#### Integrating Sequence and Topology for Efficient and Accurate Detection of Horizontal Gene Transfer

Cuong Than, Guohua Jin, and Luay Nakhleh

Department of Computer Science Rice University

#### Gene Trees Within the Branches of a Species Tree



# Horizontal Gene Transfer and Tree Incongruence



#### Horizontal Gene Transfer Detection





species tree

gene tree

#### Horizontal Gene Transfer Detection





species tree

gene tree



#### Multiple Solutions for HGT Detection





#### Multiple Solutions for HGT Detection



# How can we improve the accuracy of HGT detection?

# Our Method: Assessing the Support of HGT Edges

- Assign a support value to each HGT edge
- Branches of the gene tree often have bootstrap value
- Use those bootstrap values to evaluate HGT edge support

# HGT Edge Support: Example





species tree + HGT edge gene tree

Support for HGT edge (x, y): max{60, 90, 70} = 90

# HGT Edge Support: Algorithm

- Create a network N from the species tree by adding HGT edges
- From N, create two trees:
  - ST': Keep HGT edges, while removing the other edges
  - ST": Remove HGT edges, while keeping the other edges

# HGT Edge Support: Algorithm

- For HGT edge  $X \rightarrow Y$ , find the moving clade P and its sister clade Q
- Finding P: let  $P = L_{ST'}(Y)$
- Finding Q:
  - Let Y' = Y
  - Let p = parent of Y' in ST"
    - If  $L_{ST'}(p) \neq \emptyset$ , then  $Q = L_{ST'}(p)$
    - If not, let Y' = p, and repeat
- Support = max of bootstrap values of edges from P to Q

#### HGT Edge Support: Illustration

D





## Parsimony-based HGT Detection

- Input: Sequences for a group of species
- Output: A network (tree + HGT edges)
- Optimization criterion: Smallest network parsimony score

## Parsimony-based HGT Detection

- Accurate, as shown in both simulated and biological data
- Slow, because it has to examine all possible networks

#### Topology-based HGT Detection

- Fast in computing HGT edges
- Return many false positives

## Our Method: Combining Topology and Parsimonybased Methods



# TopSeq Algorithm

 ${\bf TopSeqHGTIdent}(ST,GT,S)$ 

**INPUT:** species tree ST, gene tree GT, and sequence dataset S**OUTPUT:** network N with marked significance of each HGT

- 1 Let  $\{N_1, \ldots, N_m\}$  be the set of all phylogenetic networks computed by RIATA-HGT, and let  $H(N_i)$  be the set of HGT edges in  $N_i$ .
- 2 Let  $\mathcal{H} = \bigcap_{i=1}^{m} H(N_i)$ , and  $R(N_i) = H(N_i) \mathcal{H}$ . In other words,  $\mathcal{H}$  denotes the set of HGT edges that are shared by all networks, and  $R(N_i)$ , for  $1 \le i \le m$ , the set of HGT edges that are in  $N_i$  but not shared by all other networks.
- 3 Apply NEPAL to  $N' = ST + \mathcal{H}$ .
- 4 For each network  $N_i$ ,  $1 \le i \le m$ , apply NEPAL by incrementally adding (in no particular order) the HGT edges in  $R(N_i)$  to N', and compute the minimum parsimony length of the phylogenetic network.
- 5 Let N = ST,  $N_{opt}$  be the best network according to maximum parsimony criterion, that is  $NCost(N_{opt}, S) = min_{i=1}^{m}(NCost(N_i, S))$ . Apply NEPAL by adding to ST each time one of the HGT events  $h \in H(N_{opt})$  that results in the most significant drop in the parsimony score and let  $N = N \cup h$ . Stop this process when the drop is smaller than a specified threshold.

# Experimental Data

- The biological data by Bergthorsson
  - HGT transfer to Amborella
  - 20 genes
  - Donors: Bryophytes, Moss, Eudicots, and Angiosperms

#### **Experimental Results**

|              | Bergt | MP    |        |       | RIATA-HGT |       |       | RIATA-HGT+MP |         |       |    |       |
|--------------|-------|-------|--------|-------|-----------|-------|-------|--------------|---------|-------|----|-------|
| Gene         | #HGTs | donor | SH     | #HGTs | F?        | #Nets | #HGTs | #Nets        | #events | #HGTs | F? | #Nets |
| cox2         | 3     | M     | <0.001 | 1     | Y         | 8482  | 9     | 4            | 12      | 1     | Y  | 23    |
|              |       | E     | NS     |       | N         | 8482  | 9     | 4            | 12      |       | N  | 23    |
|              |       | E     | NS     |       | N         | 8482  | 9     | 4            | 12      |       | N  | 23    |
| nad2         | 2     | М     | <0.001 | 1     | Y         | 3500  | 7     | 6            | 11      | 1     | Y  | 21    |
|              |       | E     | NS     |       | N         | 3500  | 7     | 6            | 11      |       | N  | 21    |
| nad4 (exons) | 1     | М     | <0.001 | 1     | Y         | 1620  | 4     | 2            | 5       | 1     | Y  | 9     |
| nad4 (ex4)   | 1     | E     | NS     | 2     | Y         | 1832  | 6     | 3            | 8       | 2     | Y  | 21    |
| nad5         | 2     | М     | <0.001 | 1     | Y         | 3292  | 6     | 6            | 9       | 1     | Y  | 17    |
|              |       | A     | 0.025  |       | N         | 3292  | 6     | 6            | 9       |       | N  | 17    |
| nad6         | 1     | В     | <0.001 | 1     | Y         | 2484  | 6     | 3            | 8       | 1     | N  | 15    |
| nad7         | 2     | М     | <0.001 | 1     | Y         | 2948  | 7     | 1            | 7       | 1     | Y  | 13    |
|              |       | E     | NS     |       | N         | 2948  | 7     | 1            | 7       |       | N  | 13    |
| atp1         | 1     | E     | 0.001  | 1     | Y         | 2817  | 6     | 18           | 14      | 1     | Y  | 27    |
| atp8         | 1     | E     | 0.008  | 2     | Y         | 9059  | 5     | 6            | 11      | 1     | Y  | 21    |
| ccmB         | 1     | E     | NS     | 2     | Y         | 66015 | 6     | 3            | 14      | 2     | Y  | 101   |
| ccmC         | 1     | E     | 0.03   | 1     | Y         | 2786  | 7     | 21           | 15      | 1     | Y  | 29    |
| ccmFN1       | 1     | E     | 0.004  | 2     | Y         | 4412  | 7     | 18           | 13      | 2     | Y  | 46    |
| cox3         | 1     | A     | NS     | 1     | N         | 3466  | 8     | 15           | 18      | 1     | N  | 52    |
| nad1         | 1     | E     | <0.001 | 1     | Y         | 2812  | 9     | 12           | 14      | 1     | Y  | 27    |
| rpl16        | 1     | E     | NS     | 3     | Y         | 21632 | 10    | 27           | 23      | 1     | Y  | 67    |
| rps19        | 1     | E     | 0.003  | 1     | Y         | 1476  | 5     | 4            | 7       | 1     | Y  | 13    |
| sdh4         | 1     | E     | NS     | 3     | Y         | 18670 | 9     | 18           | 18      | 3     | Y  | 540   |
| nad2intron   | 1     | М     | _      | 2     | Y         | 5904  | 8     | 2            | 10      | 2     | Y  | 44    |
| nad5intron   | 1     | М     | _      | 2     | Y         | 10280 | 9     | 5            | 18      | 2     | Y  | 51    |
| nad7intron   | 1     | M     | _      | 1     | Y         | 3284  | 12    | 48           | 26      | 1     | Y  | 51    |

## **Experimental Results**

- NEPAL: 12 out of 13 HGTs were found
- RIATA-HGT: I2 out of I3 HGTs were found (the missing HGT is different)
- The support for 12 HGT edges were high, over 95%

#### Conclusions

- A method for assessing the support of HGT edges
- Integration of sequence-based and topology-based methods gives promising performance

#### Thank You! http://bioinfo.cs.rice.edu