Permutation Pattern Matching for Separable Permutations.

Both Emerite Neou¹, Romeo Rizzi², Stéphane Vialette¹

Université Paris-Est, LIGM (UMR 8049), CNRS, UPEM, ESIEE Paris, ENPC, F-77454, Marne-la-Vallée, France {neou,vialette}@univ-mlv.fr

Department of Computer Science, Università degli Studi di Verona, Italy romeo.rizzi@univr.it

October 20, 2016

Plan

Introduction

2 Definition

Core of The Algorithms

Permutation.

Permutation

Two orders over a finite set.

- Usually the ordered set is a set of integers.
- Written as word $\pi = \pi[1]\pi[2]...\pi[n]$.

Plot of a Permutation.

- We associate a figure to a permutation called a plot.
- Each element of a permutation is represented by the point $(i, \pi[i])$.

Example: the plot of the permutation 3 2 8 5.

Reduced form of a permutation and reduction.

Reduced Form of a Permutation

The elements are the first n integers.

Obtained by reducing a permutation.

• If π is on the set $\{e_1, e_2, \ldots, e_n\}$ where the naturall order is $e_1 < e_2 < \ldots < e_n$, we obtain the reduced form of π by renaming every e_i by i.

• 2 < 3 < 5 < 8

• 2 < 3 < 5 < 8

- 2 < 3 < 5 < 8
- 2 becomes 1

- 2 < 3 < 5 < 8
- 2 becomes 13 becomes 2

- 2 < 3 < 5 < 8
- 2 becomes 1
 - 3 becomes 2
 - 5 becomes 3

- 2 < 3 < 5 < 8
- 2 becomes 1
 - 3 becomes 2
 - 5 becomes 3
 - 8 becomes 4

- 2 < 3 < 5 < 8
- 2 becomes 1
 - 3 becomes 2
 - 5 becomes 3
 - 8 becomes 4
- 3 2 8 5 becomes 2 1 4 3

Occurrence

A mapping ϕ from a permutation pattern σ to a permutation text π is an occurrence of σ in π .

Occurrence

A mapping ϕ from a permutation pattern σ to a permutation text π is an occurrence of σ in π .

$$\iff$$

The mapping is increasing and $\sigma[i] < \sigma[j]$ iff $\pi[\phi(i)] < \pi[\phi(j)]$.

Occurrence

A mapping ϕ from a permutation pattern σ to a permutation text π is an occurrence of σ in π .

$$\iff$$

The mapping is increasing and $\sigma[i] < \sigma[j]$ iff $\pi[\phi(i)] < \pi[\phi(j)]$.

$$\iff$$

The reduced form of the permutation given by the mapped elements is the same as the pattern.

Occurrence

A mapping ϕ from a permutation pattern σ to a permutation text π is an occurrence of σ in π .

$$\iff$$

The mapping is increasing and $\sigma[i] < \sigma[j]$ iff $\pi[\phi(i)] < \pi[\phi(j)]$.

$$\iff$$

The reduced form of the permutation given by the mapped elements is the same as the pattern.

We say that σ occurs in π if such mapping exists.

The mapping that map : • 1 to 2,

- 1 to 2,
- 2 to 3,

- 1 to 2,
- 2 to 3,
- 3 to 5,

- 1 to 2,
- 2 to 3,
- 3 to 5,
- 4 to 6 and

- 1 to 2,
- 2 to 3,
- 3 to 5,
- 4 to 6 and
- 5 to 8

- 1 to 2,
- 2 to 3,
- 3 to 5,
- 4 to 6 and
- 5 to 8

The mapping that map:

- 1 to 2,
- 2 to 3,
- 3 to 5,
- 4 to 6 and
- 5 to 8

is an occurrence because:

• the i^{th} element of the mapping has the same position in the natural order than the i^{th} element in σ .

The mapping that map:

- 1 to 2,
- 2 to 3,
- 3 to 5,
- 4 to 6 and
- 5 to 8

is an occurrence because:

- the i^{th} element of the mapping has the same position in the natural order than the i^{th} element in σ .
- the permutation $\pi[2]\pi[3]\pi[5]\pi[6]\pi[8] = 91675$ is reduced to 51342.

The plot of 51342 and 391867452.

91674 is an occurrence.

Permutation Pattern Matching Problem

Given a pattern σ of size k and a text π of size n, we want to decide whether σ occurs in π .

The problem is NP-Complete (Bose et al. 1993). But

The problem is NP-Complete (Bose et al. 1993). But

• It can be solved in $O(1.79^{O(n)})$ (Ahal et al. 2008).

The problem is NP-Complete (Bose et al. 1993). But

- It can be solved in $O(1.79^{O(n)})$ (Ahal et al. 2008).
- It can be solved in $O(n.2^{O(k^2 \log k)})$: the problem is fixed-parameter tractable parameterized by the size of σ (Guillemot and Marx 2013).

The problem is NP-Complete (Bose et al. 1993). But

- It can be solved in $O(1.79^{O(n)})$ (Ahal et al. 2008).
- It can be solved in $O(n.2^{O(k^2 \log k)})$: the problem is fixed-parameter tractable parameterized by the size of σ (Guillemot and Marx 2013).
- Some variants of this problem are solved in polynomial time.

Variant for Permutation Pattern Matching Problem.

We can consider some variants for PPM-problem :

Variant for Permutation Pattern Matching Problem.

We can consider some variants for PPM-problem :

- Add constraint on the input text or/and pattern.
 - ⇒ pattern or/and text is/are in a class.

Variant for Permutation Pattern Matching Problem.

We can consider some variants for PPM-problem :

- Add constraint on the input text or/and pattern.
 - ⇒ pattern or/and text is/are in a class.
- Add constraint on the occurrence.
 - ⇒ bivincular permutation pattern and mesh permutation pattern.

Our interests.

What we study :

Our interests.

What we study:

• What can we do if the pattern is a separable permutation?

Our interests.

What we study:

- What can we do if the pattern is a separable permutation?
- What can we do if the pattern and the text are separable permutation?

Our interests.

What we study:

- What can we do if the pattern is a separable permutation?
- What can we do if the pattern and the text are separable permutation?
- What can we do if the pattern is a bivincular separable permutation pattern?

• the pattern is separable:

- the pattern is separable:
 - best result : $O(kn^4)$ time and $O(kn^3)$ space algorithm.

- the pattern is separable:
 - best result : $O(kn^4)$ time and $O(kn^3)$ space algorithm.
 - our contribution : $O(kn^4)$ time and $O(\log(k)n^3)$ space algorithm.

- the pattern is separable:
 - best result : $O(kn^4)$ time and $O(kn^3)$ space algorithm.
 - our contribution : $O(kn^4)$ time and $O(\log(k)n^3)$ space algorithm.
- the pattern and the text are separable:

- the pattern is separable:
 - best result : $O(kn^4)$ time and $O(kn^3)$ space algorithm.
 - our contribution : $O(kn^4)$ time and $O(\log(k)n^3)$ space algorithm.
- the pattern and the text are separable:
 - best result :

$$O\left(\min\left\{\begin{array}{l} I_{T'} n_T \\ I_{T'} I_T \log \log n_T + n_T \\ \frac{n_T n_{T'}}{\log n_T} + n_T \log n_T \end{array}\right\}\right)$$

- the pattern is separable:
 - best result : $O(kn^4)$ time and $O(kn^3)$ space algorithm.
 - our contribution : $O(kn^4)$ time and $O(\log(k)n^3)$ space algorithm.
- the pattern and the text are separable:
 - best result :

$$O\left(\min\left\{\begin{array}{l} I_{T'} n_T \\ I_{T'} I_T \log \log n_T + n_T \\ \frac{n_T n_{T'}}{\log n_T} + n_T \log n_T \end{array}\right\}\right)$$

time and $O(n_T)$ space algorithm.

• our contribution : $O(n^2k)$ time and O(nk) space algorithm.

- the pattern is separable:
 - best result : $O(kn^4)$ time and $O(kn^3)$ space algorithm.
 - our contribution : $O(kn^4)$ time and $O(\log(k)n^3)$ space algorithm.
- the pattern and the text are separable:
 - best result :

$$O\left(\min\left\{\begin{array}{l} I_{T'} n_T \\ I_{T'} I_T \log \log n_T + n_T \\ \frac{n_T n_{T'}}{\log n_T} + n_T \log n_T \end{array}\right\}\right)$$

- our contribution : $O(n^2k)$ time and O(nk) space algorithm.
- the pattern is a bivincular separable pattern:

- the pattern is separable:
 - best result : $O(kn^4)$ time and $O(kn^3)$ space algorithm.
 - our contribution : $O(kn^4)$ time and $O(\log(k)n^3)$ space algorithm.
- the pattern and the text are separable:
 - best result :

$$O\left(\min\left\{\begin{array}{l} I_{T'} n_T \\ I_{T'} I_T \log \log n_T + n_T \\ \frac{n_T n_{T'}}{\log n_T} + n_T \log n_T \end{array}\right\}\right)$$

- our contribution : $O(n^2k)$ time and O(nk) space algorithm.
- the pattern is a bivincular separable pattern:
 - Ø

- the pattern is separable:
 - best result : $O(kn^4)$ time and $O(kn^3)$ space algorithm.
 - our contribution : $O(kn^4)$ time and $O(\log(k)n^3)$ space algorithm.
- the pattern and the text are separable:
 - best result :

$$O\left(\min\left\{\begin{array}{l} I_{T'} n_T \\ I_{T'} I_T \log \log n_T + n_T \\ \frac{n_T n_{T'}}{\log n_T} + n_T \log n_T \end{array}\right\}\right)$$

- our contribution : $O(n^2k)$ time and O(nk) space algorithm.
- the pattern is a bivincular separable pattern:
 - Ø
 - $O(n^6k)$ time and space algorithm.

• Longest common separable permutation with at least one separable permutation:

- Longest common separable permutation with at least one separable permutation:
 - best result : $O(n^8)$ time and space algorithm.

- Longest common separable permutation with at least one separable permutation:
 - best result : $O(n^8)$ time and space algorithm.
 - our contribution : $O(n^6k)$ time and $O(n^4 \log k)$ space algorithm.

- Longest common separable permutation with at least one separable permutation:
 - best result : $O(n^8)$ time and space algorithm.
 - our contribution : $O(n^6k)$ time and $O(n^4 \log k)$ space algorithm.
- Unshuffling of a permutation into two separable patterns:

- Longest common separable permutation with at least one separable permutation:
 - best result : $O(n^8)$ time and space algorithm.
 - our contribution : $O(n^6k)$ time and $O(n^4 \log k)$ space algorithm.
- Unshuffling of a permutation into two separable patterns:
 - Ø

- Longest common separable permutation with at least one separable permutation:
 - best result : $O(n^8)$ time and space algorithm.
 - our contribution : $O(n^6k)$ time and $O(n^4 \log k)$ space algorithm.
- Unshuffling of a permutation into two separable patterns:
 - Ø
 - our contribution : $O(nk^3\ell^2)$ algorithm.

Plan

Introduction

2 Definition

Core of The Algorithms

Rectangle

Recangle of a Permutation

A rectangle is a subsequence of the permutation, define as the subsequence of elements that are between a certain range of index, and the elements are not bigger than a given value and the elements are not smaller than a given value.

A rectangle in 391867452.

The rectangle is the permutation 987.

Direct Sum and Skew Sum

Direct Sum

Given
$$\pi_1$$
 of size n_1 , π_2 of size n_2 , $\pi_1 \oplus \pi_2 = \pi_1[1]\pi_1[2]\dots\pi_1[n_1](\pi_2[1]+n_1)(\pi_2[2]+n_1)\dots(\pi_2[n_2]+n_1).$

Skew Sum

Given
$$\pi_1$$
 of size n_1 , π_2 of size n_2 , $\pi_1 \ominus \pi_2 = (\pi_1[1] + n_2)(\pi_1[2] + n_2) \dots (\pi_1[n_1] + n_2)\pi_2[1]\pi_2[2] \dots \pi_2[n_2].$

Separable Permutationn.

Separable Permutation

 $\boldsymbol{\pi}$ is a separable permutation

Separable Permutationn.

Separable Permutation

 π is a separable permutation

$$\iff$$

$$\pi = 1$$

OR

 $\pi=\pi_1\oplus\pi_2$ or $\pi=\pi_1\ominus\pi_2$, with π_1 and π_2 are separable permutation

Separable Permutationn.

Separable Permutation

 π is a separable permutation

$$\iff$$

$$\pi = 1$$

OR

 $\pi=\pi_1\oplus\pi_2$ or $\pi=\pi_1\ominus\pi_2$, with π_1 and π_2 are separable permutation

Example: decomposition of 214376589

• 214376589.

Example: decomposition of 214376589

- 214376589.
- $red(2143) \oplus red(76589) = 2143 \oplus 32145$.

Example: decomposition of 214376589

- 214376589.
- $red(2143) \oplus red(76589) = 2143 \oplus 32145$.
- $2143 = red(21) \oplus red(43) = 21 \oplus 21$.

- 214376589.
- $red(2143) \oplus red(76589) = 2143 \oplus 32145$.
- $2143 = red(21) \oplus red(43) = 21 \oplus 21$.
- $21 = red(2) \ominus red(1) = 1 \ominus 1$.

- 214376589.
- $red(2143) \oplus red(76589) = 2143 \oplus 32145$.
- $2143 = red(21) \oplus red(43) = 21 \oplus 21$.
- $21 = red(2) \ominus red(1) = 1 \ominus 1$.
- $32145 = red(321) \oplus red(45) = 321 \oplus 12$.

- 214376589.
- $red(2143) \oplus red(76589) = 2143 \oplus 32145$.
- $2143 = red(21) \oplus red(43) = 21 \oplus 21$.
- $21 = red(2) \ominus red(1) = 1 \ominus 1$.
- $32145 = red(321) \oplus red(45) = 321 \oplus 12$.
- $765 = red(7) \ominus (red(6) \ominus red(5)) = (1 \ominus (1 \ominus 1)).$

- 214376589.
- $red(2143) \oplus red(76589) = 2143 \oplus 32145$.
- $2143 = red(21) \oplus red(43) = 21 \oplus 21$.
- $21 = red(2) \ominus red(1) = 1 \ominus 1$.
- $32145 = red(321) \oplus red(45) = 321 \oplus 12$.
- $765 = red(7) \ominus (red(6) \ominus red(5)) = (1 \ominus (1 \ominus 1)).$
- $89 = red(8) \oplus red(9) = 1 \oplus 1$.

Plan

Introduction

2 Definition

3 Core of The Algorithms

Dynamic Programming

Dynamic Programming:

• To solve an instance of the problem, we only need to solve smaller and easier instances of the problem, until the instances become trivial.

Trivial Case

The pattern 1 occurs in a rectangle if and only if the rectangle is not empty.

To decide whether $\sigma = \sigma_1 \oplus \sigma_2$ occurs in a rectangle R:

To decide whether $\sigma = \sigma_1 \oplus \sigma_2$ occurs in a rectangle R:

For every pair of rectangles R_1 and R_2 such that R_1 is left below R_2 :

To decide whether $\sigma = \sigma_1 \oplus \sigma_2$ occurs in a rectangle R:

For every pair of rectangles R_1 and R_2 such that R_1 is left below R_2 : decide whether σ_1 occurs in R_1

To decide whether $\sigma = \sigma_1 \oplus \sigma_2$ occurs in a rectangle R:

For every pair of rectangles R_1 and R_2 such that R_1 is left below R_2 : decide whether σ_1 occurs in R_1 decide whether σ_2 occurs in R_2

To decide whether $\sigma = \sigma_1 \oplus \sigma_2$ occurs in a rectangle R:

For every pair of rectangles R_1 and R_2 such that R_1 is left below R_2 : decide whether σ_1 occurs in R_1 decide whether σ_2 occurs in R_2 conclude that σ occurs in R_2 .

Improvement of the Core

We do not need to check every pair of rectangles

Improvement of the Core

- We do not need to check every pair of rectangles
- We do not need every edge of a rectangle.

Conclusion

Open problems:

• Separable permutation and mesh pattern?

Conclusion

Open problems:

- Separable permutation and mesh pattern?
- Av(321) and PPM?

Thank You!