Permutation Pattern Matching for Separable Permutations.

Both Emerite Neou1, Romeo Rizzi2, Stéphane Vialette1

Université Paris-Est, LIGM (UMR 8049), CNRS, UPEM, ESIEE Paris, ENPC, F-77454, Marne-la-Vallée, France
\{neou,vialette\}@univ-mlv.fr

Department of Computer Science, Università degli Studi di Verona, Italy
romeo.rizzi@univr.it

October 20, 2016
Plan

1. Introduction
2. Definition
3. Core of The Algorithms
Permutation.

Permutation

Two orders over a finite set.

- Usually the ordered set is a set of integers.
- Written as word $\pi = \pi[1]\pi[2]\ldots\pi[n]$.
Plot of a Permutation.

- We associate a figure to a permutation called a plot.
- Each element of a permutation is represented by the point \((i, \pi[i])\).
Example: the plot of the permutation 3 2 8 5.
Reduced form of a permutation and reduction.

Reduced Form of a Permutation

The elements are the first \(n \) integers.

Obtained by reducing a permutation.

- If \(\pi \) is on the set \(\{e_1, e_2, \ldots, e_n\} \) where the natural order is \(e_1 < e_2 < \ldots < e_n \), we obtain the reduced form of \(\pi \) by renaming every \(e_i \) by \(i \).
Example: reduced form of the permutation 3 2 8 5.

- 2 < 3 < 5 < 8
Example: reduced form of the permutation 3 2 8 5.

\[2 < 3 < 5 < 8 \]
Example: reduced form of the permutation 3 2 8 5.

- $2 < 3 < 5 < 8$
- 2 becomes 1
Example: reduced form of the permutation 3 2 8 5.

- \(2 < 3 < 5 < 8 \)
- 2 becomes 1
- 3 becomes 2
Example: reduced form of the permutation $3 \ 2 \ 8 \ 5$.

- $2 < 3 < 5 < 8$
- 2 becomes 1
- 3 becomes 2
- 5 becomes 3
Example: reduced form of the permutation 3 2 8 5.

- $2 < 3 < 5 < 8$
- 2 becomes 1
- 3 becomes 2
- 5 becomes 3
- 8 becomes 4
Example: reduced form of the permutation 3 2 8 5.

- $2 < 3 < 5 < 8$
- 2 becomes 1
- 3 becomes 2
- 5 becomes 3
- 8 becomes 4
- 3 2 8 5 becomes 2 1 4 3
Occurrence

A mapping \(\phi \) from a permutation pattern \(\sigma \) to a permutation text \(\pi \) is an occurrence of \(\sigma \) in \(\pi \).
Occurrence

A mapping ϕ from a permutation pattern σ to a permutation text π is an occurrence of σ in π.

\iff

The mapping is increasing and $\sigma[i] < \sigma[j]$ iff $\pi[\phi(i)] < \pi[\phi(j)]$.

Both Emerite Neou, Romeo Rizzi, Stéphane Vialette (Université Paris-Est, LIGM (UMR 8049), CNRS, UPEM, ESIEE Paris, ENPC, F-77454, Marne-la-Vallée, France) {neou,vialette}@univ-mlv.fr, Department of Computer Science, Università degli Studi di Verona, Italy romeo.rizzi@univr.it)
Occurrence

A mapping ϕ from a permutation pattern σ to a permutation text π is an occurrence of σ in π.

$$\iff$$

The mapping is increasing and $\sigma[i] < \sigma[j]$ iff $\pi[\phi(i)] < \pi[\phi(j)]$.

$$\iff$$

The reduced form of the permutation given by the mapped elements is the same as the pattern.
Occurrence

A mapping ϕ from a permutation pattern σ to a permutation text π is an occurrence of σ in π.

\[\iff \]

The mapping is increasing and $\sigma[i] < \sigma[j]$ iff $\pi[\phi(i)] < \pi[\phi(j)]$.

\[\iff \]

The reduced form of the permutation given by the mapped elements is the same as the pattern.

We say that σ occurs in π if such mapping exists.
Example: occurrence of 51342 in 391867452.

The mapping that map:

- 1 to 2,

\[
\begin{align*}
5 & \quad 1 & \quad 3 & \quad 4 & \quad 2 \\
3 & \quad 9 & \quad 1 & \quad 8 & \quad 6 & \quad 7 & \quad 4 & \quad 5 & \quad 2
\end{align*}
\]
Example: occurrence of 51342 in 391867452.

The mapping that map:
- 1 to 2,
- 2 to 3,
Example: occurrence of 51342 in 391867452.

The mapping that map:
- 1 to 2,
- 2 to 3,
- 3 to 5,
- 4 to 6,
- 5 to 8

is an occurrence because:

Both Emerite Neou, Romeo Rizzi, Stéphane Vialette (Université Paris-Est, LIGM (UMR 8049), CNRS, UPEM, ESIEE Paris, ENPC, F-77454, Marne-la-Vallée, France) \{neou, vialette\} @univ-mlv.fr, Department of Computer Science, Università degli Studi di Verona, Italy romeo.rizzi@univr.it
Example: occurrence of 51342 in 391867452.

The mapping that map:
- 1 to 2,
- 2 to 3,
- 3 to 5,
- 4 to 6 and

\[
\begin{array}{cccccc}
5 & 1 & 3 & 4 & 2 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
3 & 9 & 1 & 8 & 6 & 7 & 4 & 5 & 2
\end{array}
\]
Example: occurrence of 51342 in 391867452.

The mapping that maps:
- 1 to 2,
- 2 to 3,
- 3 to 5,
- 4 to 6, and
- 5 to 8

is an occurrence because:

The ith element of the mapping has the same position in the natural order than the ith element in σ.

The permutation $\pi(2)\pi(3)\pi(5)\pi(6)\pi(8) = 91675$ is reduced to 51342.
Example: occurrence of 51342 in 391867452.

The mapping that maps:
- 1 to 2,
- 2 to 3,
- 3 to 5,
- 4 to 6 and
- 5 to 8

is an occurrence because:
- the ith element of the mapping has the same position in the natural order as the ith element in π.

The permutation $\pi = [2, 3, 5, 6, 8] = 91675$ is reduced to 51342.
Example: occurrence of 51342 in 391867452.

The mapping that maps:
- 1 to 2,
- 2 to 3,
- 3 to 5,
- 4 to 6 and
- 5 to 8

is an occurrence because:
- the i^{th} element of the mapping has the same position in the natural order than the i^{th} element in σ.
Example: occurrence of 51342 in 391867452.

The mapping that map:
- 1 to 2,
- 2 to 3,
- 3 to 5,
- 4 to 6 and
- 5 to 8

is an occurrence because:
- the \(i^{th}\) element of the mapping has the same position in the natural order than the \(i^{th}\) element in \(\sigma\).
- the permutation \(\pi[2]\pi[3]\pi[5]\pi[6]\pi[8] = 91675\) is reduced to 51342.
Example: occurrence of 51342 in 391867452.

The plot of 51342 and 391867452.
Example: occurrence of 51342 in 391867452.

91674 is an occurrence.
Introduction

Permutation Pattern Matching Problem

Given a pattern σ of size k and a text π of size n, we want to decide whether σ occurs in π.

Permutation Pattern Matching for Separable Permutations.

October 20, 2016 12 / 32
Permutation Pattern Matching Problem.

The problem is NP-Complete (Bose et al. 1993). But
The problem is NP-Complete (Bose et al. 1993). But
- It can be solved in $O(1.79^{O(n)})$ (Ahal et al. 2008).
Permutation Pattern Matching Problem.

The problem is NP-Complete (Bose et al. 1993). But

- It can be solved in $O(1.79^{O(n)})$ (Ahal et al. 2008).
- It can be solved in $O(n.2^{O(k^2 \log k)})$: the problem is fixed-parameter tractable parameterized by the size of σ (Guillemot and Marx 2013).
The problem is NP-Complete (Bose et al. 1993). But

- It can be solved in $O(1.79^O(n))$ (Ahal et al. 2008).
- It can be solved in $O(n.2^{O(k^2 \log k)})$: the problem is fixed-parameter tractable parameterized by the size of σ (Guillemot and Marx 2013).
- Some variants of this problem are solved in polynomial time.
Variant for Permutation Pattern Matching Problem.

We can consider some variants for PPM-problem:
We can consider some variants for PPM-problem:

- Add constraint on the input text or/and pattern.
 \[\implies \text{pattern or/and text is/are in a class.} \]
Variant for Permutation Pattern Matching Problem.

We can consider some variants for PPM-problem:

- Add constraint on the input text or/and pattern.
 \[\implies\text{pattern or/and text is/are in a class.}\]

- Add constraint on the occurrence.
 \[\implies\text{bivincular permutation pattern and mesh permutation pattern.}\]
Our interests.

What we study:
Our interests.

What we study:

- What can we do if the pattern is a separable permutation?
Our interests.

What we study:

- What can we do if the pattern is a separable permutation?
- What can we do if the pattern and the text are separable permutation?
Our interests.

What we study:
- What can we do if the pattern is a separable permutation?
- What can we do if the pattern and the text are separable permutation?
- What can we do if the pattern is a bivincular separable permutation pattern?
Results.

- the pattern is separable:
Results.

- the pattern is separable:
 - best result: \(O(kn^4) \) time and \(O(kn^3) \) space algorithm.
Results.

- the pattern is separable:
 - best result: $O(kn^4)$ time and $O(kn^3)$ space algorithm.
 - our contribution: $O(kn^4)$ time and $O(\log(k)n^3)$ space algorithm.
Results.

- the pattern is separable:
 - best result: $O(kn^4)$ time and $O(kn^3)$ space algorithm.
 - our contribution: $O(kn^4)$ time and $O(\log(k)n^3)$ space algorithm.

- the pattern and the text are separable:
Results.

- the pattern is separable:
 - best result: $O(kn^4)$ time and $O(kn^3)$ space algorithm.
 - our contribution: $O(kn^4)$ time and $O(\log(k)n^3)$ space algorithm.

- the pattern and the text are separable:
 - best result:
 $$O\left(\min\left\{\frac{l_{T'}}{l_T}, \frac{n_T}{\log n_T} + n_T \log n_T\right\}\right)$$
 - time and $O(n_T)$ space algorithm.
the pattern is separable:
- best result: $O(kn^4)$ time and $O(kn^3)$ space algorithm.
- our contribution: $O(kn^4)$ time and $O(\log(k)n^3)$ space algorithm.

the pattern and the text are separable:
- best result:
 $$O\left(\min\left\{ \begin{align*}
l_T' & , n_T \\
l_T' & , l_T \log \log n_T + n_T \\
\frac{n_T n_T'}{\log n_T} + n_T \log n_T
\end{align*} \right\} \right)$$
 time and $O(n_T)$ space algorithm.
- our contribution: $O(n^2k)$ time and $O(nk)$ space algorithm.
Results.

- the pattern is separable:
 - best result: $O(kn^4)$ time and $O(kn^3)$ space algorithm.
 - our contribution: $O(kn^4)$ time and $O(\log(k)n^3)$ space algorithm.

- the pattern and the text are separable:
 - best result:
 \[
 O \left(\min \left\{ \frac{l_T'}{l_T}, \frac{n_T}{l_T} \log \log n_T + n_T \right\} \right)
 \]
 time and $O(n_T)$ space algorithm.
 - our contribution: $O(n^2k)$ time and $O(nk)$ space algorithm.

- the pattern is a bivincular separable pattern:
the pattern is separable:
- best result: $O(kn^4)$ time and $O(kn^3)$ space algorithm.
- our contribution: $O(kn^4)$ time and $O(\log(k)n^3)$ space algorithm.

the pattern and the text are separable:
- best result:

\[
O\left(\min\left\{\frac{l_{T'}}{l_T}, \frac{n_T}{l_T} \right\} + \frac{l_{T'}}{\log l_T} + \frac{n_T}{\log n_T} \right)
\]

- time and $O(n_T)$ space algorithm.
- our contribution: $O(n^2k)$ time and $O(nk)$ space algorithm.

the pattern is a bivincular separable pattern:
- \emptyset
the pattern is separable:
- best result: $O(kn^4)$ time and $O(kn^3)$ space algorithm.
- our contribution: $O(kn^4)$ time and $O(\log(k)n^3)$ space algorithm.

the pattern and the text are separable:
- best result:
 \[
 O\left(\min\left\{ \frac{l_{T'}}{l_T}, \frac{n_T}{\log \log n_T + n_T} \right\} \right)
 \]
 time and $O(n_T)$ space algorithm.
- our contribution: $O(n^2k)$ time and $O(nk)$ space algorithm.

the pattern is a bivincular separable pattern:
- \emptyset
- $O(n^6k)$ time and space algorithm.
Results.

- Longest common separable permutation with at least one separable permutation:
Results.

- Longest common separable permutation with at least one separable permutation:
 - best result: $O(n^8)$ time and space algorithm.
Introduction

Results.

- Longest common separable permutation with at least one separable permutation:
 - best result: $O(n^8)$ time and space algorithm.
 - our contribution: $O(n^6 k)$ time and $O(n^4 \log k)$ space algorithm.
Results.

- Longest common separable permutation with at least one separable permutation:
 - best result: $O(n^8)$ time and space algorithm.
 - our contribution: $O(n^6k)$ time and $O(n^4 \log k)$ space algorithm.
- Unshuffling of a permutation into two separable patterns:
Results.

- Longest common separable permutation with at least one separable permutation:
 - best result: $O(n^8)$ time and space algorithm.
 - our contribution: $O(n^6k)$ time and $O(n^4 \log k)$ space algorithm.
- Unshuffling of a permutation into two separable patterns:
 - \emptyset
Results.

- Longest common separable permutation with at least one separable permutation:
 - best result: $O(n^8)$ time and space algorithm.
 - our contribution: $O(n^6k)$ time and $O(n^4 \log k)$ space algorithm.

- Unshuffling of a permutation into two separable patterns:
 - \emptyset
 - our contribution: $O(nk^3\ell^2)$ algorithm.
Plan

1. Introduction
2. Definition
3. Core of The Algorithms
Rectangle of a Permutation

A rectangle is a subsequence of the permutation, define as the subsequence of elements that are between a certain range of index, and the elements are not bigger than a given value and the elements are not smaller than a given value.
A rectangle in 391867452.

The rectangle is the permutation 987.
Direct Sum and Skew Sum

Direct Sum
Given π_1 of size n_1, π_2 of size n_2, $\pi_1 \oplus \pi_2 = $
$\pi_1[1] \pi_1[2] \ldots \pi_1[n_1](\pi_2[1] + n_1)(\pi_2[2] + n_1) \ldots (\pi_2[n_2] + n_1)$.

Skew Sum
Given π_1 of size n_1, π_2 of size n_2, $\pi_1 \ominus \pi_2 = $(
Example: Direct Sum
Example: Direct Sum

\[
\oplus
\]

Both Emerite Neou, Romeo Rizzi, Stéphane Vialette (Université Paris-Est, LIGM (UMR 8049), CNRS, UPEM, ESIEE Paris, ENPC, F-77454, Marne-la-Vallée, France) – {neou,vialette}@univ-mlv.fr, Department of Computer Science, Università degli Studi di Verona, Italy romeo.rizzi@univr.it
Example: Direct Sum
Example: Direct Sum

\[\oplus \]

\begin{align*}
\text{Left side} & \quad \oplus \quad \text{Right side} \\
\text{Diagram 1} & \quad = \quad \text{Diagram 2}
\end{align*}
Example: Skew Sum
Example: Skew Sum

\[\begin{align*}
\text{Definition} \\
\text{Example: Skew Sum}
\end{align*} \]
Example: Skew Sum
Example: Skew Sum
Separable Permutation

\(\pi \) is a separable permutation
Separable Permutation

\[\pi \text{ is a separable permutation} \]

\[\iff \]

\[\pi = 1 \]

OR

\[\pi = \pi_1 \oplus \pi_2 \text{ or } \pi = \pi_1 \ominus \pi_2, \text{ with } \pi_1 \text{ and } \pi_2 \text{ are separable permutation} \]
Separable Permutationn.

Separable Permutation

\[\pi \text{ is a separable permutation} \]

\[\iff \]

\[\pi = 1 \]

OR

\[\pi = \pi_1 \oplus \pi_2 \text{ or } \pi = \pi_1 \ominus \pi_2, \text{ with } \pi_1 \text{ and } \pi_2 \text{ are separable permutation} \]
Definition

Example: decomposition of 214376589

- 214376589.

\[
\begin{align*}
2143 &= \text{red}(21) \oplus \text{red}(43) = 21 \oplus 21, \\
21 &= \text{red}(2) \ominus \text{red}(1) = 1 \ominus 1, \\
32145 &= \text{red}(321) \oplus \text{red}(45) = 321 \oplus 12, \\
765 &= \text{red}(7) \ominus (\text{red}(6) \ominus \text{red}(5)) = (1 \ominus (1 \ominus 1)), \\
89 &= \text{red}(8) \oplus \text{red}(9) = 1 \oplus 1.
\end{align*}
\]
Example: decomposition of 214376589

- 214376589.
- \(\text{red}(2143) \oplus \text{red}(76589) = 2143 \oplus 32145. \)
Example: decomposition of 214376589

- 214376589.
- \(\text{red}(2143) \oplus \text{red}(76589) = 2143 \oplus 32145. \)
- 2143 = \(\text{red}(21) \oplus \text{red}(43) = 21 \oplus 21. \)
Example: decomposition of 214376589

- 214376589.
- \(\text{red}(2143) \oplus \text{red}(76589) = 2143 \oplus 32145. \)
- 2143 = \(\text{red}(21) \oplus \text{red}(43) = 21 \oplus 21. \)
- 21 = \(\text{red}(2) \ominus \text{red}(1) = 1 \ominus 1. \)
Example: decomposition of 214376589

- 214376589.
- \(\text{red}(2143) \oplus \text{red}(76589) = 2143 \oplus 32145 \).
- 2143 = \(\text{red}(21) \oplus \text{red}(43) = 21 \oplus 21 \).
- 21 = \(\text{red}(2) \ominus \text{red}(1) = 1 \ominus 1 \).
- 32145 = \(\text{red}(321) \oplus \text{red}(45) = 321 \oplus 12 \).
Example: decomposition of 214376589

- 214376589.
- \(\text{red}(2143) \oplus \text{red}(76589) = 2143 \oplus 32145. \)
- 2143 = \(\text{red}(21) \oplus \text{red}(43) = 21 \oplus 21. \)
- 21 = \(\text{red}(2) \ominus \text{red}(1) = 1 \ominus 1. \)
- 32145 = \(\text{red}(321) \oplus \text{red}(45) = 321 \oplus 12. \)
- 765 = \(\text{red}(7) \ominus (\text{red}(6) \ominus \text{red}(5)) = (1 \ominus (1 \ominus 1)). \)
Example: decomposition of 214376589

- 214376589.
- \(\text{red}(2143) \oplus \text{red}(76589) = 2143 \oplus 32145\).
- 2143 = \(\text{red}(21) \oplus \text{red}(43) = 21 \oplus 21\).
- 21 = \(\text{red}(2) \ominus \text{red}(1) = 1 \ominus 1\).
- 32145 = \(\text{red}(321) \oplus \text{red}(45) = 321 \oplus 12\).
- 765 = \(\text{red}(7) \ominus (\text{red}(6) \ominus \text{red}(5)) = (1 \ominus (1 \ominus 1))\).
- 89 = \(\text{red}(8) \oplus \text{red}(9) = 1 \oplus 1\).
Plan

1. Introduction

2. Definition

3. Core of The Algorithms
Dynamic Programming:

- To solve an instance of the problem, we only need to solve smaller and easier instances of the problem, until the instances become trivial.
Trivial Case

The pattern 1 occurs in a rectangle if and only if the rectangle is not empty.
Algorithm

To decide whether $\sigma = \sigma_1 \oplus \sigma_2$ occurs in a rectangle R:
Algorithm

To decide whether $\sigma = \sigma_1 \oplus \sigma_2$ occurs in a rectangle R:

For every pair of rectangles R_1 and R_2 such that R_1 is left below R_2:

1. Decide whether σ_1 occurs in R_1.
2. Decide whether σ_2 occurs in R_2.
3. Conclude that σ occurs in R.
To decide whether $\sigma = \sigma_1 \oplus \sigma_2$ occurs in a rectangle R:

For every pair of rectangles R_1 and R_2 such that R_1 is left below R_2:
- decide whether σ_1 occurs in R_1
- decide whether σ_2 occurs in R_2

conclude that σ occurs in R.
To decide whether $\sigma = \sigma_1 \oplus \sigma_2$ occurs in a rectangle R:

For every pair of rectangles R_1 and R_2 such that R_1 is left below R_2:
- decide whether σ_1 occurs in R_1
- decide whether σ_2 occurs in R_2
Algorithm

To decide whether $\sigma = \sigma_1 \oplus \sigma_2$ occurs in a rectangle R:

For every pair of rectangles R_1 and R_2 such that R_1 is left below R_2:
- decide whether σ_1 occurs in R_1
- decide whether σ_2 occurs in R_2
- conclude that σ occurs in R.
Improvement of the Core

- We do not need to check every pair of rectangles
Improvement of the Core

- We do not need to check every pair of rectangles.
- We do not need every edge of a rectangle.
Conclusion

Open problems:

- Separable permutation and mesh pattern?
Conclusion

Open problems:

- Separable permutation and mesh pattern?
- Av(321) and PPM?
Thank You!