On Binary Jumbled Pattern Matching

Gabriele Fici

13S, CNRS & Université Nice Sophia Antipolis

27 Nov 2012 Marne-la-Vallée

Joint work with: Zs. Lipták, F. Cicalese, P. Burcsi, S. Kroon and G. Badkobeh

Text **s** over $\{a, b\}$ of length |s| = n.

Binary Jumbled Pattern Matching Problem: Given $(x, y) \in \mathbb{N} \times \mathbb{N}$, decide whether a substring occurs in *s* with *x* a's and *y* b's.

Example

s = aabababbaaabbaabbb.

For (2,2) the answer is yes; for (1,4) is no.

Text **s** over $\{a, b\}$ of length |s| = n.

Binary Jumbled Pattern Matching Problem: Given $(x, y) \in \mathbb{N} \times \mathbb{N}$, decide whether a substring occurs in *s* with *x* a's and *y* b's.

Example

s = aabababbaaabbaabbb.

For (2,2) the answer is yes; for (1,4) is no.

It is a kind of approximate string matching in which anagrams are allowed.

Simple Solution: Slide a window of size x + y along the text and count the number of *a*'s. O(n) time (optimal), on-line.

Simple Solution: Slide a window of size x + y along the text and count the number of *a*'s. O(n) time (optimal), on-line.

Question: Can a preprocessing reduce the query time? (Useful when many queries are expected.)

Simple Solution: Slide a window of size x + y along the text and count the number of *a*'s. O(n) time (optimal), on-line.

Question: Can a preprocessing reduce the query time? (Useful when many queries are expected.)

Our approach: Build an index on the text s.

First solution: [Naive] Compute and store the Parikh Set of s (i.e., the set of Parikh vectors of all the substrings of s).

- O(n²) preprocessing time,
- O(n²) index size,
- $O(\log n)$ query time.

First solution: [Naive] Compute and store the Parikh Set of s (i.e., the set of Parikh vectors of all the substrings of s).

- O(n²) preprocessing time,
- O(n²) index size,
- $O(\log n)$ query time.

New goal: Reduce index size and preprocessing time.

Lemma (Cicalese, F., Lipták, PSC 2009) If (x, y) and (x + k, y - k) both occur in s, then so does (x + i, y - i) for any $0 \le i \le k$. Lemma (Cicalese, F., Lipták, PSC 2009) If (x, y) and (x + k, y - k) both occur in s, then so does (x + i, y - i) for any $0 \le i \le k$.

Theorem

To answer BJPM queries for s, it is sufficient to know, for every $0 \le m \le n$, the max and the min of a's in the substrings of length m of s.

Lemma (Cicalese, F., Lipták, PSC 2009) If (x, y) and (x + k, y - k) both occur in s, then so does (x + i, y - i) for any $0 \le i \le k$.

Theorem

To answer BJPM queries for s, it is sufficient to know, for every $0 \le m \le n$, the max and the min of a's in the substrings of length m of s.

So we define:

$$F_a(m) = \max\{x : (x, y) \text{ occurs in } s, x + y = m\}$$

 $f_a(m) = \min\{x : (x, y) \text{ occurs in } s, x + y = m\}$

G. Fici (I3S)

On Binary Jumbled Pattern Matching

Example

s = aabababbaaabbaabbb.

_	т	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	Fa	0	1	2	3	3	3	4	5	5	5	6	7	7	7	8	9	9	9	9
	fa	0	0	0	0	1	2	2	2	3	4	5	5	5	6	6	7	7	8	9

Let (x, y) = (1, 4). To answer the query check whether $f_a(5) \le 1 \le F_a(5)$.

On Binary Jumbled Pattern Matching

Second solution: [Cicalese, F., Lipták, PSC 2009] Compute and store the tables of F_a and f_a .

- O(n²) preprocessing time,
- 2n index size,
- O(1) query time.

Second solution: [Cicalese, F., Lipták, PSC 2009] Compute and store the tables of F_a and f_a .

- O(n²) preprocessing time,
- 2n index size,
- O(1) query time.

Question: Is it possible to reduce the preprocessing time?

Second solution: [Cicalese, F., Lipták, PSC 2009] Compute and store the tables of F_a and f_a .

- O(n²) preprocessing time,
- 2n index size,
- O(1) query time.

Question: Is it possible to reduce the preprocessing time?

Best bound known:

- $O(n^2/\log n)$ (Burcsi, Cicalese, F., Lipták, FUN 2010 & Moosa, Rahman, IPL 2010)
- $O(n^2/\log^2 n)$ in the RAM model (Moosa, Rahman, JDA 2012)

- $O(n^{1+\epsilon})$ randomized Monte Carlo algorithm (Cicalese, Laber, Weimann, Yuster, CPM 2012)

Alternatively, one can define:

 $G_a(i) = \min\{\#b' \text{s in a substring containing } i a' \text{s}\}$

 $g_a(i) = \max\{\#b$'s in a substring containing i a's $\}$

Alternatively, one can define:

 $G_a(i) = \min\{\#b$'s in a substring containing i a's} $g_a(i) = \max\{\#b$'s in a substring containing i a's}

Example

s = aabababbaaabbaabbb.

i	0	1	2	3	4	5	6	7	8	9	
G _a (i)	0	0	0	0	2	2	4	4	6	6	
g _a (i)	3	3	5	5	5	7	8	9	9	9	

Let (x, y) = (1, 4). To answer the query check whether $G_a(1) \le 4 \le g_a(1)$.

G. Fici (I3S)

On Binary Jumbled Pattern Matching

27 Nov. 2012 8 / 16

Example

s = aabababbaaabbaabbb.

i	0	1	2	3	4	5	6	7	8	9	
G _a (i)	0	0	0	0	2	2	4	4	6	6	
g _a (i)	3	3	5	5	5	7	8	9	9	9	

Remark: It is sufficient to store the points where the function changes! So we define the (oredered) sets:

$$L_G = \{(3,0), (5,2), (7,4), (9,6)\}$$
$$L_g = \{(0,3), (2,5), (5,7), (6,8), (7,9)\}$$

We call $L = (L_G, L_g)$ the Corner Index of *s*.

G. Fici (13S)

On Binary Jumbled Pattern Matching

Computation of the Corner Index

Definition

We say that (x, y) dominates (x', y'), denoted $(x, y) \triangleright (x', y')$, if $(x, y) \neq (x', y')$, $x \ge x'$ and $y \le y'$.

Computation of the Corner Index

Definition

We say that (x, y) dominates (x', y'), denoted $(x, y) \triangleright (x', y')$, if $(x, y) \neq (x', y')$, $x \ge x'$ and $y \le y'$.

Algorithm: For L_G : Compute the Parikh vectors of substring starting with the *i*th *a*-run and spanning *k a*-runs. If no element of L_G dominates (x, y), then it is added to L_G , and all elements of L_G which (x, y) dominates are removed from the list.

s = aabababbaaabbaabbb

Let ρ be the length of the Run-Length Encoding of *s*. We have:

Third solution: [Badkobeh, F., Kroon, Lipták, 2012] Compute and store the Corner Index.

- $O(\rho^2 \log \rho)$ preprocessing time,
- $\leq \min(2n, \rho^2)$ index size,
- $O(\log \rho)$ query time.

Let ρ be the length of the Run-Length Encoding of *s*. We have:

Third solution: [Badkobeh, F., Kroon, Lipták, 2012] Compute and store the Corner Index.

- $O(\rho^2 \log \rho)$ preprocessing time,
- $\leq \min(2n, \rho^2)$ index size,
- $O(\log \rho)$ query time.

The construction time is better than all previous solutions for strings with short RLE (actually, as long as $\rho = O(n/\log n)$).

• 10 000 strings for each pair (r, R), with r = 10, 100, 200, 300, 500 and R = 10, 2050, 100, 200, 500, 700, 1000.

• 10000 strings for each pair (r, R), with r = 10, 100, 200, 300, 500 and R = 10, 2050, 100, 200, 500, 700, 1000.

•
$$0.8\rho \le |L| \le 3\rho$$
 (we had $|L| \le \rho^2$).

 10 000 strings for each pair (r, R), with r = 10, 100, 200, 300, 500 and R = 10, 2050, 100, 200, 500, 700, 1000.

•
$$0.8
ho \leq |L| \leq 3
ho$$
 (we had $|L| \leq
ho^2$).

In more than 99% of cases, the maximal size MaxL of the index during the computation never exceeded the final index size |L|.
 In the remaining < 1% of cases, MaxL - |L| ≤ 6.

• 10000 strings for each pair (r, R), with r = 10, 100, 200, 300, 500 and R = 10, 2050, 100, 200, 500, 700, 1000.

•
$$0.8
ho\leq |L|\leq 3
ho$$
 (we had $|L|\leq
ho^2$).

In more than 99% of cases, the maximal size MaxL of the index during the computation never exceeded the final index size |L|.
 In the remaining < 1% of cases, MaxL - |L| ≤ 6.

Open problem 1: Can the bound $|L| = O(\rho^2)$ be reduced to $|L| = O(\rho)$? **Open problem 2:** Does a bound exist on MaxL - |L|?

G. Fici (I3S)

Prefix Normal Forms

Take the values of the tables $F_a(s)$ and $f_a(s)$ and write *a* when the value increases, *b* otherwise. Denote by $PNF_a(s)$ and $PNF_b(s)$ the words so obtained.

Example

s = aabababbaaabbaabbb.

 т	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Fa	0	1	2	3	3	3	4	5	5	5	6	7	7	7	8	9	9	9	9
fa	0	0	0	0	1	2	2	2	3	4	5	5	5	6	6	7	7	8	9

 $PNF_a(s) = aaabbaabbaabbaabba$ $PNF_b(s) = bbbaabbaaabbababaa$

G. Fici (I3S)

On Binary Jumbled Pattern Matching

Prefix Normal Forms

Take the values of the tables $F_a(s)$ and $f_a(s)$ and write *a* when the value increases, *b* otherwise. Denote by $PNF_a(s)$ and $PNF_b(s)$ the words so obtained.

Example

s = aabababbaaabbaabbb.

 т	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Fa	0	1	2	3	3	3	4	5	5	5	6	7	7	7	8	9	9	9	9
fa	0	0	0	0	1	2	2	2	3	4	5	5	5	6	6	7	7	8	9

 $PNF_a(s) = aaabbaabbaabbaabba$ $PNF_b(s) = bbbaabbaaabbababaa$

Question: What is the relationship between the PNFs of *s* and *s*?

G. Fici (I3S)

On Binary Jumbled Pattern Matching

Theorem (F., Lipták, DLT 2011)

 $PNF_a(s)$ is the unique word having the same table F_a as s and realizing the maxima on its prefixes (i.e., for each m, no factor of $PNF_a(s)$ of length m contains more a's than the prefix of $PNF_a(s)$ of length m).

Theorem (F., Lipták, DLT 2011)

 $PNF_a(s)$ is the unique word having the same table F_a as s and realizing the maxima on its prefixes (i.e., for each m, no factor of $PNF_a(s)$ of length m contains more a's than the prefix of $PNF_a(s)$ of length m).

S	=	aabababbaaabbaabbb
$PNF_a(s)$	=	aaabbaabbaabbaabbb

Theorem (F., Lipták, DLT 2011)

 $PNF_a(s)$ is the unique word having the same table F_a as s and realizing the maxima on its prefixes (i.e., for each m, no factor of $PNF_a(s)$ of length m contains more a's than the prefix of $PNF_a(s)$ of length m).

$$s = aabababbaaabbaabbb$$

PNF_a(s) = aaabbaabbaabbbabbb

Theorem (F., Lipták, DLT 2011)

Two words $u, v \in \{a, b\}^*$ have the same Parikh Set if and only if $PNF_a(u) = PNF_a(v)$ and $PNF_b(u) = PNF_b(v)$.

Figure: $PNF_a(s) = aaabbaabbaabbaabba, PNF_b(s) = bbbaabbaaabbaabaaa.$

Recall that

$$L_G = \{(3,0), (5,2), (7,4), (9,6)\}$$

$$L_g = \{(0,3), (2,5), (5,7), (6,8), (7,9)\}$$

These are the "corner points" of $PNF_a(s)$ and $PNF_b(s)$.

G. Fici (I3S)

On Binary Jumbled Pattern Matching

Theorem

The size of the Corner Index is given by the lengths of the RLE of the *PNFs*.

Theorem

The size of the Corner Index is given by the lengths of the RLE of the *PNFs*.

Open problems:

- 1. What is the relationship between the RLEs of s and of its PNFs?
- 2. What are the words with the "worst" PNFs (w.r.t. the RLE)?
- 3. Is it possible to compute the PNFs in $o(n^2/\log n)$ time?