Single or multiple consensus trees a method to separate divergent genes

Alain Guénoche
CNRS, Institut de Mathématiques de Luminy guenoche@iml.univ-mrs.fr

SeqBio 2012

Motivations

Some strains in bacteria are very dangerous (E. Coli)
Why ?

Because they contain abnormal genes ?

Methodology

- Compare genes in all the strains
- Establishing their own phylogeny
- Comparing the tree topologies

Pre-requisite

A X-tree is:

- an unrooted tree,
- X is the set of n leaves,
- nodes have degre 3,
- edges have a positive or null length.
X-tree $\Longrightarrow\{$ bipartitions $\}$
- external edges (to leaves) common to every X-tree
- internal edges (at most $n-3$) only considered

An X-tree

Bipartition set:

- $12 \mid 34567$
- $123 \mid 4567$
- $12367 \mid 45$
- 12345 | 67

Consensus Tree

$\Pi=\left\{T_{1}, \ldots, T_{m}\right\}$ a profile of $m X$-trees
A consensus tree C is a X-tree summarizing Π
Several rules :

- strict: (only edges common to all the trees),
- majority : (edges belonging to a majority of trees),
- extended majority : (majority edges + compatible edges)
- Nelson : (clique of compatible edges with max weight)

Two bipartitions $X_{1} \mid X_{2}$ et $Y_{1} \mid Y_{2}$ are compatible in a X-tree iff

$$
\emptyset \in\left\{X_{1} \cap Y_{1}, X_{2} \cap Y_{1}, X_{1} \cap Y_{2}, X_{2} \cap Y_{2}\right\}
$$

Example

Majority and extended majority consensus

Which consensus ?

The majority consensus is the only valid

- Computable in $O(n m)$
- Majority consensus tree C is median for the Robinson-Foulds distance

$$
\sum_{i=1}^{m} D_{R-F}\left(C, T_{i}\right) \text { minimum }
$$

- the minority edges are not significant in evolution
- The Nelson consensus is NP-hard (and may contain minority edges)

The consensus tree weight

$\left\{P_{1}, \ldots P_{q}\right\}$ majority bipartitions

- edge weight $=\mathrm{nb}$. of trees containing this edge

$$
w\left(P_{k}\right)=\mid\left\{T_{i} \text { containing } P_{k}\right\} \mid
$$

- Consensus tree weight $=$ sum of internal edge weight

$$
W(C)=\sum_{P_{k} \in C} w\left(P_{k}\right)
$$

On the 5 trees in l'Example:

$$
W(C)=3+4=7
$$

Unique or multiple consensus tree?

Let

- $P_{\Pi}=\left\{\Pi_{1}, \ldots, \Pi_{k}\right\}$ a partition of Π in k classes,
- $\left\{m_{1}, \ldots, m_{k}\right\} \mathrm{nb}$. of elements
- $\left\{C_{1}, \ldots, C_{k}\right\}$ the consensus trees of sub-profiles

The generalized score of P_{Π}, denoted $\mathcal{W}^{k}\left(P_{\Pi}\right)$ is the sum of consensus tree weight of a class multiplied by its nb . of elements:

$$
\mathcal{W}^{k}\left(P_{\Pi}\right)=\sum_{i=1}^{k} m_{i} \times W_{\Pi_{i}}\left(C_{i}\right)
$$

m_{i} trees support C_{i} with a high or low weight

Problem

To find a partition of Π maximizing the generalized score

$$
\max _{P_{\Pi}=\left\{\Pi_{1}, \ldots, \Pi_{k}\right\} \in \mathcal{P}(\Pi)} \mathcal{W}^{k}\left(P_{\Pi}\right)
$$

Double optimization, over the nb. of classes (k) and over the set of partitions in k classes

Extreme values: $\mathcal{W}^{1}\left(P_{1}\right)$ and
1 classe

$\mathcal{W}^{n}\left(P_{n}\right)$
atomic partition

Proposition

Two X-arbres make a single consensus iff the share more than half internal edges $(|C|)$

$$
\mathcal{W}^{1}=2 \times|C|>\mathcal{W}^{2}=n_{1}+n_{2}
$$

Consensus C_{1}

$W\left(C_{1}\right)=9$

Consensus C_{2}

There is multiple consensus

Homogeneous Profile
\Rightarrow Single consensus

$$
\mathcal{W}^{1}=m \times \mathcal{W}_{\Pi}(C)
$$

Each tree (n_{i} internal edges) is its own consensus
\Rightarrow Atomic consensus

$$
\mathcal{W}^{m}=\sum_{i=1}^{m} n_{i} \leq m \times(n-3)
$$

But :

$$
\begin{gathered}
\mathcal{W}^{1}=5 \times 7=35>\mathcal{W}^{5}=5 \times 4=20 \\
\mathcal{W}^{2}=3 \times 9+2 \times 6=39
\end{gathered}
$$

Method 1

Similarity indices on X-trees

- Robinson-Foulds similarity

$$
S\left(T_{i}, T_{j}\right)=\frac{2 \times\left|\left\{a \in T_{i} \cap T_{j}\right\}\right|}{\left|T_{i}\right|+\left|T_{j}\right|} .
$$

- quadruple similarity $|\{x, y, z, t\}|$
+1 if identical topologies; $+1 / 2$ only one resolved topology
Average Linkage Hierarchy
- Hierarchy of partitions (from P_{0})
- Consensus tree of the new class
- Generalized score value

Example

From profile Π in Example 1

S	T_{1}	T_{2}	T_{3}	T_{4}
T_{2}	4			
T_{3}	2	0		
T_{4}	2	0	6	
T_{5}	6	2	4	2

Robinson-Foulds similarity

Dendrogram
$\mathcal{W}^{5}=20, \mathcal{W}^{4}=24, \mathcal{W}^{3}=28, \mathcal{W}^{2}=39$ and $\mathcal{W}^{1}=35$

Method 2

- Join the 2 classes maximizing the generalized score
- Consensus tree of this new class

	T_{1}	T_{2}	T_{3}	T_{4}		$T_{1,5}$	T_{2}	T_{3}		$T_{1,2,5} T_{3}$		
T_{2}	20					T_{2}	35				T_{3}	28
T_{3}	16	12				T_{3}	32	16			T_{4}	28
3	39											
T_{4}	16	12	24			T_{4}	26	16	28			
T_{5}	24	16	20	16								

Nb . of common majority edges

Validation on random trees

Two tests:

- Random topologies \rightarrow Atomic consensus

$$
\mathcal{W}^{1}=0 \text { and } \mathcal{W}^{n} \text { Maximum }
$$

- 3 random topologies $\rightarrow 15$ noisy trees (swapping leaves)

$$
\mathcal{W}^{3} \text { Maximum }
$$

- 30 trees from one random rooted topology $|T|=16$
- one 1000 bp random sequence evolving along the tree
- substitution rate from root to leaves : 0.25
- 16 aligned sequences
- Kimura distance $\left(K_{2 p}\right)+\mathrm{NJ} \rightarrow T_{k}$
\mathcal{W}^{1} Maximum

Validation on homogeneous trees

BROWN, J.R., DOUADY, C.J., ITALIA, M.J., MARSHALL, W.E., STANHOPE, M.J. (2001) Universal trees based on large combined protein sequence data sets. Nat Genet, 28, 281-285.

Here we use large combined alignments of 23 orthologous proteins conserved across 45 species from all domains to construct highly robust universal trees. Although individual protein trees are variable in their support of domain integrity, trees based on combined protein data sets strongly support separate monophyletic domains ... (after) elimination of 9 proteins, which were likely candidates for horizontal gene transfer.

	$B i P$	$M a j$	$W(C)$	\mathcal{W}^{1}	\mathcal{W}^{2}	\mathcal{W}^{23}
Theoretical max	333	23	430	9890	8673	964
	966	42	529			

There is a single consensus

Validation on bootstrap trees

SCHUBERT, S., DARLU, P., CLERMONT, O. et al. (2009), Role of intraspecies recombination in the spread of pathogenicity islands within the Escherichia coli species, PLoSpathogens, (5(1)e1000257).

9 genes in 30 Escherichia coli strains
500 bootstrap trees per gene

	BiP	Maj	W	\mathcal{W}^{1}	NbClas	$\mathcal{W}_{\text {next }}$
UR	8	7	2623	1311500	$2(2)$	1304768
trpB	28	15	6248	3124000	$2(1)$	3114271
trpA	45	9	3824	1912000	$3(1,1)$	1900390
putP	57	17	6608	3304000	$2(80)$	2508400
polB	119	14	5331	2665500	$2(3)$	2639187
icd	69	15	5681	2840500	$2(4)$	2929008
HPI	76	13	4971	2485500	$2(2)$	2467626
pabB	57	8	3667	1833500	$2(1)$	1827846
DR	12	8	2685	1342500	$2(2)$	1335146

Validation on divergent trees ; previous method

DARLU, P. and GUENOCHE, A. (2011), The TreeOfTrees method to evaluate the congruence between gene trees, J. of Classification, 28(3), 390-403
Input: A set of aligned gene sequences or a set of boostrapped genes trees

	G_{1}	G_{2}	\ldots	G_{m}	X-Tree comparison	Distance on genes	NJ	Gene-Tree
bo	T_{1}^{1}	T_{2}^{1}	\ldots	T_{m}^{1}	\rightarrow	Δ_{1}	\rightarrow	T^{1}
os	T_{1}^{2}	T_{2}^{2}	\cdots	T_{m}^{2}	\rightarrow	Δ_{2}	\rightarrow	T^{2}
tr		T_{1}^{100}	T_{2}^{100}	\ldots	T_{m}^{100}	\cdots	\rightarrow	Δ_{100}
ap	T_{1}^{10}	\rightarrow	T^{100}					
								\mathcal{T}

Output: \mathcal{T} the consensus tree of gene trees

- with robustness values (on the internal edges)
- which could separate groups of genes (but not a isolated gene)

The TreeOfTrees tree

- 6 housekeeping genes (icd, pabB, polB, putP, $\operatorname{trp} A, \operatorname{trp} B$),
- 3 other genes, HPI, DR and UR, (Hight Pathogenicity Island and its Downstream and Upstream regions) Highly suspected to come from LGT

Validation on divergent trees: the consensus method

The 9 consensus trees on E. coli make profile Π
Similarity

- Robinson-Foulds
- Quadruple

NbClas	1	2	3	4	5	6	7	8	9
R-F	144	150	174	147	154	139	120	130	140
Quad	144	150	135	159	169	136	146	129	140
Greedy	144	168	182	147	160	145	155	130	140

Best generalized scores for all the number of classes
$\mathcal{W}(\{H P I, U R, D R\},\{p a b B, \operatorname{trp} A, \operatorname{trp} B, i c d e t P o l B\},\{p u t P\})=182$

Conclusion

- An efficient, simple method
- to decide if there is an atomic consensus or not $\left(\mathcal{W}^{m}\right.$ maximum)
- to define a single or multiple consensus
- to detect divergent genes.
- Optimality is not sure, but ...

$$
\mathcal{W}^{k}(P)>\mathcal{W}^{1} \Rightarrow \Pi \text { non homogeneous }
$$

