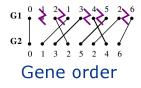
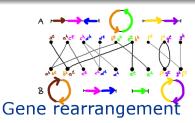


Gene Family Assignment-Free Comparative Genomics

Daniel Doerr Annelyse Thévenin Jens Stoye


Genome Informatics, Faculty of Technology and Institute for Bioinformatics, Center for Biotechnology (CeBiTec), Bielefeld University, Germany



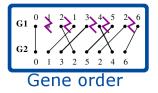
Context Previous models Gene family assignment

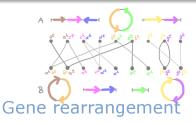
Applications in Comparative Genomics

Comparative Genomics

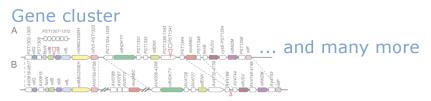
Daniel Doerr, Annelyse Thévenin, Jens Stoye

Context Previous models Gene family assignment


Comparative genomics


Prevalent abstract datastructure in comparative genomics is based on homology:

- $S_1: \quad \overset{\circ}{0} \quad |\overset{\circ}{2} \\ \begin{pmatrix} \overset{\circ}{2} \\ 13 \end{pmatrix} \stackrel{\bullet}{7} \\ \begin{pmatrix} \overset{\circ}{1} \\ 1 \end{pmatrix} \stackrel{\circ}{5} \\ \begin{pmatrix} \overset{\circ}{2} \\ 1 \end{pmatrix} \stackrel{\circ}{5} \\ \begin{pmatrix} \overset{\circ}{2} \\ 1 \end{pmatrix} \stackrel{\circ}{5} \\ \begin{pmatrix} \overset{\circ}{2} \\ 1 \end{pmatrix} \stackrel{\circ}{6} \\ \begin{pmatrix} \overset{\circ}{9} \\ 1 \end{pmatrix} \stackrel{\circ}{8} \\ \begin{pmatrix} \overset{\circ}{2} \\ 1 \end{pmatrix} \stackrel{\circ}{7} \\ \begin{pmatrix} \overset{\circ}{3} \\ 1 \end{pmatrix} \stackrel{\circ}{15} \\ \begin{pmatrix} \overset{\circ}{1} \\ 1 \end{pmatrix} \stackrel{\circ}{1} \\ \begin{pmatrix} \overset{\circ}{1} \\ 1 \end{pmatrix} \stackrel{\circ}{1}$
- $s_3: \quad \stackrel{\circ}{0} \quad |\stackrel{1}{\overline{7}} \\ \left(\stackrel{\circ}{\overline{10}} \right) \left(\stackrel{\circ}{\overline{10}} \right) \left(\stackrel{\circ}{\overline{10}} \right) \left(\stackrel{\circ}{\overline{10}} \right) \left(\stackrel{\circ}{\overline{18}} \right) \left(\stackrel{\circ}{\overline{9}} \right) \left(\stackrel{\circ}{\overline{8}} \right) \left(\stackrel{\circ}{\overline{6}} \right) \left(\stackrel{1}{\overline{4}} \right) \left(\stackrel{1}{\overline{11}} \right) \left(\stackrel{1}{\overline{5}} \right) \left(\stackrel{1}{\overline{20}} \right) \left(\stackrel{1}{\overline{3}} \right) \left(\stackrel{1}{\overline{5}} \right) \left(\stackrel{1}{\overline{20}} \right) \left(\stackrel{1}{\overline{3}} \right) \left(\stackrel{1}{\overline{5}} \right) \left(\stackrel{1}{\overline{20}} \right) \left(\stackrel{1}{\overline{5}} \right) \left(\stackrel{1}{\overline{5} \right) \left(\stackrel{1}{\overline{5}} \right) \left(\stackrel{1}{\overline{5} \right) \left(\stackrel{1}{\overline{5}} \right) \left(\stackrel{1}{\overline{5} \right) \left(\stackrel{1}{\overline{5}$


Context Previous models Gene family assignment

Comparing gene order of two genomes

Comparative Genomics

Daniel Doerr, Annelyse Thévenin, Jens Stoye

Context Previous models Gene family assignment

Comparing gene order of two genomes

Two genomes without duplication

$$G_1$$
 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
 G_2 +0 +7 +3 -5 -4 +6 +1 +2 -8 +9

A chromosome is a signed permutation.

Context Previous models Gene family assignment

Number of adjacencies

A measure of similarity

$$G_1$$
 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
 G_2 +0 +7 +3 -5 -4 +6 +1 +2 -8 +9

 \Rightarrow 2 adjacencies between G_1 and G_2 .

Introduction Context New model Previous models Evaluation Gene family assi

Number of breakpoints [Sankoff and Blanchette, 1997]

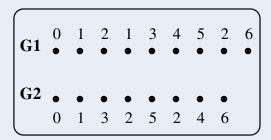
A distance measure

$$G_1 + 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9$$

$$G_2 + 0 + 7 + 3 - 5 - 4 + 6 + 1 + 2 - 8 + 9$$

Dual measure to the number of adjacencies:

$$n = \# \mathtt{bkp}(G_1, G_2) + \# \mathtt{adj}(G_1, G_2) + 1$$


 \Rightarrow 7 breakpoints

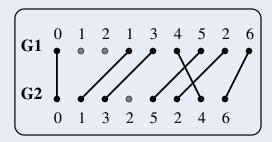
Context Previous models Gene family assignment

Comparison of two genomes

Two genomes with duplications

A chromosome is a sequence over a set of signed characters.

We need to find a matching between both genomes.


Daniel Doerr, Annelyse Thévenin, Jens Stoye

Context Previous models Gene family assignment

Comparison of two genomes

Two genomes with duplications

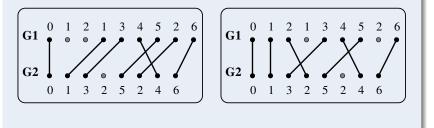
A chromosome is a sequence over a set of signed characters.

We need to find a matching between both genomes.

Context Previous models Gene family assignment

Matching models

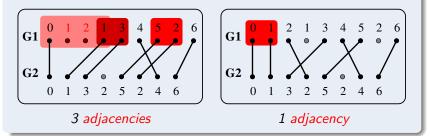
There are 3 matching models:


- Exemplar saturate exactly one gene of each gene family [Sankoff, 1999]
- Maximum saturate as many genes as possible of each gene family [Tang and Moret, 2003].

Intermediate - saturate at least one gene of each gene family [Angibaud *et al.*, 2008]

Context Previous models Gene family assignment

Number of adjacencies varies in matchings


Example: Number of adjacencies in two different matchings under the **exemplar model**:

Context Previous models Gene family assignment

Number of adjacencies varies in matchings

Example: Number of adjacencies in two different matchings under the **exemplar model**:

Context Previous models Gene family assignment

Maximizing the number of adjacencies under one of these three models is a **NP-hard** problem.

There exists **exact** (and realistic) **programs and heuristics** to resolve it. [Angibaud *et al.*, 2008].

Context Previous models Gene family assignment

Gene family consequences

Pros

- + Subsequent analyses produce **reasonable results**.
- + Facilitates **simple** but **powerful** datastructure.
- + Gene family information: Many databases and tools available.

Cons

- Wrong gene family assignments produce incorrect results in subsequent analyses.
- Datastructure: Strong and weak homology assumptions are indifferent.
- Gene family concept **not** applicable for all biological phenomena.

Context Previous models Gene family assignment

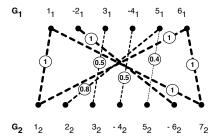
Gene family consequences

Pros

- + Subsequent analyses produce **reasonable results**.
- + Facilitates **simple** but **powerful** datastructure.
- + Gene family information: Many databases and tools available.

Cons

- Wrong gene family assignments produce incorrect results in subsequent analyses.
- Datastructure: Strong and weak homology assumptions are indifferent.
- Gene family concept **not applicable** for all biological phenomena.


Gene family assignment free Our strategy Algorithms

New model Gene family assignment-free

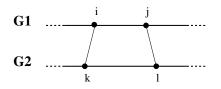
Gene family assignment free Our strategy Algorithms

Gene family assignment free

Normalized similarity measure: σ : $G_1 \times G_2 \rightarrow [0, 1]$

Datastructure is an ordered weighted bipartite graph.

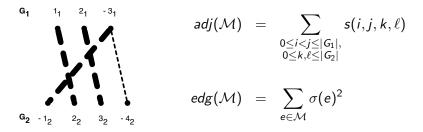
Gene family assignment free Our strategy Algorithms


Conserved Adjacencies

Scoring scheme for adjacencies

Adjacencies in a matching \mathcal{M} are scored according to the measure σ of the corresponding edges as follows:

$$s(i,j,k,\ell) = \begin{cases} \sigma(G_1[i], G_2[k]) \cdot \sigma(G_1[j], G_2[\ell]) & \text{if adjacent } * \\ 0 & \text{otherwise} \end{cases}$$


*adjacent: $(G_1[i], G_1[j])$ and $(G_2[k], G_2[\ell])$ are saturated and consecutive (taking sign into account)

Gene family assignment free Our strategy Algorithms

Adjacencies or edges?

Quantifying the quality of a matching $\mathcal{M}:$ Adjacencies vs edges.

Gene family assignment free Our strategy Algorithms

Studied problem

Family-free(FF)-Adjacencies problem

Given two genomes G_1 and G_2 and some $\alpha \in]0, 1]$, find an intermediate matching \mathcal{M} such that at least one edge per connected component is covered and the following formula is maximized:

$$\mathcal{F}_{lpha}(\mathcal{M}) = lpha \cdot \mathit{adj}(\mathcal{M}) + (1 - lpha) \cdot \mathit{edg}(\mathcal{M})$$
 .

Generalization of intermediate (and maximum) matching

Lemma (Generalization scheme)

Let the graph between two genomes be such that all edges have edge weight 1 and all connected components are fully connected.

Then for maximizing \mathcal{F}_{α} with

- $\alpha = 1$ is equivalent maximizing the number of adjacencies under the intermediate matching model;
- $\alpha \rightarrow 0$ is equivalent maximizing the number of adjacencies under the maximum matching model

with gene family assignment.

 \Rightarrow **NP-hard** problem.

Gene family assignment free Our strategy Algorithms

Goal: Family-free comparative genome analysis.

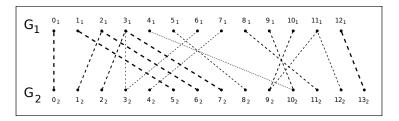
Strategy: Resolve a particular case: For a given pair of genomes G_1 and G_2 , find optimal solution for FF-adjacencies problem.

Method: Exact algorithm and heuristic.

Gene family assignment free Our strategy Algorithms

Algorithms

Gene family assignment free Our strategy Algorithms



FFAdj-Int Exact algorithm, implemented as pseudo-boolean
 program, based on previous work
 [Angibaud et al., 2008]

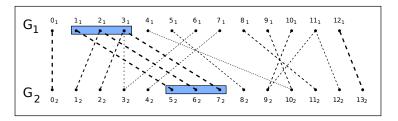
FFAdj-MCS Heuristic, based on LCS - Longest Common Substring [Marron *et al.*, 2004]

Heuristic FFAdj-MCS

Based on LCS - Longest Common Substring [Marron et al., 2004]

Heuristic FFAdj-MCS

Compute S: The Maximum Common Substring (MCS) up to a reversal.


Map all the genes of *S* accordingly.

Remove genes that cannot be matched any longer according to the model. Grown up previous MCS if possible.

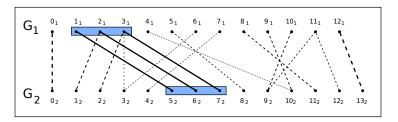
Iterate the process until saturation.

Heuristic FFAdj-MCS

Based on LCS - Longest Common Substring [Marron et al., 2004]

Heuristic FFAdj-MCS

Compute S: The Maximum Common Substring (MCS) up to a reversal.


Map all the genes of *S* accordingly.

Remove genes that cannot be matched any longer according to the model. Grown up previous MCS if possible.

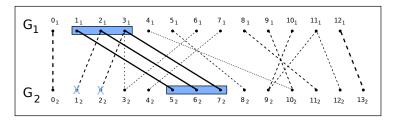
Iterate the process until saturation.

Heuristic FFAdj-MCS

Based on LCS - Longest Common Substring [Marron et al., 2004]

Heuristic FFAdj-MCS

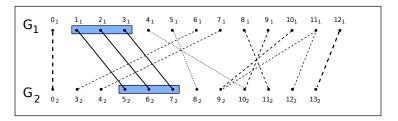
D Compute S: The Maximum Common Substring (MCS) up to a reversal.


Map all the genes of *S* accordingly.

Remove genes that cannot be matched any longer according to the model. Grown up previous MCS if possible.

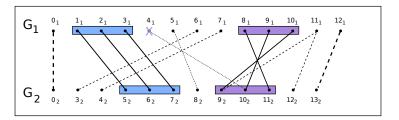
Iterate the process until saturation.

Heuristic FFAdj-MCS


Based on LCS - Longest Common Substring [Marron et al., 2004]

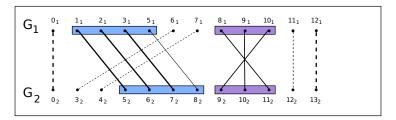
- Compute S: The Maximum Common Substring (MCS) up to a reversal.
- 2 Map all the genes of S accordingly.
- Remove genes that cannot be matched any longer according to the model. Grown up previous MCS if possible.
 - Iterate the process until saturation.

Heuristic FFAdj-MCS


Based on LCS - Longest Common Substring [Marron et al., 2004]

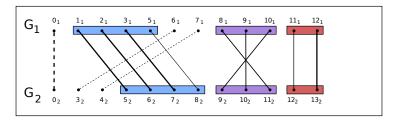
- Compute S: The Maximum Common Substring (MCS) up to a reversal.
- 2 Map all the genes of S accordingly.
- Remove genes that cannot be matched any longer according to the model. Grown up previous MCS if possible.
 - Iterate the process until saturation.

Heuristic FFAdj-MCS


Based on LCS - Longest Common Substring [Marron et al., 2004]

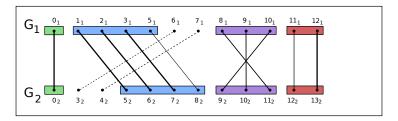
- Compute S: The Maximum Common Substring (MCS) up to a reversal.
- 2) Map all the genes of S accordingly.
- Remove genes that cannot be matched any longer according to the model. Grown up previous MCS if possible.
- Iterate the process until saturation.

Heuristic FFAdj-MCS


Based on LCS - Longest Common Substring [Marron et al., 2004]

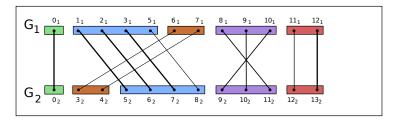
- Compute S: The Maximum Common Substring (MCS) up to a reversal.
- Map all the genes of S accordingly.
- Remove genes that cannot be matched any longer according to the model. Grown up previous MCS if possible.
- Iterate the process until saturation.

Heuristic FFAdj-MCS


Based on LCS - Longest Common Substring [Marron et al., 2004]

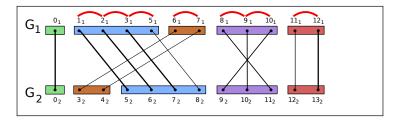
- Compute S: The Maximum Common Substring (MCS) up to a reversal.
- 2) Map all the genes of S accordingly.
- Remove genes that cannot be matched any longer according to the model. Grown up previous MCS if possible.
- Iterate the process until saturation.

Heuristic FFAdj-MCS


Based on LCS - Longest Common Substring [Marron et al., 2004]

- Compute S: The Maximum Common Substring (MCS) up to a reversal.
- Map all the genes of S accordingly.
- Remove genes that cannot be matched any longer according to the model. Grown up previous MCS if possible.
- Iterate the process until saturation.

Heuristic FFAdj-MCS


Based on LCS - Longest Common Substring [Marron et al., 2004]

- Compute S: The Maximum Common Substring (MCS) up to a reversal.
- Map all the genes of S accordingly.
- Remove genes that cannot be matched any longer according to the model. Grown up previous MCS if possible.
- Iterate the process until saturation.

Heuristic FFAdj-MCS

Based on LCS - Longest Common Substring [Marron et al., 2004]

- Compute S: The Maximum Common Substring (MCS) up to a reversal.
- Map all the genes of S accordingly.
- Remove genes that cannot be matched any longer according to the model. Grown up previous MCS if possible.
- Iterate the process until saturation.

Data Evaluation of our algorithm Evaluation of the family-free model Conclusions

Evaluation of our methods

Data Evaluation of our algorithm Evaluation of the family-free model Conclusions

Experimentation

Dataset

- 12 γ -proteobacteria complete genomes,
- Size: Between 564 and 5571 genes,
- Already used in [Angibaud et al., 2008],
- 7.6% of duplicated genes.

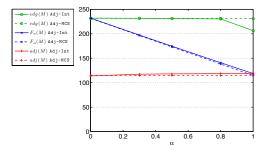
- The parameter α is in {0.001, 0.3, 0.5, 0.8, 1}.
- Pairwise normalized similarities σ were obtained using the Relative Reciprocal BLAST Score (RRBS)
- The solver used is CPLEX

http://www.ilog.com/products/cplex.

Data Evaluation of our algorithm Evaluation of the family-free model Conclusions

Exact algorithm results

- For **40 out of 66 pairs of genomes** we could solve the pseudo-boolean program for all values of α (few seconds by comparison)
- We do **not obtain all exact results** because to the lack of sufficient memory, in particular for similar and long genomes



Data Evaluation of our algorithm Evaluation of the family-free model Conclusions

Results of the heuristic FFAdj-MCS

Quality: The heuristic FFAdj-MCS deviates in the objective by less than 3% (between 0.2% for $\alpha = 0.001$ and 2.9% for $\alpha = 1$).

Time: Few minutes.

Data Evaluation of our algorithm Evaluation of the family-free model Conclusions

Comparison with previous results

With or without gene family assign

Although the number of adjacencies is artificially increased in the gene family assignment study (the genes are unsigns), we observed **the same number of adjacencies** relative to the size of the matching (which increase) in the results of FFAdj-Int (for $\alpha = 1$).

Data Evaluation of our algorithm Evaluation of the family-free model Conclusions

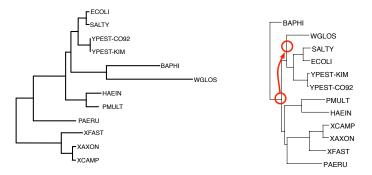
Definition

Distance in phylogenetic reconstruction

Normalized distance based on previous observations:

$$\Delta(\mathcal{M}) = rac{ extsf{edg}(\mathcal{M}) - extsf{adj}(\mathcal{M}) - 1}{ extsf{edg}(\mathcal{M})}$$

We used **Neighbor Joining** method for inferring phylogenetic trees.


Data Evaluation of our algorithm Evaluation of the family-free model Conclusions

Reconstructed trees

True phylogeny [Lerat, 2003]

Reconstructed tree

(Robinson-Foulds distance: 2)

This branch is known to be particularly hard to reconstruct since the two organisms diverged far from each other.

Introduction New model Evaluation	Data Evaluation of our algorithm Evaluation of the family-free model Conclusions
---	--

Conclusions

- Idea: Direct analysis of genomes without prior assignment of gene families,
- Practical case: Find a matching optimizing similarity between two genomes,
 - Results: Exact algorithm, efficient for small genomes, and a good heuristic,
 - Evaluation: Free family assignment gene improve the comparison.

Future works

- Improve the exact algorithm to reduce the required memory
- Develop a hybrid heuristic
- Deep study of the measure σ
- Apply gene family assignment-free strategy to **other practical cases**

Data Evaluation of our algorithm Evaluation of the family-free mode Conclusions

Acknowledgments

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

