DNA evolution, Automata and Clumps

Pierre Nicodème

CNRS - LIPN Team CALIN, University Paris-North, Villetaneuse

Biological Motivation

- Promoters are DNA sequences located upstream of the gene they regulate; regulation can be positive for enhancers or negative for repressors.
- The promoters contain binding sites for regulatory proteins such as Transcription Factors (TFs) that are short stretches of DNA.

Biological Motivation

- Promoters are DNA sequences located upstream of the gene they regulate; regulation can be positive for enhancers or negative for repressors.
- The promoters contain binding sites for regulatory proteins such as Transcription Factors (TFs) that are short stretches of DNA.
- Waiting time: how long it takes for a Transcription Factor to appear in a promoter under a probabilistic model of evolution helps understanding the overall evolution of promoters within species and between species?

From infinitesimal to discrete evolution model

- $\mathbb{Q}(t) d t$ evolution matrix for infinitesimal time
- $\mathbb{P}(t)$ evolution matrix from time x and time $x+t$

$$
\mathbb{P}(t)=e^{\mathbb{Q}(t)} \quad(\text { Karlin-Taylor 1975) }
$$

- $\mathbb{P}(1)=\left(\pi_{\alpha \rightarrow \beta}\right)$ evolution matrix for one generation (20 years), $\quad \alpha, \beta \in\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$

Initial $\nu(\alpha)$ and Substitution Probabilities $\pi_{\alpha \rightarrow \beta}$

α	$\nu(\alpha)$
A	0.23889
C	0.26242
G	0.25865
T	0.24004

substitution probability $\pi_{\alpha \rightarrow \beta}$ for one generation (20 years)

A	\rightsquigarrow	A	0.9999999763
A	\rightsquigarrow	C	$4.54999994943 \times 10^{-9}$
A	\rightsquigarrow	G	$1.57499995613 \times 10^{-8}$
A	\rightsquigarrow	T	$3.40000001733 \times 10^{-9}$
C	\rightsquigarrow	A	$6.14999993408 \times 10^{-9}$
C	\rightsquigarrow	C	0.99999996495
C	\rightsquigarrow	G	$7.14999984731 \times 10^{-9}$
C	\rightsquigarrow	T	$2.17499993935 \times 10^{-8}$
G	\rightsquigarrow	A	$2.17499993935 \times 10^{-8}$
G	\rightsquigarrow	C	$7.14999984731 \times 10^{-9}$
G	\rightsquigarrow	G	0.99999996495
G	\rightsquigarrow	T	$6.14999993408 \times 10^{-9}$
T	\rightsquigarrow	A	$3.40000001733 \times 10^{-9}$
T	\rightsquigarrow	C	$1.57499995613 \times 10^{-8}$
T	\rightsquigarrow	G	$4.54999994943 \times 10^{-9}$
T	\rightsquigarrow	T	0.9999999763

Probability of occurrence of a k-mer at time 1

- $S_{n}(0)$ random DNA sequence of length n at time 0
- $S_{n}(1)$ sequence obtained from $S_{n}(0)$ by evolution at time 1
- b a k-mer (word of length k over $\mathcal{A}=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$)
- $\mathfrak{P}_{n}(b)$ probability that b
- occurs at time 1
- while not occurring at time 0

$$
\mathfrak{P}_{n}(b)=\mathbb{P}\left(b \in S_{n}(1) \mid b \notin S_{n}(0)\right)
$$

Probability of occurrence of a k-mer at time 1

- $S_{n}(0)$ random DNA sequence of length n at time 0
- $S_{n}(1)$ sequence obtained from $S_{n}(0)$ by evolution at time 1
- b a k-mer (word of length k over $\mathcal{A}=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$)
- $\mathfrak{P}_{n}(b)$ probability that b
- occurs at time 1
- while not occurring at time 0

$$
\mathfrak{P}_{n}(b)=\mathbb{P}\left(b \in S_{n}(1) \mid b \notin S_{n}(0)\right)
$$

Expectation of the Waiting time $\mathfrak{E}_{n}(b)$

$$
\mathfrak{E}_{n}(b) \approx \frac{1}{\mathfrak{P}_{n}(b)} \quad(\text { geometric distribution - BehVin2010) }
$$

Plan of the talk

Different computations of \mathfrak{P}_{n}

1. Behrens-Vingron (2010)

- Approach neglecting words correlation.
- Efficient computation of \mathfrak{P}_{n} with respect to this assumption.

2. Behrens-Nicaud-P.N. (2012)

- Rigorous and efficient approach by automata.
- Approach hiding the quasi-linear behaviour of \mathfrak{P}_{n}

3. P.N. (NCMA2012)

- Non-efficient approach by clump analysis, either by combinatorics of words or by automata.
- Proof by singularity analysis of the quasi-linear behaviour of \mathfrak{P}_{n}

Behrens-Vingron 2010

- $d^{+}(b)$ neighbors of b by substitution

Behrens-Vingron 2010

- $d^{+}(b)$ neighbors of b by substitution
$S(0) \sim \overbrace{}^{\nu(\alpha)}$

$S(1)$
$\pi_{\alpha \rightarrow \beta}\{$

$\left\{\begin{array}{l}\mathfrak{P}_{n} \approx \sum_{i=1}^{\lfloor n / k\rfloor}(-1)^{i+1}\binom{n-i(k-1)}{i} \Phi^{i} \\ \Phi=\sum_{\left(a_{1}, \ldots, a_{k}\right) \in \mathcal{A}^{k} \backslash\left\{b_{1}, \ldots, b_{k}\right\}} \nu\left(a_{1}\right) \times \cdots \times \nu\left(a_{k}\right) \cdot \prod_{j=1}^{k} \pi_{a_{i} \rightarrow b_{i}}(1)\end{array}\right.$

Approximations of Behrens-Vingron 2010

- occurrences of b in $S(1)$ do not overlap

Approximations of Behrens-Vingron 2010

- occurrences of b in $S(1)$ do not overlap
- possible unwanted occurrences of b at junctions in $S(0)$

Behrens-Nicaud-P.N. 2012

Construct an automaton

- on the alphabet $\Sigma=\mathcal{A} \times \mathcal{A}$ with $\mathcal{A}=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
- recognizing sequences $S(b)=S(0) \otimes S(1)$
- such that

$$
\begin{aligned}
& \text { 1. } \quad b \notin S(0) \\
& \text { 2. } \quad b \in S(1)
\end{aligned}
$$

Using the Knuth-Morris-Pratt automaton

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathcal{M}_{b}=\left(Q=\{0, \ldots, k\}, \delta_{b}, 0,\{k\}\right) \\
\overline{\mathcal{M}}_{b}=\left(Q=\{0, \ldots, k\}, \delta_{b}, 0,\{0, \ldots, k-1\}\right) \\
\mathcal{N}_{b}=\overline{\mathcal{M}}_{b} \otimes \mathcal{M}_{b}=\left(Q \times Q, \Delta, q_{0}^{\prime}=(0,0), F^{\prime}=\{0, \ldots, k-1\} \times\{k\}\right) \\
\Delta((r, s),(\alpha, \beta))=\left(\delta_{b}(r, \alpha), \delta_{b}(s, \beta)\right)
\end{array}\right.
\end{aligned}
$$

The automaton $\mathcal{N}_{\text {ACC }}=\overline{\mathcal{M}}_{\mathrm{ACC}} \otimes \mathcal{M}_{\mathrm{ACC}}$ with matrix \mathbb{P}

Notations for the transitions:

$$
\begin{cases}A=\binom{A}{A}, & C=\binom{C}{C} \\ \bar{A}=\binom{A}{C}, & \bar{C}=\binom{C}{A}\end{cases}
$$

a missing label of a transition is set to the letter at the bottom of its ending state

is labelled by C

The automaton $\mathcal{N}_{\mathrm{ACC}}=\overline{\mathcal{M}}_{\mathrm{ACC}} \otimes \mathcal{M}_{\mathrm{ACC}}$ with matrix \mathbb{P}

Results for 5-mers of DNA

	BNN		BV		$\frac{\mathbf{E}_{\mathrm{BNN}}\left(T_{1000}\right)}{\mathbf{E}_{\mathrm{BV}}\left(T_{1000}\right)}$
	$\mathbf{E}_{\text {BNN }}\left(T_{1000}\right) / 10^{6}$	Rank	$\mathbf{E}_{\mathrm{BV}}\left(T_{1000}\right) / 10^{6}$	Rank	
CCCCC	9,105	1021	6,304	1	1.44
GGGGG	9,570	1022	6,666	142	1.44
TTTTT	10,401	1023	7,457	993	1.39
AAAAA	10,656	1024	7,654	1024	1.39
CGCGC	7,047	699	6,446	11	1.09
TCCCC	7,076	737	6,477	17	1.09
ССССт	7,076	738	6,477	21	1.09
GCGCG	7,127	787	6,518	31	1.09
CTCTC	7,263	883	6,679	148	1.09
.	...	\ldots	...	\ldots	...

$\left\{\begin{array}{l}4 \% \text { of the } 5 \text {-mers } \\ 0.2 \% \text { of the } 7 \text {-mers } \\ 0.002 \% \text { of the } 10 \text {-mers }\end{array}\right.$
verify $\frac{\mathbf{E}_{\mathrm{BNN}}\left(T_{1000}\right)}{\mathbf{E}_{\mathrm{BV}}\left(T_{1000}\right)}>1.05 \%$

Numerical remarks

- length of promoters $n \in$ [500-2000]
- Mutation probability $\pi=\max \left(\pi_{\alpha \rightarrow \beta}\right) \approx 10^{-9}$

Numerical remarks

- length of promoters $n \in[500-2000]$
- Mutation probability $\pi=\max \left(\pi_{\alpha \rightarrow \beta}\right) \approx 10^{-9}$

We have

- p_{r} : probability of Mutation to b from a r-neighbour of b with $r \geq 2$
$p_{r} \leq n \times \pi^{r} \leq 2000 \times 10^{-18}<2.10^{-6} \times \pi$
- q_{s} : probability that s 1-neighbours simultaneously mutate to b with $s \geq 2$

$$
q_{s} \leq n \times \pi^{s} \leq 2000 \times 10^{-18}<2.10^{-6} \times \pi
$$

Numerical remarks

- length of promoters $n \in[500-2000]$
- Mutation probability $\pi=\max \left(\pi_{\alpha \rightarrow \beta}\right) \approx 10^{-9}$

We have

- p_{r} : probability of Mutation to b from a r-neighbour of b with $r \geq 2$
$p_{r} \leq n \times \pi^{r} \leq 2000 \times 10^{-18}<2.10^{-6} \times \pi$
- q_{s} : probability that s 1-neighbours simultaneously mutate to b with $s \geq 2$

$$
q_{s} \leq n \times \pi^{s} \leq 2000 \times 10^{-18}<2.10^{-6} \times \pi
$$

Therefore assuming a single mutation in the promoter is numerically sound

Putative-hit positions.

- Given a sequence $S(0)$ not containing a k-mer b,
- a putative-hit position is any position of $S(0)$ that can lead by a mutation to an occurrence of b in $S(1)$,
- where we assume that a single mutation has occurred.

$$
S(0)=\text { CCCAACAC }, \quad b=\operatorname{ACC} \quad \rightsquigarrow \quad \underline{S}(0)=\underline{\text { CCCAACAC }},
$$

putative-hit positions underlined in $\underline{S}(0)$.

Putative-hit positions.

- Given a sequence $S(0)$ not containing a k-mer b,
- a putative-hit position is any position of $S(0)$ that can lead by a mutation to an occurrence of b in $S(1)$,
- where we assume that a single mutation has occurred.

$$
S(0)=\text { CCCAACAC }, \quad b=\operatorname{ACC} \quad \rightsquigarrow \quad \underline{S}(0)=\underline{\text { CCCAACAC }},
$$

putative-hit positions underlined in $\underline{S}(0)$.

In a random sequence of length n with $\mathcal{A}=\{\mathrm{A}, \mathrm{C}\}$, let

- $H_{\mathrm{A} \rightarrow \mathrm{C}}^{(n)}$ number of putative-hit-positions $\mathrm{A} \rightarrow \mathrm{C}$,
- $H_{\mathrm{C} \rightarrow \mathrm{A}}^{(n)}$ number of putative-hit-positions $\mathrm{C} \rightarrow \mathrm{A}$,

Then

$$
\mathfrak{P}_{n} \approx \mathbf{E}\left(H_{\mathrm{A} \rightarrow \mathrm{C}}^{(n)}\right) \times \pi_{\mathrm{A} \rightarrow \mathrm{C}}+\mathbf{E}\left(H_{\mathrm{C} \rightarrow \mathrm{~A}}^{(n)}\right) \times \pi_{\mathrm{C} \rightarrow \mathrm{~A}}
$$

Computing via generating functions

Aim:

Compute

$$
F_{b}\left(z, t_{\mathrm{A} \rightarrow \mathrm{c}}, t_{\mathrm{C} \rightarrow \mathrm{~A}}\right)=\sum_{n \geq 0} \sum_{0 \leq i \leq n-|b|} \sum_{0 \leq j \leq n-|b|} f_{n, i, j} t_{\mathrm{A} \rightarrow \mathrm{C}}^{i}, t_{\mathrm{C} \rightarrow \mathrm{~A}}^{j} z^{n}
$$

where $f_{n, i, j}$ is the probability that a sequence $S_{n}(0)$ with no b, of length n, contains

- i putative-hit positions $\mathrm{A} \rightarrow \mathrm{C}$
- and j putative-hit positions $\mathrm{C} \rightarrow \mathrm{A}$

We have

$$
\mathfrak{P}_{n}=\left[z^{n}\right]\left(\left.\pi_{\mathrm{A} \rightarrow \mathrm{C}} \frac{\partial F\left(z, t_{\mathrm{A} \rightarrow \mathrm{C}}, 1\right)}{\partial t_{\mathrm{A} \rightarrow \mathrm{C}}}\right|_{t_{\mathrm{A} \rightarrow \mathrm{C}=1}}+\left.\pi_{\mathrm{C} \rightarrow \mathrm{~A}} \frac{\partial F\left(z, 1, t_{\mathrm{C} \rightarrow \mathrm{~A}}\right)}{\partial t_{\mathrm{C} \rightarrow \mathrm{~A}}}\right|_{t_{\mathrm{C} \rightarrow \mathrm{~A}}=1}\right)
$$

Putative-Hit-Positions and clump analysis

$$
\mathcal{A}=\{\mathrm{A}, \mathrm{C}\} \quad b=\mathrm{ACC} \longrightarrow d(\mathrm{ACC}, 1)=\{\underline{\mathrm{CCC}}, \mathrm{~A} \underline{\mathrm{AC}}, \mathrm{AC} \underline{\mathrm{~A}}\}
$$

CCCCAAACAAACAAACAAAACACAAC

- (left) $b=$ ACC - in clump I, when the right extension of a clump adds a new putative-hit position, this position is not necessarily in the extension, but possibly backwards left

Putative-Hit-Positions and clump analysis

$$
\mathcal{A}=\{\mathrm{A}, \mathrm{C}\} \quad b^{\prime}=\mathrm{AAA} \longrightarrow d(\mathrm{AAA}, 1)=\{\underline{\mathrm{CAA}}, \mathrm{~A} \underline{\mathrm{CA}}, \mathrm{AA} \underline{\mathrm{C}}\}
$$

ССС్AACAACAACCCCCCCCAACACCACA

- (right) $b^{\prime}=$ AAA - clump I contains 7 occurrences of $d($ AAA $)$, but only 4 putative-hit positions for $b^{\prime}=$ AAA. The number of word occurrences is not the relevant statistics for counting putative-hit positions

I - Automaton approach

Clumps of the set of words $\mathcal{U}=\{a a b a a, b a a b\}$

$\mathcal{E}_{w_{1}, w_{2}}$ correlation set from w_{1} to w_{2}

$$
\begin{array}{lll}
\mathcal{E}_{\text {aabaa,aabaa }} & =\{b a a, a b a a\} & \mathcal{E}_{\text {baab,baab }}=\{a a b\} \\
\mathcal{E}_{\text {aabaa,baab }} & =\{b\} & \mathcal{E}_{\text {baab,aabaa }}=\{a a\}
\end{array}
$$

Clumps of the set of words $\mathcal{U}=\{a a b a a, b a a b\}$

$\mathcal{E}_{w_{1}, w_{2}}$ correlation set from w_{1} to w_{2}

$$
\begin{aligned}
& \mathcal{E}_{a a b a a, a a b a a}=\{b a a, a b a a\} \quad \mathcal{E}_{b a a b, b a a b}=\{a a b\} \\
& \mathcal{E}_{\text {aabaa,baab }}=\{b\} \quad \mathcal{E}_{\text {baab,aabaa }}=\{a a\}
\end{aligned}
$$

Algorithm

1. Build the set of strings

$$
X=\quad \cup \begin{array}{ll}
\left\{\text { aabaa. }\left(\epsilon+\mathcal{E}_{\text {aabaa,aabaa }}\right)\right\} & \cup\left\{\text { aabaa. } \mathcal{E}_{\text {aabaa,baab }}\right\} \\
& \left\{\text { baab. }\left(\epsilon+\mathcal{E}_{\text {baab }, \text { baab }}\right)\right\}
\end{array}
$$

Clumps of the set of words $\mathcal{U}=\{a a b a a, b a a b\}$

$\mathcal{E}_{w_{1}, w_{2}}$ correlation set from w_{1} to w_{2}

$$
\begin{aligned}
& \mathcal{E}_{a a b a a, a a b a a}=\{b a a, a b a a\} \quad \mathcal{E}_{b a a b, b a a b}=\{a a b\} \\
& \mathcal{E}_{\text {aabaa,baab }}=\{b\} \quad \mathcal{E}_{\text {baab,aabaa }}=\{a a\}
\end{aligned}
$$

Algorithm

1. Build the set of strings

$$
X=\begin{array}{ll}
& \left\{\text { aabaa. }\left(\epsilon+\mathcal{E}_{\text {aabaa,aabaa }}\right)\right\}
\end{array} \cup\left\{\begin{array}{l}
\text { aabaaa. } \left.\mathcal{E}_{\text {aabaa,baab }}\right\} \\
\\
\left\{\text { baab. }\left(\epsilon+\mathcal{E}_{\text {baab,baab }}\right)\right\}
\end{array}\right.
$$

2. Build a trie \mathcal{T} on X

Clumps of the set of words $\mathcal{U}=\{a a b a a, b a a b\}$

$\mathcal{E}_{w_{1}, w_{2}}$ correlation set from w_{1} to w_{2}

$$
\begin{array}{lll}
\mathcal{E}_{\text {aabaa,aabaa }} & =\{b a a, a b a a\} & \mathcal{E}_{\text {baab }, \text { baab }}=\{a a b\} \\
\mathcal{E}_{\text {aabaa,baab }} & =\{b\} & \mathcal{E}_{\text {baab }, a a b a a}=\{a a\}
\end{array}
$$

Algorithm

1. Build the set of strings

$$
X=\begin{array}{ll}
& \left\{a a b a a .\left(\epsilon+\mathcal{E}_{\text {aabaa,aabaa }}\right)\right\} \\
\cup\left\{\text { baab. }\left(\epsilon+\mathcal{E}_{\text {baab,baab }}\right)\right\} & \cup\left\{a a b a a \cdot \mathcal{E}_{\text {aabaa,baab }}\right\} \\
& \cup\left\{b a a b \cdot \mathcal{E}_{\text {baab }, a a b a a}\right\}
\end{array}
$$

2. Build a trie \mathcal{T} on X
3. Build a Aho-Corasick like automaton upon \mathcal{T}. For each node ν of \mathcal{T} with "access word" v, use the transition function δ $\delta(\nu, \ell)=$ node accessed by the longuest prefix in X that is suffix of $v . \ell$

An automaton for $\mathcal{V}=\left\{v_{1}=a a b a a, v_{2}=b a a b\right\}$. All transitions labeled by a and b ending respectively on state A and B are omitted.

An automaton for $\mathcal{V}=\left\{v_{1}=a a b a a, v_{2}=b a a b\right\}$. All transitions labeled by a and b ending respectively on state A and B are omitted.
$\bullet \bullet \bullet \rightarrow$ the corresponding prefix (or state) ends with some occurrence of aabaa, baab.

- red states \rightarrow states where we have entered a new clump

An automaton for $\mathcal{V}=\left\{v_{1}=a a b a a, v_{2}=b a a b\right\}$. All transitions labeled by a and b ending respectively on state A and B are omitted.
$\bullet \bullet \bullet \rightarrow$ the corresponding prefix (or state) ends with some occurrence of aabaa, baab.

- red states \rightarrow states where we have entered a new clump

Formal weights on transitions

- $\gamma \rightarrow$ the number of clumps
- $\tau \rightarrow$ total length of clumps
- $x_{1}, x_{2} \rightarrow$ occurrences of aabaa, baab

An automaton for $\mathcal{V}=\left\{v_{1}=a a b a a, v_{2}=b a a b\right\}$. All transitions labeled by a and b ending respectively on state A and B are omitted.
$\bullet \bullet \bullet \rightarrow$ the corresponding prefix (or state) ends with some occurrence of aabaa, baab.

- red states \rightarrow states where we have entered a new clump

Formal weights on transitions

- $\gamma \rightarrow$ the number of clumps
- $\tau \rightarrow$ total length of clumps
- $x_{1}, x_{2} \rightarrow$ occurrences of aabaa, baab

An automaton for $\mathcal{V}=\left\{v_{1}=a a b a a, v_{2}=b a a b\right\}$. All transitions labeled by a and b ending respectively on state A and B are omitted.
$\bullet \bullet \bullet \rightarrow$ the corresponding prefix (or state) ends with some occurrence of aabaa, baab.

- red states \rightarrow states where we have entered a new clump

Formal weights on transitions

- $\gamma \rightarrow$ the number of clumps
- $\tau \rightarrow$ total length of clumps
- $x_{1}, x_{2} \rightarrow$ occurrences of aabaa, baab

Automaton for constrained clumps of $d(\mathrm{AAA})=\{\mathrm{AAC}, \mathrm{ACA}, \mathrm{CAA}\}$

- Double circles signals an occurrence of a word of $d(a a a)$.
- Avoiding AAA leads to missing transitions A
- The missing transitions C point to the state χ.
- characters mark putative-hit-positions

Automaton for constrained clumps of $d(\mathrm{AAA})=\{\mathrm{AAC}, \mathrm{ACA}, \mathrm{CAA}\}$

- Double circles signals an occurrence of a word of $d(a a a)$.
- Avoiding AAA leads to missing transitions A
- The missing transitions C point to the state χ.
- characters mark putative-hit-positions
- Transitions covered by tildes ($\widetilde{A}, \widetilde{C})$ emits a signal counting a putative-hit position.

Automaton for constrained clumps of $d(\mathrm{AAA})=\{\mathrm{AAC}, \mathrm{ACA}, \mathrm{CAA}\}$

- $O=\{q, \quad \delta(0, w)=q, w \in X\},($ occurrence of a word of $d(a a a))$.

Automaton for constrained clumps of $d(\mathrm{AAA})=\{\mathrm{AAC}, \mathrm{ACA}, \mathrm{CAA}\}$

- $O=\{q, \quad \delta(0, w)=q, w \in X\},($ occurrence of a word of $d(a a a)$).
- $\bar{E}=\{q, \quad \delta(0, w)=q, w \in \widehat{\operatorname{Pref}}(d(b))\}$, with $\widehat{\operatorname{Pref}}(d(b))$ set of strict prefixes of words of $d(b)$.

Automaton for constrained clumps of $d(\mathrm{AAA})=\{\mathrm{AAC}, \mathrm{ACA}, \mathrm{CAA}\}$

- $O=\{q, \quad \delta(0, w)=q, w \in X\}$, (occurrence of a word of $d(a a a)$).
- $\bar{E}=\{q, \quad \delta(0, w)=q, w \in \widehat{\operatorname{Pref}}(d(b))\}$, with $\widehat{\operatorname{Pref}}(d(b))$ set of strict prefixes of words of $d(b)$.
- Clump-Core of the automaton $E=Q \backslash \bar{E}$

Automaton for constrained clumps of $d(\mathrm{AAA})=\{\mathrm{AAC}, \mathrm{ACA}, \mathrm{CAA}\}$

- $O=\{q, \quad \delta(0, w)=q, w \in X\},($ occurrence of a word of $d(a a a)$).
- $\bar{E}=\{q, \quad \delta(0, w)=q, w \in \widehat{\operatorname{Pref}}(d(b))\}$, with $\widehat{\operatorname{Pref}}(d(b))$ set of strict prefixes of words of $d(b)$.
- Clump-Core of the automaton $E=Q \backslash \bar{E}$
- Markov property: $\quad \forall q \in E, \quad\left|\left\{w \in \mathcal{A}^{|b|} ; \delta(x, w)=q\right\}\right|=1$

Definition of an auxiliary function θ
$d(\mathrm{AAA})=\{\mathrm{AAC}, \mathrm{ACA}, \mathrm{CAA}\}$

Definition of an auxiliary function θ
$d(\mathrm{AAA})=\{\mathrm{AAC}, \mathrm{ACA}, \mathrm{CAA}\}$

Definition of an auxiliary function θ
$d(\mathrm{AAA})=\{\mathrm{AAC}, \mathrm{ACA}, \mathrm{CAA}\}$

Definition of an auxiliary function θ
$d(\mathrm{AAA})=\{\mathrm{AAC}, \mathrm{ACA}, \mathrm{CAA}\}$

Formal definition of θ

For each state $o \in O$ (recognizing an occurrence of $d(b)$),
$\theta(o)=\left\{\begin{array}{l}w \text { with }|w| \leq|b|, \text { of maximal length, } \\ \text { verifying } \left\lvert\, \begin{array}{l}(a) \text { there exists } q \text { such that } \delta(q, w)=o, \\ (b) \text { there is no } u \in \widehat{\operatorname{Pref}}(w) \\ \text { such that } \delta(q, u) \in O\end{array}\right.\end{array}\right.$

By the Markov property, $\theta(o)$ defines a unique word

Adjacency matrix $\mathbb{H}(t)=\left(h_{i j}(t)\right)$
$d(\mathrm{AAA})=\{\mathrm{AAC}, \mathrm{ACA}, \mathrm{CAA}\}$

Formal definition of the adjacency matrix $\mathbb{H}(t)$
(a) $h_{i j}(t)=0$ if there is no transition from i to j
(b) With $\delta(i, \alpha)=j$,
$h_{i, j}(t)=\left\{\begin{array}{l}\nu(\alpha) \text { if } \left\lvert\, \begin{array}{l}j \notin O, \\ j \in O\end{array}\right. \text { and } \theta(j) \text { contains no putative-hit position } \\ \nu(\alpha) \times t \text { elsewhere }\end{array}\right.$

Formal definition of the adjacency matrix $\mathbb{H}(t)$
(a) $h_{i j}(t)=0$ if there is no transition from i to j
(b) With $\delta(i, \alpha)=j$,

$$
h_{i, j}(t)=\left\{\begin{array}{l}
\nu(\alpha) \text { if } \left\lvert\, \begin{array}{l}
j \notin O, \\
j \in O \text { and } \theta(j) \text { contains no putative-hit position } \\
\nu(\alpha) \times t \text { elsewhere }
\end{array}\right.
\end{array}\right.
$$

From matrix to generating function

$$
\begin{aligned}
F_{b}(z, t) & =(1,0, \ldots, 0) \times\left(\mathbb{I}+z \mathbb{H}(t)+\cdots+z^{n} \mathbb{H}^{n}(t)+\ldots\right) \times \mathbf{1}^{t} \\
& =(1,0, \ldots, 0) \times(\mathbb{I}-z \mathbb{H}(t))^{-1} \times \mathbf{1}^{t} .
\end{aligned}
$$

Entries of $(\mathbb{I}-z \mathbb{H}(t))^{-1}$ rational functions in z and t

Rational functions and gfun

rational function $\frac{f(z)}{g(z)} \rightarrow$ gfun [diffeqtorec] \rightarrow recurrence equations
recurrence equations \rightarrow gfun[rectoproc $] \quad \rightarrow$ procedure $\operatorname{Proc}(n)=\left[z^{n}\right] \frac{f(z)}{g(z)}$

Rational functions, Taylor coefficient of order n and gfun
rational function $\frac{f(z)}{g(z)} \rightarrow$ gfun [diffeqtorec] \rightarrow recurrence equations
recurrence equations \rightarrow gfun[rectoproc $] \quad \rightarrow$ procedure $\operatorname{Proc}(n)=\left[z^{n}\right] \frac{f(z)}{g(z)}$

$$
\begin{gathered}
F_{b}(z, t)=\frac{P(z, t)}{Q(z, t)} \quad \text { and } \quad F_{b}(z, 1)=\sum_{n \geq 0} \widehat{f}_{n}^{(b)} z^{n}=\frac{P(z, 1)}{Q(z, 1)} \\
E(z)=\sum_{n} \eta_{n} z^{n}=\left.\frac{\partial}{\partial t} F_{b}(z, t)\right|_{t=1}=\frac{P_{t}^{\prime}(z, 1)}{Q(z, 1)}-\frac{P(z, 1) Q_{t}^{\prime}(z, 1)}{Q^{2}(z, 1)}
\end{gathered}
$$

Rational functions, Taylor coefficient of order n and gfun
rational function $\frac{f(z)}{g(z)} \rightarrow$ gfun [diffeqtorec] \rightarrow recurrence equations
recurrence equations \rightarrow gfun [rectoproc $] \quad \rightarrow$ procedure $\operatorname{Proc}(n)=\left[z^{n}\right] \frac{f(z)}{g(z)}$

$$
\begin{gathered}
F_{b}(z, t)=\frac{P(z, t)}{Q(z, t)} \quad \text { and } \quad F_{b}(z, 1)=\sum_{n \geq 0} \widehat{f}_{n}^{(b)} z^{n}=\frac{P(z, 1)}{Q(z, 1)} \\
E(z)=\sum_{n} \eta_{n} z^{n}=\left.\frac{\partial}{\partial t} F_{b}(z, t)\right|_{t=1}=\frac{P_{t}^{\prime}(z, 1)}{Q(z, 1)}-\frac{P(z, 1) Q_{t}^{\prime}(z, 1)}{Q^{2}(z, 1)}
\end{gathered}
$$

where, $P(z, t)$ and $Q(z, t)$ are polynoms, and, in a random sequence $S_{n}(0)$ of length n with no occurrence of b,

Rational functions, Taylor coefficient of order n and gfun
rational function $\frac{f(z)}{g(z)} \rightarrow$ gfun [diffeqtorec] \rightarrow recurrence equations
recurrence equations \rightarrow gfun[rectoproc] $\quad \rightarrow$ procedure $\operatorname{Proc}(n)=\left[z^{n}\right] \frac{f(z)}{g(z)}$

$$
\begin{gathered}
F_{b}(z, t)=\frac{P(z, t)}{Q(z, t)} \quad \text { and } \quad F_{b}(z, 1)=\sum_{n \geq 0} \widehat{f}_{n}^{(b)} z^{n}=\frac{P(z, 1)}{Q(z, 1)} \\
E(z)=\sum_{n} \eta_{n} z^{n}=\left.\frac{\partial}{\partial t} F_{b}(z, t)\right|_{t=1}=\frac{P_{t}^{\prime}(z, 1)}{Q(z, 1)}-\frac{P(z, 1) Q_{t}^{\prime}(z, 1)}{Q^{2}(z, 1)}
\end{gathered}
$$

where, $P(z, t)$ and $Q(z, t)$ are polynoms, and, in a random sequence $S_{n}(0)$ of length n with no occurrence of b,

- $\hat{f}_{n}^{(b)}=\mathbf{P}\left(S_{n}(0)\right)=\mathbf{P}$ (not going into sink)

Rational functions, Taylor coefficient of order n and gfun
rational function $\frac{f(z)}{g(z)} \rightarrow$ gfun [diffeqtorec] \rightarrow recurrence equations recurrence equations \rightarrow gfun[rectoproc] $\quad \rightarrow$ procedure $\operatorname{Proc}(n)=\left[z^{n}\right] \frac{f(z)}{g(z)}$

$$
\begin{gathered}
F_{b}(z, t)=\frac{P(z, t)}{Q(z, t)} \quad \text { and } \quad F_{b}(z, 1)=\sum_{n \geq 0} \widehat{f}_{n}^{(b)} z^{n}=\frac{P(z, 1)}{Q(z, 1)} \\
E(z)=\sum_{n} \eta_{n} z^{n}=\left.\frac{\partial}{\partial t} F_{b}(z, t)\right|_{t=1}=\frac{P_{t}^{\prime}(z, 1)}{Q(z, 1)}-\frac{P(z, 1) Q_{t}^{\prime}(z, 1)}{Q^{2}(z, 1)}
\end{gathered}
$$

where, $P(z, t)$ and $Q(z, t)$ are polynoms, and, in a random sequence $S_{n}(0)$ of length n with no occurrence of b,

- $\widehat{f}_{n}^{(b)}=\mathbf{P}\left(S_{n}(0)\right)=\mathbf{P}($ not going into sink $)$
- η_{n} is the unconditionned probability of the expectation of the count of putative-hit positions

Rational functions, Taylor coefficient of order n and gfun
rational function $\frac{f(z)}{g(z)} \rightarrow$ gfun [diffeqtorec] \rightarrow recurrence equations
recurrence equations \rightarrow gfun[rectoproc $] \quad \rightarrow$ procedure $\operatorname{Proc}(n)=\left[z^{n}\right] \frac{f(z)}{g(z)}$

$$
\begin{gathered}
F_{b}(z, t)=\frac{P(z, t)}{Q(z, t)} \quad \text { and } \quad F_{b}(z, 1)=\sum_{n \geq 0} \widehat{f}_{n}^{(b)} z^{n}=\frac{P(z, 1)}{Q(z, 1)} \\
E(z)=\sum_{n} \eta_{n} z^{n}=\left.\frac{\partial}{\partial t} F_{b}(z, t)\right|_{t=1}=\frac{P_{t}^{\prime}(z, 1)}{Q(z, 1)}-\frac{P(z, 1) Q_{t}^{\prime}(z, 1)}{Q^{2}(z, 1)}
\end{gathered}
$$

where, $P(z, t)$ and $Q(z, t)$ are polynoms, and, in a random sequence $S_{n}(0)$ of length n with no occurrence of b,

- $\widehat{f}_{n}^{(b)}=\mathbf{P}\left(S_{n}(0)\right)=\mathbf{P}($ not going into sink $)$
- η_{n} is the unconditionned probability of the expectation of the count of putative-hit positions
- Conditionned expectation: $\widetilde{\eta}_{n}=\eta_{n} / \hat{f}_{n}^{(b)}$

An unexpected behaviour

$$
\eta_{n}=\mathbf{E}\left(H_{n}^{(\mathrm{A} \rightarrow \mathrm{C})}\right)+\mathbf{E}\left(H_{n}^{(\mathrm{C} \rightarrow \mathrm{~A})}\right) \quad \widehat{f}_{n}^{(y)}=\mathbf{P}\left(\left|S_{n}(0)\right|_{y}=0\right)
$$

$b=\operatorname{ACAC} \quad b^{\prime}=\mathrm{AACC}$
$\nu(\mathrm{A})=\nu(\mathrm{C})=\frac{1}{2}$
$\mathbf{E}\left(H_{n}^{(\mathrm{A} \rightarrow \mathrm{C})}\right)+\mathbf{E}\left(H_{n}^{(\mathrm{C} \rightarrow \mathrm{A})}\right)=\left.\frac{\partial F_{b}(z, t)}{\partial t}\right|_{t=1}$
$\pi_{\mathrm{A} \rightarrow \mathrm{C}}=\pi_{\mathrm{C} \rightarrow \mathrm{A}}$
$t=t_{\mathrm{A} \rightarrow \mathrm{C}}=t_{\mathrm{C} \rightarrow \mathrm{A}}$
$\pi_{\mathrm{A} \rightarrow \mathrm{A}}=\pi_{\mathrm{C} \rightarrow \mathrm{C}}$

An unexpected behaviour

$$
\widehat{f}_{n}^{(y)}=\mathbf{P}\left(\left|S_{n}(0)\right|_{y}=0\right)
$$

$$
\widetilde{\eta}_{n}=\eta_{n} / \widehat{f}_{n}^{(y)}
$$

$b=\mathrm{ACAC} \quad b^{\prime}=\mathrm{AACC}$
$\nu(\mathrm{A})=\nu(\mathrm{C})=\frac{1}{2}$
$\mathbf{E}\left(H_{n}^{(\mathrm{A} \rightarrow \mathrm{C})}\right)+\mathbf{E}\left(H_{n}^{(\mathrm{C} \rightarrow \mathrm{A})}\right)=\left.\frac{\partial F_{b}(z, t)}{\partial t}\right|_{t=1}$
$\pi_{\mathrm{A} \rightarrow \mathrm{C}}=\pi_{\mathrm{C} \rightarrow \mathrm{A}}$
$t=t_{\mathrm{A} \rightarrow \mathrm{C}}=t_{\mathrm{C} \rightarrow \mathrm{A}}$
$\pi_{\mathrm{A} \rightarrow \mathrm{A}}=\pi_{\mathrm{C} \rightarrow \mathrm{C}}$

A proof by singularity analysis

$$
\begin{aligned}
& F_{b}(z, t)=\frac{P(z, t)}{Q(z, t)} \quad P(z, t) \text { and } Q(z, t) \text { polynomials } \\
& F_{b}(z, 1)=\sum_{n \geq 0} \widehat{f}_{n}^{(b)} z^{n}=\frac{P(z, 1)}{Q(z, 1)}
\end{aligned}
$$

$\hat{f}_{n}^{(b)}$ probability that $S_{n}(0)$ has no occurrence of b.

$$
E(z)=\sum_{n \geq 0} \mathbf{E}\left(H_{n}\right) z^{n}=\frac{P_{x}^{\prime}(z, 1)}{Q(z, 1)}-\frac{P(z, 1) Q_{x}^{\prime}(z, 1)}{Q^{2}(z, 1)}
$$

A proof by singularity analysis

$$
\begin{aligned}
& F_{b}(z, t)=\frac{P(z, t)}{Q(z, t)} \quad P(z, t) \text { and } Q(z, t) \text { polynomials } \\
& F_{b}(z, 1)=\sum_{n \geq 0} \widehat{f}_{n}^{(b)} z^{n}=\frac{P(z, 1)}{Q(z, 1)}
\end{aligned}
$$

$\hat{f}_{n}^{(b)}$ probability that $S_{n}(0)$ has no occurrence of b.

$$
E(z)=\sum_{n \geq 0} \mathbf{E}\left(H_{n}\right) z^{n}=\frac{P_{x}^{\prime}(z, 1)}{Q(z, 1)}-\frac{P(z, 1) Q_{x}^{\prime}(z, 1)}{Q^{2}(z, 1)}
$$

The dominant singularity τ is the smallest positive solution of $Q(z, 1)=0$. Use suitable Cauchy integrals

$$
\begin{gathered}
\left\{\begin{array}{l}
f_{n}^{(b)}=\psi \times \tau^{-(n-1)}\left(1+\mathcal{O}\left(B^{n}\right)\right), \quad(B<1) \\
\mathrm{E}\left(H_{n}\right)=\left[z^{n}\right] E(z)=\tau^{-n}\left(\phi_{1} \times n+\phi_{2}\right) \times\left(1+\mathcal{O}\left(B^{n}\right)\right)
\end{array}\right. \\
\Longrightarrow \mathbf{E}\left(\widetilde{H}_{n}\right)=\frac{\mathbf{E}\left(H_{n}\right)}{\widehat{f}_{n}^{(b)}}=\left(c_{1} \times n+c_{2}\right) \times\left(1+\mathcal{O}\left(B^{n}\right)\right),(B<1) .
\end{gathered}
$$

General case

Compute $F_{b}\left(z, t_{\mathrm{A} \rightarrow \mathrm{C}}, t_{\mathrm{A} \rightarrow \mathrm{G}}, t_{\mathrm{A} \rightarrow \mathrm{T}}, t_{\mathrm{C} \rightarrow \mathrm{A}}, \ldots, t_{\mathrm{T} \rightarrow \mathrm{C}}, t_{\mathrm{T} \rightarrow \mathrm{G}}\right)$
$\widehat{f}_{n}^{(b)}=\left[z^{n}\right] F_{b}(z, 1,1, \ldots, 1,1)$
$\left.\mathfrak{P}_{n} \approx\left[z^{n}\right] \sum_{\alpha \neq \beta \in\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}} \frac{\partial F_{b}\left(z, 1, \ldots, 1, \pi_{\alpha \rightarrow \beta} t_{\alpha \rightarrow \beta}, 1, \ldots\right)}{\partial t_{\alpha \rightarrow \beta}}\right|_{t_{\alpha \rightarrow \beta}=1} / \widehat{f}_{n}^{(b)}$

- The dominant singularities of all the terms of the sum are equal to the dominant singularity of $F_{b}(z, 1,1, \ldots, 1,1)$
- \mathfrak{P}_{n} behaves quasi-linearly

II - Formal Languages Approach

Guibas-Odlyzko decomposition - occurrences of a word u

$$
U=(\text { aaaa }, \text { aaab }) \quad\left\{\begin{array}{l}
u_{1}=\text { aaaa } \\
u_{2}=\text { aaab }
\end{array}\right.
$$

Guibas-Odlyzko decomposition - occurrences of a word u

$$
\begin{aligned}
& U=(\text { aaaa, aaab }) \quad\left\{\begin{array}{l}
u_{1}=\text { aaaa } \\
u_{2}=\text { aaab }
\end{array}\right. \\
& \quad \mathcal{R}_{1}
\end{aligned}
$$

Guibas-Odlyzko decomposition - occurrences of a word u

$$
\begin{aligned}
& U=\text { (aaaa, aaab) } \quad\left\{\begin{array}{l}
u_{1}=\text { aaaa } \\
u_{2}=\text { aaab }
\end{array}\right. \\
& \in \mathcal{R}_{1} \\
& \in u_{1} \mathcal{M}_{12}
\end{aligned} \longleftrightarrow
$$

Guibas-Odlyzko decomposition - occurrences of a word u

$$
\begin{aligned}
& U=(\text { aaaa }, \text { aaab }) \quad\left\{\begin{array}{l}
u_{1}=\text { aaaa } \\
u_{2}=\text { aaab }
\end{array}\right.
\end{aligned}
$$

Guibas-Odlyzko decomposition - occurrences of a word u

$$
U=(\text { aaaa }, \text { aaab }) \quad\left\{\begin{array}{l}
u_{1}=\text { aaaa } \\
u_{2}=\text { aaab }
\end{array}\right.
$$

Guibas-Odlyzko decomposition - occurrences of a word u

$$
U=(\text { aaaa }, \text { aaab }) \quad\left\{\begin{array}{l}
u_{1}=\text { aaaa } \\
u_{2}=\text { aaab }
\end{array}\right.
$$

- The "Right" language \mathcal{R}_{i} associated to the word u_{i} is the set of words $\mathcal{R}_{i}=\left\{r \mid r=e \cdot u_{i}\right.$ and there is no $v \in U$ such that $r=x v y$ with $\left.|y|>0\right\}$.
- The "Minimal" language $\mathcal{M}_{i j}$ leading from a word u_{i} to a word u_{j} is the set of words $\mathcal{M}_{i j}=\left\{m \mid u_{i} \cdot m=e \cdot u_{j}\right.$ and there is no $v \in U$ such that $u_{i} \cdot m=$ $x v y$ with $|x|>0,|y|>0\}$.
- The "Ultimate" language \mathcal{U}_{i} of words following the last occurrence of the word u_{i} (such that this occurrence is the last occurrence of U in the text) is the set of words $\mathcal{U}_{i}=\left\{u \mid\right.$ there is no $v \in U$ such that $u_{i} \cdot u=x v y$ with $\left.|x|>0\right\}$.
- The "Not" language \mathcal{N} is the set of words with no occurrences of U, $\mathcal{N}=\{n \mid$ there is no $v \in U$ such that $n=x v y\}$.

Guibas-Odlyzko decomposition - occurrences of a word u

$$
\begin{aligned}
& F\left(z, x_{1}, x_{2}\right) \\
& \quad=\mathcal{N}(z)+\left(\mathcal{R}_{1}(z) x_{1}, \mathcal{R}_{2}(z) x_{2}\right)\left(\begin{array}{ll}
\mathcal{M}_{11}(z) x_{1} & \mathcal{M}_{12}(z) x_{2} \\
\mathcal{M}_{21}(z) x_{1} & \mathcal{M}_{22}(z) x_{2}
\end{array}\right)\binom{\mathcal{U}_{1}(z)}{\mathcal{U}_{2}(z)}
\end{aligned}
$$

Computing the languages

- $\mathcal{C}_{u_{1}, u_{2}}$ correlation set of two words u_{1} and u_{2} $\mathcal{C}_{u_{1}, u_{2}}=\left\{e \mid \exists e^{\prime} \in \mathcal{A}^{+}, u_{1} e=e^{\prime} u_{2}\right.$ with $\left.|e|<\left|u_{2}\right|\right\}$.
- $\mathcal{C}_{u}=\mathcal{C}_{u, u}$ autocorrelation set $\quad\left(\epsilon \in \mathcal{C}_{u}\right)$

Computing the languages

- $\mathcal{C}_{u_{1}, u_{2}}$ correlation set of two words u_{1} and u_{2} $\mathcal{C}_{u_{1}, u_{2}}=\left\{e \mid \exists e^{\prime} \in \mathcal{A}^{+}, u_{1} e=e^{\prime} u_{2}\right.$ with $\left.|e|<\left|u_{2}\right|\right\}$.
- $\mathcal{C}_{u}=\mathcal{C}_{u, u}$ autocorrelation set $\quad\left(\epsilon \in \mathcal{C}_{u}\right)$
- Régnier-Szpankowski Equations

$$
\begin{array}{ll}
\bigcup_{k \geq 1}\left(\mathbb{M}^{k}\right)_{i, j}=\mathcal{A}^{\star} \cdot u_{j}+\mathcal{C}_{i j}-\delta_{i j} \epsilon, & \mathcal{U}_{i} \cdot \mathcal{A}=\bigcup_{j} \mathcal{M}_{i j}+\mathcal{U}_{i}-\epsilon, \\
\mathcal{A} \cdot \mathcal{R}_{j}-\left(\mathcal{R}_{j}-u_{j}\right)=\bigcup_{i} u_{i} \mathcal{M}_{i j}, & \mathcal{N} \cdot u_{j}=\mathcal{R}_{j}+\bigcup_{i} \mathcal{R}_{i}\left(\mathcal{C}_{i j}-\delta_{i j} \epsilon\right),
\end{array}
$$

- Automaton Computation

$$
\begin{aligned}
& \mathcal{R}_{i}=\bigotimes_{1 \leq r \leq k} \overline{\mathcal{A}^{\star} u_{r} \mathcal{A}^{\star}} \cdot \mathcal{A} \bigotimes \mathcal{A}^{\star} u_{i} \\
& u_{i} \mathcal{M}_{i j}=u_{i} \mathcal{A}^{\star} \bigotimes \mathcal{A}^{\star} u_{j} \bigotimes_{1 \leq r \leq k} \mathcal{A} \overline{\mathcal{A}^{\star} u_{r} \mathcal{A}^{\star} \mathcal{A}} \\
& u_{j} \mathcal{U}_{j}=u_{j} \mathcal{A}^{\star} \bigotimes_{1 \leq r \leq k} \mathcal{A} \cdot \overline{\mathcal{A}^{\star} u_{r} \mathcal{A}^{\star}} \\
& \mathcal{N}=\operatorname{NOT}\left(\bigotimes_{1 \leq r \leq k} \mathcal{A}^{\star} u_{r} \mathcal{A}^{\star}\right)
\end{aligned}
$$

Constrained Guibas-Odlyzko languages

Example: $b=\mathrm{AA}, \quad d_{\ell}(b)=(\mathrm{AC}, \mathrm{CA})$

- We need avoiding AA in $S(0)$ and therefore in the Right, Minimal and Ultimate languages
- Build the Régnier-Szpankowski languages for the pattern ($\mathrm{AC}, \mathrm{CA}, \mathrm{AA}$)

$$
\begin{gathered}
\mathcal{L}=\mathcal{N}+\left(\mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{R}_{3}\right)\left(\begin{array}{lll}
\mathcal{M}_{11} & \mathcal{M}_{12} & \mathcal{M}_{13} \\
\mathcal{M}_{21} & \mathcal{M}_{22} & \mathcal{M}_{23} \\
\mathcal{M}_{31} & \mathcal{M}_{32} & \mathcal{M}_{33}
\end{array}\right)\left(\begin{array}{l}
\mathcal{U}_{1} \\
\mathcal{U}_{2} \\
\mathcal{U}_{3}
\end{array}\right) \\
\widehat{\mathcal{L}}=\mathcal{N}+\left(\mathcal{R}_{1}, \mathcal{R}_{2}\right)\left(\begin{array}{ll}
\mathcal{M}_{11} & \mathcal{M}_{12} \\
\mathcal{M}_{21} & \mathcal{M}_{22}
\end{array}\right)\binom{\mathcal{U}_{1}}{\mathcal{U}_{2}}
\end{gathered}
$$

Notations: write $\widehat{\mathcal{N}}, \widehat{\mathcal{R}_{i}}, \widehat{\mathcal{M}_{i j}}, \widehat{\mathcal{U}_{j}}$ for constrained languages

Clump Analysis (Bassino-Clément-Fayolle-P.N. 2008)

Clump Analysis (Bassino-Clément-Fayolle-P.N. 2008)

- residual language $\mathcal{D}=\mathcal{L} . u^{-}: \quad \mathcal{D}=\{h, h \cdot u \in \mathcal{L}\}$
- $\mathcal{L}_{2}-\mathcal{L}_{1}=\mathcal{L}_{2} \backslash \mathcal{L}_{1}=\left\{h ; h \in \mathcal{L}_{2}, h \notin \mathcal{L}_{1}\right\}$

Combinatorial decomposition (one word)

$$
\mathcal{A}^{\star}=\mathcal{N}+\mathcal{R} u^{-} u \mathcal{C}^{\star}\left((\mathcal{M}-\mathcal{K}) u^{-} u \mathcal{C}^{\star}\right)^{\star} \mathcal{U}
$$

Clump Analysis (Bassino-Clément-Fayolle-P.N. 2008)

- residual language $\mathcal{D}=\mathcal{L} . u^{-}: \quad \mathcal{D}=\{h, h \cdot u \in \mathcal{L}\}$
- $\mathcal{L}_{2}-\mathcal{L}_{1}=\mathcal{L}_{2} \backslash \mathcal{L}_{1}=\left\{h ; h \in \mathcal{L}_{2}, h \notin \mathcal{L}_{1}\right\}$

Combinatorial decomposition (one word)

$$
\begin{aligned}
\mathcal{A}^{\star} & =\mathcal{N}+\mathcal{R} u^{-} u \mathcal{C}^{\star}\left((\mathcal{M}-\mathcal{K}) u^{-} u \mathcal{C}^{\star}\right)^{\star} \mathcal{U} \\
& =\mathcal{N}+\mathcal{R} u^{-} u \mathcal{K}^{\star}\left((\mathcal{M}-\mathcal{K}) u^{-} u \mathcal{K}^{\star}\right)^{\star} \mathcal{U} \\
& =\mathcal{N}+\mathcal{R} u^{-} \mathbf{S}\left((\mathcal{M}-\mathcal{K}) u^{-} \mathbf{S}\right)^{\star} \mathcal{U}
\end{aligned}
$$

Clumps: $\mathrm{S}=u \mathcal{C}^{\star}=u \mathcal{K}^{\star}$

Some combinatorial properties

```
\(u=a a a a a\)
\(\mathcal{C}-\{\epsilon\}=\{a, a a, a a a, a a a a\}\)
\(\mathcal{K}=\{a\}\)
\(\mathcal{M}=\left\{a, b(b+a b+a a b+a a a b+a a a a b)^{\star} a a a a a\right\}\)
```


Properties

- $\mathcal{K} \subset \mathcal{M}$
- $\mathcal{M}-\mathcal{K}=\mathcal{L} u$

Lemma.
Let $\mathcal{C}_{\circ}=\mathcal{C}-\{\epsilon\}$ be the strict autocorrelation set of a word u

- the Prefix code $\mathcal{K}=\mathcal{C}_{\circ}-\mathcal{C}_{\circ} \mathcal{A}^{+}$generates unambiguously $\mathcal{C}^{+}-\{\epsilon\}$, which implies that $\mathcal{K}^{\star}=\mathcal{C}_{0}{ }^{\star}$

Clumps of reduced sets of words

Minimal Correlation Language: $\mathcal{K}_{i j}=\left(\mathcal{C}_{i j}-\mathcal{C}_{i j} \mathcal{A}^{+}\right) \bigcap \mathcal{M}_{i j}$
Lemma: $\mathcal{M}_{i j}-\mathcal{K}_{i j}=\mathcal{L} v_{j}$
Decomposition of a text by clumps:

$$
\begin{aligned}
& \mathbb{K}=\left(\begin{array}{ll}
\mathcal{K}_{11} & \mathcal{K}_{12} \\
\mathcal{K}_{21} & \mathcal{K}_{22}
\end{array}\right), \quad \mathbb{S}=\mathbb{K}^{\star} \quad \mathbb{G}=\left(\begin{array}{ll}
v_{1} \mathbb{S}_{11} & v_{1} \mathbb{S}_{12} \\
v_{2} \mathbb{S}_{21} & v_{2} \mathbb{S}_{22}
\end{array}\right) \\
& \mathcal{A}^{\star}=\mathcal{N}+\left(\mathcal{R}_{1} v_{1}^{-1}, \mathcal{R}_{2} v_{2}^{-1}\right) \mathbb{G}\left(\left(\left(\mathcal{M}_{i j}-\mathcal{K}_{i j}\right) v_{j}^{-1}\right) \mathbb{G}\right)^{\star}\binom{\mathcal{U}_{1}}{\mathcal{U}_{2}}
\end{aligned}
$$

Constrained clumps

- finite code languages $\mathcal{K}_{i j}$ easy to compute
- we must however avoid the forbidden word b while extending clumps
- $v_{i}, v_{j} \in d_{\ell}(b) \rightsquigarrow \widehat{\mathcal{K}}_{i j}=\left\{h \in \mathcal{K}_{i j} ; \quad\left|v_{i} \cdot h\right|_{b}=0\right\}$
sets $\mathcal{K}_{i j}$ finite \Longrightarrow computation of $\widehat{\mathcal{K}}_{i j}$ by string-matching

Constrained clumps

- finite code languages $\mathcal{K}_{i j}$ easy to compute
- we must however avoid the forbidden word b while extending clumps
- $v_{i}, v_{j} \in d_{\ell}(b) \rightsquigarrow \widehat{\mathcal{K}}_{i j}=\left\{h \in \mathcal{K}_{i j} ; \quad\left|v_{i} \cdot h\right|_{b}=0\right\}$
sets $\mathcal{K}_{i j}$ finite \Longrightarrow computation of $\widehat{\mathcal{K}}_{i j}$ by string-matching
- Decomposition by constrained clumps

$$
\begin{gathered}
\widehat{\mathcal{A}_{b}^{\star}}=\widehat{\mathcal{N}}+\left(\widehat{\mathcal{R}}_{1} v_{1}^{-}, \ldots, \widehat{\mathcal{R}}_{r} v_{r}^{-}\right) \widehat{\mathbb{G}}\left((\widehat{\mathbb{M}}-\widehat{\mathbb{K}})^{-\widehat{\mathbb{G}}}\right)^{\star}\left(\begin{array}{c}
\widehat{\mathcal{U}}_{1} \\
\vdots \\
\widehat{\mathcal{U}}_{r}
\end{array}\right) \\
\text { with }\left\{\begin{array}{l}
\widehat{\mathbb{K}}=\left(\widehat{\mathcal{K}}_{i j}\right), \\
\widehat{\mathbb{S}}=\widehat{\mathbb{K}}^{\star}, \\
\widehat{\mathbb{G}}=\left(v_{i} \widehat{\mathbb{S}}_{i j}\right)
\end{array}\right.
\end{gathered}
$$

Generating function of the number of putative-hit positions

- $v_{i}(z, t)=\nu\left(v_{i}\right) t z^{\left|v_{i}\right|}$ for each $v_{i} \in d(b)$.
- for each $\widehat{\mathcal{K}}_{i j}$, we can compute by string matching the number of putative-hit positions in each word of $v_{i} \cdot \widehat{\mathcal{K}}_{i j}$.

$$
\widehat{\mathcal{K}}_{i j}(z, t)=\sum_{w \in \widehat{\mathcal{K}}_{i j}} \nu(w) t^{\text {put-hit-pos }\left(v_{i} \cdot w\right)-1} z^{|w|}
$$

Generating function of the number of putative-hit positions

- $v_{i}(z, t)=\nu\left(v_{i}\right) t z^{\left|v_{i}\right|}$ for each $v_{i} \in d(b)$.
- for each $\widehat{\mathcal{K}}_{i j}$, we can compute by string matching the number of putative-hit positions in each word of $v_{i} \cdot \widehat{\mathcal{K}}_{i j}$.

$$
\widehat{\mathcal{K}}_{i j}(z, t)=\sum_{w \in \widehat{\mathcal{K}}_{i j}} \nu(w) t^{\text {put-hit-pos }\left(v_{i} \cdot w\right)-1} z^{|w|}
$$

$$
\begin{aligned}
& \widehat{\mathbb{K}}(z, t)=\left(\widehat{\mathcal{K}}_{i j}(z, t)\right), \quad \widehat{\mathbb{S}}(z, t)=(\mathbb{I}-\widehat{\mathbb{K}}(z, t))^{-1}, \\
& \widehat{\mathbb{G}}(z, t)=\left(v_{i}(z, t) \widehat{\mathbb{S}}_{i j}(z, t)\right) .
\end{aligned}
$$

Generating function of the number of putative-hit positions

- $v_{i}(z, t)=\nu\left(v_{i}\right) t z^{\left|v_{i}\right|}$ for each $v_{i} \in d(b)$.
- for each $\widehat{\mathcal{K}}_{i j}$, we can compute by string matching the number of putative-hit positions in each word of $v_{i} \cdot \widehat{\mathcal{K}}_{i j}$.

$$
\widehat{\mathcal{K}}_{i j}(z, t)=\sum_{w \in \widehat{\mathcal{K}}_{i j}} \nu(w) t^{\text {put-hit-pos }\left(v_{i} \cdot w\right)-1} z^{|w|}
$$

$$
\begin{aligned}
& \widehat{\mathbb{K}}(z, t)=\left(\widehat{\mathcal{K}}_{i j}(z, t)\right), \quad \widehat{\mathbb{S}}(z, t)=(\mathbb{I}-\widehat{\mathbb{K}}(z, t))^{-1}, \\
& \widehat{\mathbb{G}}(z, t)=\left(v_{i}(z, t) \widehat{\mathbb{S}}_{i j}(z, t)\right) .
\end{aligned}
$$

$$
\begin{aligned}
& F_{b}(z, t)=\widehat{\mathcal{A}_{b}^{\star}}(z, t) \\
& =\widehat{\mathcal{N}}(z)+\left(\widehat{\mathcal{R}}_{1} v_{1}^{-}(z), \ldots, \widehat{\mathcal{R}}_{r} v_{r}^{-}(z)\right) \widehat{\mathbb{G}}(z, t)\left((\widehat{\mathbb{M}}-\widehat{\mathbb{K}})^{-}(z) \widehat{\mathbb{G}}(z, t)\right)^{\star}\left(\begin{array}{c}
\widehat{\mathcal{U}}_{1}(z) \\
\vdots \\
\widehat{\mathcal{U}}_{r}(z)
\end{array}\right)
\end{aligned}
$$

(from Behrens-Nicaud-P.N., JCB 19,5, 2012)

FIG. 5. Plots of the probability \boldsymbol{p}_{n} (left) and of the expected waiting time $\mathrm{E}\left(T_{n}\right)$ (right). (Top) $b=$ AAAAA (blue) and $b^{\prime}=$ CGCGC (magenta). (Botton) $b=$ CCCCCC CCCC (blue) and $b^{\prime}=$ ATATATA TAT (magenta). In the linear plots of the probability, the anchors values for $n=1000$ and $n=2000$ (computed by automata) are represented by boxes; the straight lines are the straight lines going through the corresponding points and the circles are test values also computed by automata. The fit is perfect as expected from singularity analysis.

