪A2\[A1 ∩ A2]

where Ai = {τi(xi) <∞, τi(xi) ≤ τ3−i(x3−i)}. �

Proof of Lemma 3: (i) The asymptotics of ψ1<2 follow

once we have shown that as K → ∞ it holds that

eγ1aKψ1<2(aK,K) = E(−γ1,0)(e−γ1X1(τ1)1{τ1≤τ2,τ1<∞}) → C1,

(40)

where τ1 = τ1(aK) and τ2 = τ2(K). To prove this claim

we compare the asymptotic behaviour of τ1 and τ2 as

K → ∞, adapting the argument developed in Glasser-

man and Wang (1997) (Prop. 2) for random walk. If

E(−γ1,0)[X2(1)] > 0, then P (−γ1,0)(τ2 = ∞) → 1 as

K → ∞ and, appealing to (5), the claim (40) follows.

If E(−γ1,0)[X2(1)] ≤ 0, it follows in view of Lemma 4(a)

that as K → ∞
τ1(aK)/τ2(K) → a∂2κ(−γ1, 0)/∂1κ(−γ1, 0) P (−γ1,0)-a.s.

(41)

Applying (21) with θ = (0,−γ2) and θ′ = (−γ1, 0) we

see that the right-hand side of (41) is bounded above

by aγ1/γ2, which is equal to one if γ2 = aγ1. There-

fore τ2(K) dominates τ1(aK) for all K large enough and

31



(40) follows as a consequence of the Cramér-Lundberg

asymptotics (5). The asymptotics of ψ1>2 can be treated

similarly.

(ii) Choose β ∈ (0, 1) and write γβ = β(γ1, 0) +

(1 − β)(0, γ2). By strict convexity of C there exists a

−γ∗ = −(γ∗1 , γ
∗
2) ∈ Co such that γ∗i > γβi , (i = 1, 2). By

changing the measure, we see that ψsim(aK,K) is equal

to

e−(γ∗1a+γ
∗
2)KE(−γ∗)[eγ

∗
2X2(τsim)+γ∗1X1(τsim)+κ(−γ∗1 ,−γ∗2)τsim1{τsim<∞}],

where τsim = τsim(aK,K). Since Xi(τsim) < 0 and

κ(−γ∗1 ,−γ∗2) ≤ 0, this expectation is bounded above

by 1, and, as aγ∗1 + γ∗2 > γa,β, it thus follows that

ψsim(aK,K) = o(e−(γ
β
1 a+γ

β
2 )K) = o(e−γa,βK) as K →

∞. �

B Proof of Theorem 3

We include first for reference a one dimensional result

concerning the behaviour of the time of ruin for large

initial reserves:

Lemma 4 Suppose that E[|X(1)|] <∞ and E[X(1)] ≤
0. Then, as x→ ∞,

(a) τ (x)/x→ −E[X(1)]−1 P -a.s. and (b) E[τ (x)]/x→ −E[X(1)]
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Proof of Lemma 4:

(b) If E[X(1)] = 0, then the Lévy process X oscillates

and the identity follows since then E[τ (x)] = +∞ for

every x (see e.g. Bertoin [14, Ch. VI, Prop. 17(iii)]).

Suppose now that −∞ < E[X(1)] < 0 (so that X drifts

to −∞) and first exclude that case thatX is a compound

Poisson process. Denoting by L−1(t) = inf{u ≥ 0 :

L(u) > t} the inverse of the local time L of X and

T (x) = inf{t ≥ 0 : H(t) > x} the first passage time of

the ladder height process H(t) = X(L−1(t)) of X it is

easily verified that τ (x) = L−1(T (x)). The pair (L−1, H)

forms a two-dimensional Lévy process and we denote its

bivariate Laplace exponent by κ̂. The Laplace transform

of E[τ (x)] can then be expressed as follows:
∫ ∞

0

e−λxE[τ (x)]dx =
∂1κ̂(0, 0+)

λκ̂(0, λ)
,

where ∂i means a partial derivative with respect to ith

variable (see e.g. Bertoin [14, Ch. VI, Prop. 17]). As

κ̂(0, 0) = 0 and κ̂(0, ·) is right-differentiable in zero, it

follows in view of a Tauberian theorem that

E[τ (x)] ∼ x ∂1κ̂(0, 0+)/∂2κ̂(0, 0+) as x→ ∞.

The strong law of large numbers implies that the product

H(t)/L−1(t) = [X(L−1(t))/t] × [t/L−1(t)] converges to

E[X(1)] = E[X(L−1(1))]E[L−1(1)]−1 (42)
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(the corresponding identity for random walks is known as

the famous Wald identity). Since ∂1κ̂(0+, 0) = E[L−1(1)]

and ∂2κ̂(0, 0+) = E[X(L−1(1))], the claim follows. The

case of a compound Poisson process follows by adding a

small drift.

(a) The strong law of large numbers implies that, P -

a.s.,

τ (x)/x = L−1(T (x))/T (x)·T (x)/x→ E[L−1(1)]/E[H(1)] = E[X(1)]

as x→ ∞, where we used the Wald-identity (42). �

We will show now some properties of the cones D0,D1

or D2.

Lemma 5 The following hold true:

(i) The cones Di, i = 0, 1, 2 are disjoint and D0,D1 6=
∅.

(ii) D2 6= ∅ iff κ′1(−γ2) < 0 and D̂2 6= ∅ iff κ′1(−γ2) 6=
0.

(iii) D1 ⊂ U := {(x1, x2) ∈ R
2
+ : x2γ2 < x1γ1} and

D2 ⊂ R
2
+\U , where R

2
+ = (0,∞)2.

Proof Writing

κ′1(s)

κ′2(s)
=
κ′2(s) + p1 − p2

κ′2(s)
= 1 +

p1 − p2

κ′2(s)
,
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it follows that s1 < 1, since κ′2(−γ1) < 0, and that

s2 < s1, since γ1 > γ2 and, by the strict convexity of

κ2, κ2 is strictly increasing on its domain. Next, in view

of the definitions of s2 and ŝ2, it follows that ŝ2 = 0

[resp. s2 = 0] iff κ′1(−g2) = 0 [resp. κ′1(−γ2) ≤ 0].

Subsequently, we note that on the ray x1/x2 = γ2/γ1 it

holds that

x2

T (x1, x2)
=

p1 − p2

1 − γ2/γ1
=
κ2(−γ1) − κ1(−γ1)

γ1 − γ2
=
κ2(−γ1) − κ2(−γ2)

γ1 − γ2
.

The strict convexity of κ2 thus implies that along the ray

x1/x2 = γ2/γ1 it holds that−κ′2(−γ2) < x2/T (x1, x2) <

−κ′2(−γ1). It is a matter of algebra to verify that these

inequalities are equivalent to s2 < γ2/γ1 < s1 (see also

Lemma 6 below). The assertions (i), (ii) and (iii) ollow

then in view of the definitions of Di, i = 0, 1, 2 and D̂2.

�

A key point in the analysis of the asymptotics of the

degenerate risk processes is an equivalent description of

the cones Di in terms of comparisons with the time T =

T (x1, x2) defined in (13), which will enable us to translate

the asymptotics in two-dimensional space into the ‘space-

time’-asymptotics of Arfwedson (1955) and Höglund (1990).

Lemma 6 Writing Ti = xi/[−κ′i(−γi)] and T̃i = xi/[−κ′i(−γ3−i)],

35



i = 1, 2, the following hold true:

D1 = {(x1, x2) ∈ R
2
+ : T1 > T (x1, x2)} = {(x1, x2) ∈ R

2
+ : T̃2 > T (x1,

D2 = {(x1, x2) ∈ R
2
+ : T2 < T (x1, x2)} = {(x1, x2) ∈ R

2
+ : T̃1 < T (x1,

Remark. The cones D1 and D2 can equivalently be de-

fined as the set of rays a = x1/x2 for which the expected

time of ruin (under the measure P (−γi)) is larger resptec-

tively smaller than T , if x1, x2 are large enough. This

observation follows by combining Lemmas 4 and 6.

Proof of Lemma 6: In view of the definition of T it

is a matter of algebra to check that

x1/x2 = a⇔ x2/T (x1, x2) = (p1 − p2)/(1 − a) = va
(43)

The assertions (i) and (ii) follow by using that κ′1(s) =

p1 − p2 + κ′2(s) and applying (43) for a = s1 and a = s2

(that were defined in (25)), respectively. �

Proof of Theorems 3 and 4:. In view of (18) the

first step consists in applying Theorem 5 in order to ob-

tain the asymptotics of ψ2(x2, T ) and ψ
(−γ1)

2 (x2, T ) as

x1, x2 → ∞ along a ray (note that ψ
(−γ1)

2 (x2, T ) is equal

to ψ
(−γ1)
2 (x2) − ψ

(−γ1)
2 (x2, T ) since ψ

(−γ1)
2 (x2) = 1 as

κ′2(−γ1) < 0). Appealing to the characterisation of the

cones in Lemma 6 and to (43) we then read off that, if

(x1, x2) ∈ D2 and (x1, x2) ∈ Dc
2 := R

2
+\D2, it holds
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respectively that

ψ2(x2, T ) ∼ C2e
−γ2x2 ψ2(x2, T ) ∼ |D(va)|(va/x2)

1/2e−x2κ
∗
2(−va)/va

(44)

Similarly, we see that, if (x1, x2) ∈ D1, ψ
(−γ1)

2 (x2, T ) ∼ 1

and if (x1, x2) ∈ Dc
1

ψ
(−γ1)

2 (x2, T ) ∼ |D(−γ1)(va)|(va/x2)
1/2e−x2κ

∗(−γ1)
2 (−va)/va.

(45)

Here D and D(−γ1) are specified in Theorem 5 with κ =

κ2 and κ = κ
(−γ1)
2 , respectively. Taking note of the facts

that γ(a) > max{aγ1, γ2} for a 6= s1, s2 and that

γ(a) = aγ1+κ
∗(−γ1)
2 (−va)/va = aγ1+κ

∗(−γ1)
1 (−ava)/va = κ∗1(−ava)/va

we deduce, in view of Proposition 1, (44) and (45) that

ψsim(x1, x2) is equivalent toCie
−γixi if x1, x2 tend to infin-

ity along a ray with (x1, x2) ∈ Di, i = 1, 2, respectively,

and equivalent to [D(v)+C̃1(v)D
(−γ1)(v)](v/x2)

1/2e−γ(a)x2

if (x1, x2) follows a ray in the interior of the comple-

ment of D1 ∪ D2. Using that κ′′1 = κ′′2 and that, if

κ′i(0
+) > 0, it holds that ψ∗

i (θ) = θ−1 − κ′i(0
+)/κi(θ)

(cf. [14, Thm.VII.10]), it is a matter of algebra to verify

the form of the constant D#.

�

Proof of Proposition 1: In view of (15), the Markov

property and a change of measure it follows that ψor(x1, x2) =
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ψ1(x1, T ) + Z12(x1, x2), where

Z12(x1, x2) := P (τ1(x1) > T, inf
T≤s<∞

X2(s) < 0)

= e−γ2x2E(−γ2)[h2(X1(T ))1{τ1(x1)>T}](46)

where h2(x) = eγ2xψ2(x) (using that X1(T ) = X2(T )

and recalling that Xi(0) = xi). If x1, x2 → ∞ such that

x1/x2 is constant and x1+κ′1(−γ2)T > 0 then the strong

law of large numbers implies that X1(T ) → ∞ P (−γ2)-

a.s. and that P (−γ2)(τ1(x1) ≤ T ), which is bounded

above by P (−γ2)(XT ≤ 0), tends to zero. Appealing to

the Cramér-Lundberg approximation and the bounded

convergence theorem, it follows that h2(y) → C2 as y →
∞ and that the last factor in (46) converges to C2.

In the case that x1 + κ′1(−γ2)T < 0 it holds that Z12

is equal to

Z12(x1, x2) = e−γ2x2ψ
(−γ2)

1 (x1, T )E(−γ2)[h2(X1(T ))|τ1(x1) > T ].

(47)

Denote by π̃v the measure given by (7) with θv, θ
′
v re-

placed by θ
(−γ2)
v , θ

⋆(−γ2)
v respectively (defined as the roots

θv, θ
⋆
v under the measure P (−γ2)). With regard to Corol-

lary 1 (applied to X1(T )) and the observation that θv
also satisfies κ′1(θv) = −v′ where v′ = x1/T (x1, x2), we

conclude that as T → ∞ the conditonal expectation on
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the rhs of (47) converges to
∫ ∞

0

h2(x)π̃v(dx) =

∫ ∞

0

ψ2(x)
(θv + γ2)(θ

⋆
v + γ2)

θ⋆v − θv
[e−θvx−e−θ

⋆
vx]dx

(48)

as T → ∞, where we used that θ
(−γ2)
v = θv +γ2. In view

of the decomposition (15) the proof of the asymptotics of

ψor is complete. The proof of the asymptotics of ψsim is

similar and omitted. �

Proof of Proposition 3: Writing γ̃ := γ̂2 − γ2 it fol-

lows by definition of γ̂2 that κ1(−γ2 − γ̃) = κ1(−γ2) or,

equivalently, κ
(−γ2)
1 (−γ̃) = 0. In view of this observation

and the form of κ(u, v), derived in Example 3, it fol-

lows that κ(−γ̃,−γ2) = 0. Changing measure then with

the martingale exp(−γ̃X1(t)−γ2X2(t)) and applying the

strong Markov property at τ1(x1) shows that

eγ2x2+γ̃x1P (τ1(x1) ≤ T, τ2(x2) <∞)

= E(−γ̃,−γ2)[eγ̃X1(τ1(x1))h2(X2(τ1(x1)))|1{τ1≤T}] (49)

Letting x1, x2 → ∞ such that x1/x2 is constant and

x1 +κ′1(−γ̂2)T < 0 it follows by the law of large numbers

that P (−γ̂2)(τ1 ≤ T ) tends to 1, being bounded below by

P (−γ̂2)(X1(T ) < 0). Also, taking note of Lemma 4 and

of the fact that, in view of the definition of T , it holds

that X2(τ1(x1)) = X1(τ1(x1))+ (p1− p2)[T − τ1(x1)]), it
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follows that X2(τ1(x1)) → ∞ and h2(X2(τ1(x1))) → C2,

P (−γ̂2)-a.s. Therefore the bounded convergence theorem

implies that the conditional expectation in (49) converges

to C2C̃ (where the second factor denotes the asymptotic

constant for ψ1 under P (−γ2)).

In the opposite case that x1 + κ′1(−γ̂2)T > 0 we note

that

P (τ1 ≤ T, τ2 <∞) = P (τ1 ≤ T, τ2 ≤ T ) + P (τ1 ≤ T, T < τ2 <∞)

= P (τ2 ≤ T ) + E[1{τ1≤T<τ2}PX2(T )(τ2 <∞)]

= E[1{τ2≤T}ψ2(X2(T ))] + E[1{τ1≤T}ψ2(X2(T ))]

= e−γ2x2E(−γ2)[eγ2X2(T )ψ2(X2(T ))|τ2 ≤ T ]ψ
(−γ2)
2 (

+ e−γ2x2−γ̃x1 × E(−γ̂2)[eγ̂2X1(T )ψ2(X1(T ))|τ1 ≤ T ]ψ
(−γ̂2)
1 (x1, T )

where in the second line we applied the Markov property

and used that {τ2 ≤ T} ⊂ {τ1 ≤ T} and in the fourth

line changed the measure. Invoking Corollary 1 yields the

form of C1(v) and C2(v) and in view of (16) the proof is

finished. �

C Extensions: optimal control.

Consider the optimal management of two insurance com-

panies which split the amount they pay out of each claim

in proportions δ1 and δ2 where δ1 + δ2 = 1, and receive

premiums at rates c1 and c2, respectively.
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Dividends are also paid to shareholders, above some

barriers b1, b2, to be optimized. In addition, the compa-

nies may transfer funds between each other, when one

of them arrives to negative holdings. However, jumping

into a certain subset of R
2, which includes the negative

quadrant, as well as some triangle with a vertex at the

origin, included in the positive quadrant and with inter-

cepts a1, a2; this event, called ruin, will entail penalties.

The optimal choice of the control levels defined above

requires solving a complicated first-passage problem in-

volving both reflecting and absorbing boundaries.

b1

b2

a2

a1

Ruin

Reflecting

boundary

Reflecting boundary

Dividends  boundary

Figure 7: Control with absorbing and reflecting boundaries

While only possible numerically in general, this prob-

lem is nevertheless feasible analytically under our ”pro-

portional reinsurance model”. The asymptotic behav-

ior of the solution is of considerable interest as well for

calibrating numerical solutions under more complicated

models, as well as for being a particular case of ana-
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lytically solvable two-dimensional sharp large deviations

problem.
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D The Afwedson-Hoglund theorem

There are four conceptually distinct cases to consider for

finite time ruin probabilities: that of processes with sure

eventual ruin, with κ′(0) = p − ρ < 0, and the oppo-

site case (in which the asymptotics depend on the shifted

measure with parameter −γ, under which eventual ruin is

sure since κ′(−γ) < 0). Then, there are the cases of ruin

times which are shorter/longer than expected. Despite

the different interpretations, all these cases have a com-

mon ”large deviations” formulation, expressed in terms

of the cumulant exponent κ(θ) of X !!

Theorem 5 (Arfwedson-Hoglund) Let Xt be a Levy

process satisfying either κ′(0) < 0 (D), or Cramer’s

condition ∃γ ≥ 0 such that κ(−γ) = 0, κ′(−γ) < 0

(U).
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Let Θ = {θ ∈ R : κ(θ) < ∞},Θo, denote the do-

main of the cumulant exponent κ(θ) of X and its in-

terior, and let its convex conjugate be:

κ∗(v) = sup
β∈R

[(−v)β − κ(β)] (50)

Let ψ(x) = Ce−xγ where C = −κ′(0)/κ′(−γ) in case

(U) and ψ(x) = 1 in case (D).

If x, t→ ∞ such that x/t = v, then

ψ(t, x) ∼ (51){
|D(v)|e−tκ∗(−v)

t1/2 if (D), t < x
−κ′(0)

or if (U) − κ′(−γ) < x
t

ψ(x) − w(t, x) if (D), t > x
−κ′(0)

or if (U) − κ′(−γ) > x
t
,

w(t, x) ∼ (52){
ψ(x) − ψ(t, x) if (D), t < x

−κ′(0)or if (U) − κ′(−γ) < x
t

|D(v)|e−tκ∗(−v)

t1/2 if (D), t > x
−κ′(0)

or if (U) − κ′(−γ) > x
t
,

where

D(v) = c(v) · 1√
2πκ′′(θv)

with c(v) =
θ′v − θv
θvθ′v

.

(53)

Alternatively, the exponent may be written in terms

of t, using tκ∗(v) = xγ(v), where γ(v) = θ′v − θv.

Note that all the ”twists” θ with κ′(θ) < 0 (for which

ruin is sure under the shifted measure P (θ)) play a role
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in this result: the ones with positive values κ(θ) > 0

yield the most likely way of achieving ”quick ruin” in less

than the expected time, while the others with negative

values κ(θ) < 0 serve to obtain estimates for ”late ruin

probabilities”, for times larger than the expected ruin

time – see [7], Theorem 4.8.
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