Algorithmic Aspects of the Intersection and Overlap Numbers of a Graph

Stéphane Vialette

LIGM Université Paris-Est Marne-la-Vallée

Danny Hermelin
Max-Planck-Institut für Informatik

Romeo Rizzi Università degli Studi di Udine

March, 16 2012

Outline

- Introduction
- Recognizing graphs with fixed intersection number

Basic definitions

Definition (Graph)

We consider undirected and simple graphs.

- **V**(*G*) is the set of vertices of *G*.
- E(G) is the set of edges of G.
- The degree of a vertex is the number of edges that connect to it, i.e.,

$$d_G(u) = |\{\{u, v\} : \{u, v\} \in E(G)\}|$$

• $\Delta(G)$ is the maximum degree of a vertex of G, *i.e.*,

$$\Delta(G) = \max \{ d_G(u) : u \in V(G) \}$$

Intersection graphs

Definition (Intersection graph)

Let $F = (S_1, S_2, ..., S_n)$ be a family of sets (allowing sets in F to be repeated).

The intersection graph of F, denoted $\Omega(F)$, is an undirected graph that has a vertex for each member of F and an edge between each two members that have a nonempty intersection.

$$\mathbf{V}(\Omega(F)) = \{u_i : 1 \le i \le n\}$$

$$\mathbf{E}(\Omega(F)) = \{\{u_i, u_i\} : i \ne j \land S_i \cap S_i \ne \emptyset\}$$

Intersection graphs

Theorem (Szpilrajn-Marczewski, 1945)

Every graph is an intersection graph.

Classes of intersection graphs

- interval graphs: intersection of intervals on the real line,
- circular arc graphs: intersection of arcs on a circle,
- circle graphs: intersection of chords on a circle,
- unit disk graphs: intersection of unit disks in the plane,
- string graphs: intersection of curves on a plane,
- ...

The best general reference is [McKee, and McMorris, 1999].

Intersection number

Definition

The **intersection number** of a graph G, denoted i(G), is the minimum total number of elements in any intersection representation of the graph.

Definition (Problem)

INTERSECTION NUMBER is the associated optimization problem.

Intersection number

Remark

- Not to be confused with the interval number which is also denoted i(G) in the literature.
- The **interval number** of a graph G the smallest integer t such that G is the intersection graph of some family of sets l_1, l_2, \ldots, l_n , with every l_i being the union of at most t intervals.

Edge-clique cover

Definition (Edge-clique cover)

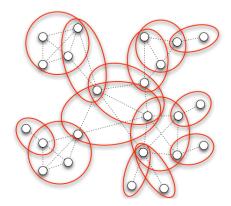
An **edge-clique cover** of a graph G is any family $\mathcal{E} = \{Q_1, Q_2, \dots, Q_k\}$ of complete subgraphs of G such that every edge of G is in at least one of Q_1, Q_2, \dots, Q_k .

The minimum cardinality of an edge-clique cover of G is denoted $\theta(G)$.

Definition (Problem)

EDGE-CLIQUE COVER is the associated optimization problem.

Edge-clique cover



Intersection number and Edge-clique cover

Theorem (Erdös, Goodman, and Pósa.1966)

For every graph G, $i(G) = \theta(G)$.

Remarks

- The equivalence between the two directions is straightforward to prove.
- A graph with m edges has intersection number at most m.
- Every graph with n vertices has intersection number at most n²/4.

Edge-clique cover

Classical complexity and optimization

Computing $\theta(G)$ – Edge-Clique Cover

- NP-hard for planar graphs and graphs with maximum degree 6 [Kou, and Stockmeyer.1978; Orlin.1977].
- Polynomial-time solvable for for chordal graphs [Ma, Wallis, and Wu.1989], graphs with maximum degree 5 [Hoover.1992], line graphs [Orlin.1977], and circular-arc graphs [Hsu, and Tsai.1991].
- Not approximable to within ratio n^{ϵ} for some $\epsilon > 0$ [Lund, and Yannakakis.1994].
- Approximable to within ratio $O(n^2 \frac{(\log \log n)^2}{(\log n)^3})$ [Ausiello, Crescenzi, Gambosi, Kann, Marchetti, Spaccamela, and Protasi.1999].

Edge-clique cover

Parameterized complexity

Computing $\theta(G)$ – EDGE-CLIQUE COVER

- EDGE-CLIQUE COVER is fixed-parameter tractable (standard parameterization) [Gramm, Guo, Hüffner, and Niedermeier.2008].
- EDGE-CLIQUE-COVER has a size-2^k kernel [Gramm, Guo, Hüffner, and Niedermeier.2008].
- EDGE-CLIQUE COVER does not have a polynomial kernel [Cygan, Kratsch, Pilipczuk, Pilipczuk, and Wahlström.2011].

Overlap graphs

Definition (Overlap graph)

Let $F = (S_1, S_2, ..., S_n)$ be a family of sets (allowing sets in F to be repeated).

The **overlap graph** of F, denoted O(F), is an undirected graph that has a vertex for each member of F and an edge between each two members that overlap.

$$\mathbf{V}(O(F)) = \{u_i : 1 \le i \le n\}$$

$$\mathbf{E}(O(F)) = \{\{u_i, u_j\} : S_i \cap S_j \neq \emptyset \land S_i \setminus S_j \neq \emptyset \land S_j \setminus S_i \neq \emptyset\}$$

Overlap graphs

Theorem

Every graph is an overlap graph.

Classes of intersection graphs

- interval overlap graphs: overlap of intervals on the real line,
- overlap circular arc graphs: overlap of arcs on a circle,
- overlap rectangle graphs: overlap of rectangles in the plane,
- •

The most well-known overlap graph

Interval overlap graph

- There is an O(n²) time algorithm that tests whether a given n-vertex undirected graph is a circle graph and, if it is, constructs a set of chords that represents it
 [Spinrad.1994].
- Polynomial-time solvable combinatorial problems: TREEWIDTH [Kloks.1996], FILL-IN [Kloks, Kratsch, and Wong.1998], CLIQUE, INDEPENDENT SET,...
- NP-complete combinatorial problems: Dominating Set, Connected Dominating Set [Keil.1993],...

Overlap number

Definition

The **overlap number** of a graph G, denoted $\varphi(G)$, is the minimum total number of elements in any overlap representation of the graph.

Definition (Problem)

OVERLAP NUMBER is the associated optimization problem.

Overlap number

Computing $\varphi(G)$ – OVERLAP NUMBER

- Complexity unknown so far.
- The following upper bounds for a *n*-vertex graph are known: n+1 for trees, 2n for chordal graphs, $\frac{10}{3}$ n-6 for planar graphs, and $\left|\frac{n^2}{4}\right| + n$ for general graphs [Rosgen.2005; Rosgen, and Stewart.2010].
- The overlap number of K_n is the minimum ℓ such that a ℓ -set contains *n* pairwise incomparable sets
- $\varphi(C_n) = n 1$.

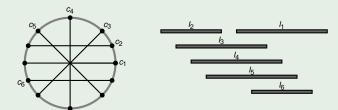
Intersection and overlap representations

Remark

Some graph classes can play it both ways:

A graph is an intersection graph of chords in a circle (*i.e.* circle graph) if and only if it is has an overlap representation using intervals on a line.

Example



990

Our results

Proposition

There exists a constant c > 1 such that computing the **overlap number** of a graph is hard to approximate to within c.

Proposition

Let \mathcal{G} be any intersection graph class. For every graph G with **fixed intersection number** (or **fixed overlap number**), deciding " $G \in \mathcal{G}$?" is linear-time solvable.

Outline

- 1 Introduction
- Computing the overlap number
- Recognizing graphs with fixed intersection number

Overlap number

Proposition

There exists a constant c > 1 such that computing the **overlap number** of a graph is hard to approximate to within c.

EDGE-CLIQUE COVER

Input: A graph G.

Solution: A clique cover for G, *i.e.*, a collection $\mathcal{E} = \{Q_1, Q_2, \dots, Q_k \text{ of subsets of } V(G) \text{ such that } V(G$

- each Q_i induces a complete subgraph of G, and
- for each edge $e = \{u, v\} \in E(G)$ there is some Q_i that contains both u and v.

Measure: Cardinality of the clique cover, *i.e.*, the number of subsets Q_i .

Proposition

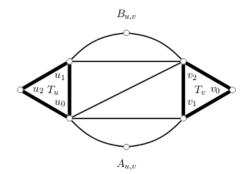
EDGE-CLIQUE COVER is **APX**-hard for biconnected graphs with maximum degree 7.

Key elements

- $\theta(G) = i(G)$, and hence the same result applies for INTERSECTION NUMBER.
- Reduction from VERTEX COVER for cubic graphs which is known to be APX-hard [Alimonti, and Kann.2000; Papadimitriou, and Yannakakis.1991].

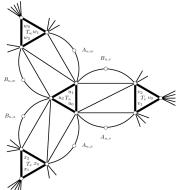
EDGE-CLIQUE COVER is APX-hard for biconnected graphs with maximum degree 7

- Let G be a n-vertex cubic graph.
- We represent each vertex $u \in V(G)$ by a triangle T_u with vertices u_0 , u_1 and u_2 in the new graph H.
- These n triangles are all vertex disjoint in H, and each of them can offer a different edge for three connections.



Claim

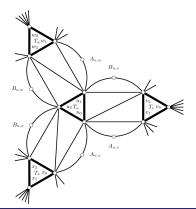
G has a vertex cover of size k is and only $\theta(H) \leq 3m + k$.



S. Vialette

Claim

G has a vertex cover of size k is and only $\theta(H) \leq 3m + k$.



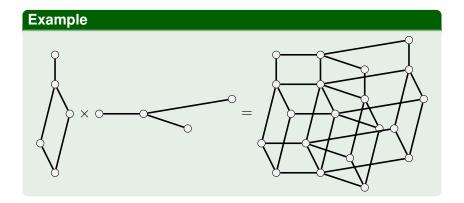
Cartesian product

Definition

The Cartesian product $G \times H$ of graphs G and H is the graph such that

- the vertex set of $G \times H$ is the Cartesian product $V(G) \times V(H)$, and
- any two vertices (u, u') and (v, v') are adjacent in G × H if and only if either u = v and u' is adjacent with v' in H, or u' = v' and u is adjacent with v in G.

Cartesian product



Cartesian product

Remarks on $G \times H$

- Each row induces a copy of H.
- Each column induces copy of G
- This terminology is consistent with a representation of $G \times H$ by the points of the $|\mathbf{V}(G)| \times |\mathbf{V}(H)|$ grid.

$$G \times H$$

$$\mathbf{V}(G) = \{u_1, u_2, u_3\}$$

$$\mathbf{V}(H) = \{v_1, v_2, v_3, v_4\}$$



OVERLAP NUMBER

Proposition

OVERLAP NUMBER is APX-hard.

Key elements

- EDGE-CLIQUE COVER is APX-hard for biconnected graphs with maximum degree 7.
- Cartesian product of graphs.

OVERLAP NUMBER is APX-hard

Construction

 Let G be a biconnected graph with maximum degree 7 (without isolated vertices).

For simplicity, write
$$V(G) = \{v_1, v_2, \dots, v_n\}$$
.

- Let *m* be a constant (to be precisely defined later).
- Let K_m be the complete graph with m vertices, and write $\mathbf{V}(K_m) = \{u_1, u_2, \dots, u_m\}$.
- Construct $H = K_m \times G$.

OVERLAP NUMBER is APX-hard

	K _m	K _m	K _m	K _m
G	(u_1, v_1)	(u_1, v_2)	(u_1, v_{n-1})	(u_1, v_n)
G	(u_2, v_1)	(u_2, v_2)	(u_2, v_{n-1})	(u_2, v_n)
G	(u_{m-1}, v_1)	(u_{m-1}, v_2)	(u_{m-1}, v_{n-1})	(u_{m-1}, v_n)
G	(u_m, v_1)	(u_m, v_2)	(u_m, v_{n-1})	(u_m, v_n)

OVERLAP NUMBER is APX-hard

Lemma

$$\varphi(H) \leq n + m\theta(G)$$
.

Proof

OVERLAP NUMBER IS APX-hard

Lemma

 $\varphi(H) \leq n + m\theta(G)$.

Proof

- Let $k = \theta(G)$.
- Let $\mathcal{E} = \{Q_1, Q_2, \dots, Q_k\}$ be a size-k edge-clique cover of G.
- To every vertex $(u_i, v_j) \in V(H)$, we associate the set $S_{(u_i, v_j)}$ defined as follows:

$$S_{(u_i,v_i)} = \{v_i\} \cup \{(u_i,p) : v_i \in Q_p\}.$$

990

OVERLAP NUMBER IS APX-hard

Lemma

 $\varphi(H) \leq n + m\theta(G)$.

Proof

• $\mathcal{F} = \{S_{(u_i,v_j)} : (u_i,v_j) \in \mathbf{V}(H)\}$ defined over the ground set

$$X = \bigcup_{(u_i,v_i) \in \mathbf{V}(H)} S_{(u_i,v_j)} = \mathbf{V}(G) \cup (\mathbf{V}(K_m) \times [k]).$$

- |X| = n + km.
- The lemma reduces to proving that $O(\mathcal{F})$ and H are isomorphic graphs.

Lemma

 $\varphi(H) \leq n + m\theta(G)$.

Proof

Let $S_{(u_i,v_i)}$ and $S_{(u_r,v_s)}$ be two subsets of \mathcal{F} .

• If $u_i \neq u_r$ and $v_j \neq v_s$, then (u_i, v_j) and (u_r, v_s) are not adjacent vertices in H.

It is easily verified that $S_{(u_i,v_j)}$ and $S_{(u_r,v_s)}$ are disjoint subsets, and hence $S_{(u_i,v_j)}$ and $S_{(u_r,v_s)}$ are not adjacent vertices in $O(\mathcal{F})$.

S. Vialette

Lemma

 $\varphi(H) \leq n + m\theta(G)$.

Proof

Let $S_{(u_i,v_i)}$ and $S_{(u_r,v_s)}$ be two subsets of \mathcal{F} .

• If $u_i \neq u_r$ and $v_j = v_s$, then (u_i, v_j) and (u_r, v_s) are adjacent vertices in H since K_m is a clique.

 $v_j \in \mathcal{S}_{(u_i,v_j)}$ and $v_j \in \mathcal{S}_{(u_r,v_s)}$, and hence $\mathcal{S}_{(u_i,v_j)} \cap \mathcal{S}_{(u_r,v_s)}
eq \emptyset$.

 $v_j \in S_{(u_i,v_j)} \setminus S_{(u_r,v_s)}$ and $v_s \in S_{(u_r,v_s)} \setminus S_{(u_i,v_j)}$ are non-empty (since $u_i \neq u_r$ and v_j is not an isolated vertex of G).

Therefore, $S_{(u_i,v_j)}$ and $S_{(u_r,v_s)}$ overlap, and hence $S_{(u_i,v_j)}$ and $S_{(u_r,v_s)}$ are adjacent vertices in $O(\mathcal{F})$.

Lemma

 $\varphi(H) \leq n + m \theta(G)$.

Proof

Let $S_{(u_i,v_i)}$ and $S_{(u_r,v_s)}$ be two subsets of \mathcal{F} .

• If $u_i = u_r$ and $v_j \neq v_s$, then (u_i, v_j) and (u_r, v_s) are adjacent vertices in H if and only if $\{v_i, v_j\} \in E(G)$.

$$v_j \in S_{(u_i,v_i)} \setminus S_{(u_r,v_s)}$$
 and $v_s \in S_{(u_r,v_s)} \setminus S_{(u_i,v_i)}$.

Therefore, the two sets overlap if and only if v_j and v_j belong to a same Q_p for some $1 \le p \le k$.

Hence, $S_{(u_i,v_j)}$ and $S_{(u_r,v_s)}$ are adjacent vertices in $O(\mathcal{F})$ if and only if $\{v_i,v_i\}\in E(G)$.

Remarks

- For the reverse direction, we need to be careful about inclusion of sets.
- Fortunately, H = K_m × G behaves nicely enough w.r.t. inclusion of sets.

Lemma

Let $(\mathcal{F} = \{S_{(u_i,v_j)} : (u_i,v_j) \in V(H)\}, X)$ be an overlap representation of $H = K_m \times G$.

If $S_{(u_r,v_s)} \subset S_{(u_i,v_j)}$ for some vertices (u_i,v_j) and (u_r,v_s) of H, then $S_{(u_p,v_q)} \subset S_{(u_i,v_j)}$ for every vertex (u_p,v_q) of H which is not adjacent to vertex (u_i,v_i) .

Remarks

- For the reverse direction, we need to be careful about inclusion of sets.
- Fortunately, $H = K_m \times G$ behaves nicely enough w.r.t. inclusion of sets.

Lemma

Let $(\mathcal{F} = \{S_{(u_i,v_j)} : (u_i,v_j) \in \mathbf{V}(H)\}, X)$ be an overlap representation of $H = K_m \times G$.

If $S_{(u_r,v_s)} \subset S_{(u_i,v_j)}$ for some vertices (u_i,v_j) and (u_r,v_s) of H, then $S_{(u_p,v_q)} \subset S_{(u_i,v_j)}$ for every vertex (u_p,v_q) of H which is not adjacent to vertex (u_i,v_j) .

Lemma

If $S_{(u_r,v_s)} \subset S_{(u_i,v_j)}$ for some vertices (u_i,v_j) and (u_r,v_s) of H, then $S_{(u_p,v_q)} \subset S_{(u_i,v_j)}$ for every vertex (u_p,v_q) of H which is not adjacent to vertex (u_i,v_j) .

Lemma

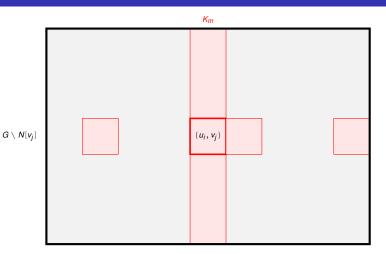
If $S_{(u_r,v_s)} \subset S_{(u_i,v_j)}$ for some vertices (u_i,v_j) and (u_r,v_s) of H, then $S_{(u_p,v_q)} \subset S_{(u_i,v_j)}$ for every vertex (u_p,v_q) of H which is not adjacent to vertex (u_i,v_j) .

- If $S_{(u_r,v_s)} \subset S_{(u_i,v_j)}$ then vertices (u_r,v_s) and (u_i,v_j) are not adjacent in H.
- Let (u_p, v_q) be any vertex of H distinct from (u_r, v_s) that is not adjacent to (u_i, v_i) .
- Let H' be the graph obtained from H by deleting every vertex in the close neighborhood of vertex (u_i, v_i) .

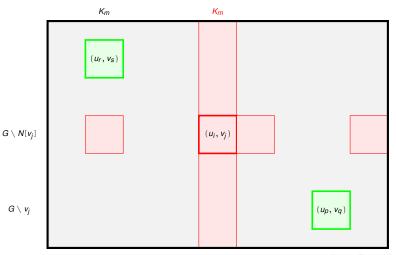
Lemma

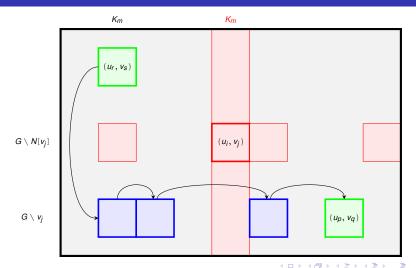
If $S_{(u_r,v_s)} \subset S_{(u_i,v_j)}$ for some vertices (u_i,v_j) and (u_r,v_s) of H, then $S_{(u_p,v_q)} \subset S_{(u_i,v_j)}$ for every vertex (u_p,v_q) of H which is not adjacent to vertex (u_i,v_j) .

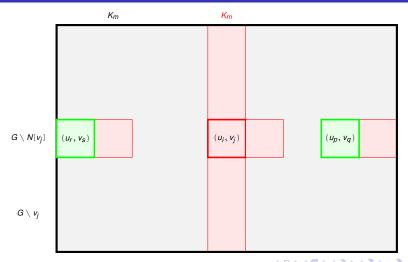
- Since (u_r, v_s) and (u_p, v_q) are not adjacent to (u_i, v_j) in H, they are both vertices of H'.
- Claim: there exists a path between vertices (u_r, v_s) and (u_p, v_a) in H'.

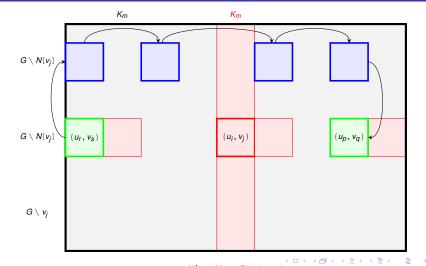


$$H' = (K_m \times G) \setminus (u_i, v_j)$$









Lemma

If $S_{(u_r,v_s)} \subset S_{(u_i,v_j)}$ for some vertices (u_i,v_j) and (u_r,v_s) of H, then $S_{(u_p,v_q)} \subset S_{(u_i,v_j)}$ for every vertex (u_p,v_q) of H which is not adjacent to vertex (u_i,v_j) .

- What is left is to prove that $S_{(u_p,v_q)} \subset S_{(u_i,v_j)}$ for any vertex (u_p,v_q) of H that is adjacent to (u_r,v_s) but not to (u_i,v_j) .
- Easy contradiction.

Lemma

If $S_{(u_r,v_s)} \subset S_{(u_i,v_j)}$ for some vertices (u_i,v_j) and (u_r,v_s) of H, then $S_{(u_p,v_q)} \subset S_{(u_i,v_j)}$ for every vertex (u_p,v_q) of H which is not adjacent to vertex (u_i,v_j) .

- Suppose $S_{(u_p,v_q)} \not\subset S_{(u_i,v_i)}$.
- Since $S_{(u_p,v_q)} \neq \emptyset$ (H does not contain any isolated vertex), then there exists $x \in X$ such that $x \in S_{(u_p,v_q)}$ and $x \notin S_{(u_i,v_i)}$.
- Therefore, $S_{(u_p,v_q)} \setminus S_{(u_i,v_i)} \neq \emptyset$.

Lemma

If $S_{(u_r,v_s)} \subset S_{(u_i,v_j)}$ for some vertices (u_i,v_j) and (u_r,v_s) of H, then $S_{(u_p,v_q)} \subset S_{(u_i,v_j)}$ for every vertex (u_p,v_q) of H which is not adjacent to vertex (u_i,v_j) .

- (u_p, v_q) and (u_r, v_s) are adjacent vertices in H
- $S_{(u_p,v_q)}$ and $S_{(u_r,v_s)}$ have to overlap, and hence there exist $x',x''\in X$ such that
 - $x' \in S_{(u_p,v_q)}$ and $x' \in S_{(u_r,v_s)}$, and
 - $x'' \notin S_{(u_n,v_n)}$ and $x'' \in S_{(u_r,v_s)}$.

Lemma

If $S_{(u_r,v_s)} \subset S_{(u_i,v_j)}$ for some vertices (u_i,v_j) and (u_r,v_s) of H, then $S_{(u_p,v_q)} \subset S_{(u_i,v_j)}$ for every vertex (u_p,v_q) of H which is not adjacent to vertex (u_i,v_j) .

- But $S_{(u_r,v_s)} \subset S_{(u_i,v_j)}$, and hence $x' \in S_{(u_i,v_j)}$ and $x'' \in S_{(u_i,v_i)}$.
- Therefore, $S_{(u_i,v_i)} \setminus S_{(u_p,v_a)} \neq \emptyset$ and $S_{(u_p,v_a)} \cap S_{(u_i,v_i)} \neq \emptyset$.
- Hence, $S_{(u_0,v_0)}$ and $S_{(u_i,v_i)}$ overlap, a contradiction.

Lemma

$$\theta(G) \leq \frac{\varphi(H) - n - 1}{m - 1} + 7.$$

Lemma

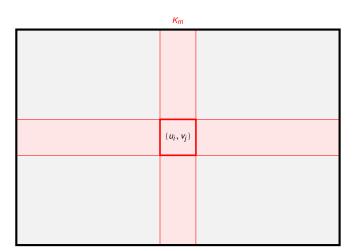
$$\theta(G) \leq \frac{\varphi(H) - n - 1}{m - 1} + 7.$$

- Let $(\mathcal{F} = \{S_{(u_i,v_j)} : (u_i,v_j) \in V(H)\}, X)$ be an overlap representation of H.
- We focus on the most annoying situation when some containment does occur in \mathcal{F} .

Lemma

$$\theta(G) \leq \frac{\varphi(H) - n - 1}{m - 1} + 7.$$

- Suppose that there exists some subset $S_{(u_i,v_j)} \in \mathcal{F}$ that strictly contains at least one set of \mathcal{F} .
- According to the previous lemma, $S_{(u_i,v_j)}$ contains all subsets $S_{(u_r,v_s)} \in \mathcal{F}$ such that $u_i \neq u_r$ and $v_i \neq v_s$.
- In other words, $S_{(u_i,v_j)}$ contains all those subsets of \mathcal{F} that are associated to vertices of H that are not in the same row nor column of vertex (u_i, v_i) .



 $H' = (K_m \times G) \setminus (u_i, v_i)$

G

Lemma

$$\theta(G) \leq \frac{\varphi(H) - n - 1}{m - 1} + 7.$$

Proof

- if there exist subsets $S_{(u_r,v_s)}, S_{(u_p,v_q)} \in \mathcal{F}$ distinct from $S_{(u_i,v_i)}$ such that $S_{(u_r,v_s)} \subset S_{(u_p,v_q)}$, then $u_i = u_p$ or $v_i = v_q$
- In other words, vertex (u_p, v_q) is on the same row or on the same column of vertex (u_i, v_i)

Intersection and Overlap Numbers

Lemma

$$\theta(G) \leq \frac{\varphi(H) - n - 1}{m - 1} + 7.$$

- Let H' be the graph obtained from H by deleting all vertices (u_r, v_s) such that $u_r = u_i$ or $v_s = v_i$.
- In other words, H' is the graph obtained from H by deleting all vertices that are in the same row or column of vertex (u_i, v_i) .

Lemma

$$\theta(G) \leq \frac{\varphi(H) - n - 1}{m - 1} + 7.$$

- Let F' ⊆ F be those subsets of F that correspond to vertices of H'
- Let $X' \subseteq X$ be the union of the subsets in \mathcal{F}'
- \mathcal{F}' is an overlap representation of H' where no subset being a subset of another.
- $\bullet |X'| \leq |S_{(u_i,v_i)}|.$

Lemma

$$\theta(G) \leq \frac{\varphi(H) - n - 1}{m - 1} + 7.$$

- Let G' be the graph obtained from G by deleting vertex v_i .
- $H' = K_{m-1} \times G'$.
- Claim: $\theta(G') \leq \frac{|X|-n-1}{m-1}$.
- "Edge-multi-coloring" procedure of H' (details omitted).
- The lemma now follows from $\theta(G) \leq \theta(G') + \Delta(G)$.

Proposition

OVERLAP NUMBER is APX-hard.

Proof (sketch)

- There exists a constant c > 1 such that θ(G) cannot be approximated to within c (unless P = NP).
- Let m be the smallest integer such that $m \ge n$ and $c > \frac{m}{m-1}$.

Proposition

OVERLAP NUMBER is APX-hard.

Proof (sketch)

- Suppose that there exists a \sqrt{c} -approximation algorithm B for computing $\varphi(H)$.
- In other words, $B(H) \leq \sqrt{c} \varphi(H)$.
- $B(H) \le \sqrt{c} \varphi(H) \le \sqrt{c} (n + m \theta(G)).$

Proposition

OVERLAP NUMBER is APX-hard.

Proof (sketch)

We apply the constructive proof of the previous lemma to obtain an approximate A(G) of $\theta(G)$:

$$A(G) \le \frac{B(H) - n - 1}{m - 1} + 7$$

$$= \frac{B(H)}{m - 1} - \frac{n + 1}{m - 1} + 7$$

$$= c \theta(G) + O(1).$$

Outline

- **1** Introduction
- Computing the overlap number
- Recognizing graphs with fixed intersection number

Proposition

Let \mathcal{G} be any intersection graph class. For every graph G with **fixed intersection number** (or **fixed overlap number**), deciding " $G \in \mathcal{G}$?" is linear-time solvable.

Well quasi order

Definition (Well quasi order)

A **quasi order** (*i.e.*, a binary reflexive transitive relation) is a **well quasi order** (or **wqo** for short) if it does not contain infinitely descending sequences nor infinite antichains.

Examples

- Graph minor Theorem [Robertson, and Seymour. 2004].
- Trees are wqo by the topological minor order [Kruskal. 1960].
- Graphs of treewidth at most 2 are wqo by induced minors [Thomas.1985].
- Cographs are wqo by induced subgraphs [Damaschke.1990].

Well quasi order

Definition

For two vectors $\overrightarrow{x} \in \mathbb{N}^{K_1}$ and $\overrightarrow{y} \in \mathbb{N}^{K_2}$, we write $\overrightarrow{x} \leq \overrightarrow{y}$ if

- $K_1 \leq K_2$, and
- $x_i \le y_i$ for all $i \in \{1, ..., K_1\}$.

Lemma (Higman's Lemma)

The set $\mathbb{N}^{\leq K}$ is wqo by \leq for any fixed $K \in \mathbb{N}$.

Definition (Characteristic vector)

A characteristic vector of a graph G is a vector $\overrightarrow{c} \in \mathbb{N}^K$ such that there exists a partitioning $\{V_1, V_2, \dots, V_k\}$ of V(G)satisfying the two following properties for each $i \in \{1, 2, ..., K\}$:

- $|V_i| = c_i$, and
- O(u) = N[v] for all $u, v \in V_i$.

Define the **dimension** of a graph *G* to be the minimum number K such that G has a characteristic vector of dimension K.

Lemma (Bounded dimension)

A graph G with i(G) < k has dimension at most $K = 2^k$.

Lemma (Bounded dimension)

A graph G with $i(G) \le k$ has dimension at most $K = 2^k$.

- If i(G) ≤ k, then G has an intersection representation F with |∪_{S∈F} S| ≤ k.
- Therefore, there are at most 2^k distinct sets in F.
- Vertices of G that have identical sets in F have identical neighborhoods.

Definition (Isomorphism)

Two characteristic vectors \overrightarrow{c} , $\overrightarrow{d} \in \mathbb{N}^K$ are **isomorphic** if there is a permutation $\pi \in S_K$ such that $c_i = d_{\pi(i)}$ for all $i \in \{1, 2, \ldots, K\}.$

Lemma

Two graphs are isomorphic if and only if they both have the same dimension K, and any pair of characteristic vectors of dimensions K for these graphs are isomorphic.

Proposition

Let \mathcal{G} be any intersection graph class. For every graph G with **fixed intersection number** (or **fixed overlap number**), deciding " $G \in \mathcal{G}$?" is linear-time solvable.

Lemma

Let $k \in \mathbb{N}$. The set of all graphs G with $i(G) \leq k$ is **wqo** by the induced subgraph order.

Lemma

Let $k \in \mathbb{N}$. For any two graphs G and H with intersection number at most k, there is a linear-time algorithm for deciding whether H is an induced subgraph of G.

Proposition

Let \mathcal{G} be any intersection graph class. For every graph G with fixed intersection number (or fixed overlap number), deciding " $G \in G$?" is linear-time solvable.

Proof (sketch)

- Let G be any intersection graph class.
- Let $\overline{\mathcal{G}}$ be the set of all finite graphs not in \mathcal{G} .
- Let \mathcal{H} denote the set of all minimal graphs in $\overline{\mathcal{G}}$ w.r.t. the induced subgraph order, *i.e.*,

 $\mathcal{H} = \{ H \in \overline{\mathcal{G}} : \nexists H' \in \overline{\mathcal{G}} \text{ s.t. } H' \text{ is an induced subgraph of } H \}$

Proposition

Let \mathcal{G} be any intersection graph class. For every graph G with **fixed intersection number** (or **fixed overlap number**), deciding " $G \in \mathcal{G}$?" is linear-time solvable.

Proof (sketch)

- G is closed under induced subgraphs, i.e., H ∈ G whenever
 H is an induced subgraph of G for some G ∈ G.
- Therefore, $G \in \mathcal{G}$ if and only if no graph $H \in \mathcal{H}$ is an induced subgraph of G.
- According to the previous lemma \mathcal{H} is finite and its size depends only \mathcal{G} .

Proposition

Let \mathcal{G} be any intersection graph class. For every graph G with fixed intersection number (or fixed overlap number), deciding " $G \in G$?" is linear-time solvable.

Proof (sketch)

- Given an input graph G, our algorithm simply checks whether any $H \in \mathcal{H}$ is an induced subgraph of G, determining that $G \notin \mathcal{G}$ if and only if any of these checks turns out positive.
- Since the number and sizes of graphs in \mathcal{H} is constant w.r.t. the size of G and according to the previous lemma, the running-time of this algorithm is linear.