On Binary Jumbled Pattern Matching

Gabriele Fici
I3S, CNRS \& Université Nice Sophia Antipolis

27 Nov 2012
Marne-la-Vallée

Joint work with: Zs. Lipták, F. Cicalese, P. Burcsi, S. Kroon and G. Badkobeh

Text s over $\{a, b\}$ of length $|s|=n$.
Binary Jumbled Pattern Matching Problem: Given $(x, y) \in \mathbb{N} \times \mathbb{N}$, decide whether a substring occurs in s with x a's and y b's.

Example

$s=$ aabababbaaabbaabbb.
For $(2,2)$ the answer is yes; for $(1,4)$ is no.

Text s over $\{a, b\}$ of length $|s|=n$.
Binary Jumbled Pattern Matching Problem: Given $(x, y) \in \mathbb{N} \times \mathbb{N}$, decide whether a substring occurs in s with x a's and y b's.

Example

$s=a a b a b a b b a a a b b a a b b b$.
For $(2,2)$ the answer is yes; for $(1,4)$ is no.

It is a kind of approximate string matching in which anagrams are allowed.

Simple Solution: Slide a window of size $x+y$ along the text and count the number of a's. $O(n)$ time (optimal), on-line.

Simple Solution: Slide a window of size $x+y$ along the text and count the number of a's. $O(n)$ time (optimal), on-line.

Question: Can a preprocessing reduce the query time? (Useful when many queries are expected.)

Simple Solution: Slide a window of size $x+y$ along the text and count the number of a's. $O(n)$ time (optimal), on-line.

Question: Can a preprocessing reduce the query time? (Useful when many queries are expected.)

Our approach: Build an index on the text s.

First solution: [Naive] Compute and store the Parikh Set of s (i.e., the set of Parikh vectors of all the substrings of s).

- $O\left(n^{2}\right)$ preprocessing time,
- $O\left(n^{2}\right)$ index size,
- $O(\log n)$ query time.

First solution: [Naive] Compute and store the Parikh Set of s (i.e., the set of Parikh vectors of all the substrings of s).

- $O\left(n^{2}\right)$ preprocessing time,
- $O\left(n^{2}\right)$ index size,
- $O(\log n)$ query time.

New goal: Reduce index size and preprocessing time.

Lemma (Cicalese, F., Lipták, PSC 2009)
If (x, y) and $(x+k, y-k)$ both occur in s, then so does $(x+i, y-i)$ for any $0 \leq i \leq k$.

Lemma (Cicalese, F., Lipták, PSC 2009)
If (x, y) and $(x+k, y-k)$ both occur in s, then so does $(x+i, y-i)$ for any $0 \leq i \leq k$.

Theorem

To answer BJPM queries for s, it is sufficient to know, for every $0 \leq m \leq n$, the max and the min of a's in the substrings of length m of s.

Lemma (Cicalese, F., Lipták, PSC 2009)
If (x, y) and $(x+k, y-k)$ both occur in s, then so does $(x+i, y-i)$ for any $0 \leq i \leq k$.

Theorem

To answer BJPM queries for s, it is sufficient to know, for every $0 \leq m \leq n$, the max and the min of a's in the substrings of length m of s.

So we define:
$F_{a}(m)=\max \{x:(x, y)$ occurs in $s, x+y=m\}$
$f_{a}(m)=\min \{x:(x, y)$ occurs in $s, x+y=m\}$

Example

$s=$ aabababbaaabbaabbb.

m	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
F_{a}	0	1	2	3	3	3	4	5	5	5	6	7	7	7	8	9	9	9	9
f_{a}	0	0	0	0	1	2	2	2	3	4	5	5	5	6	6	7	7	8	9

Let $(x, y)=(1,4)$. To answer the query check whether $f_{a}(5) \leq 1 \leq F_{a}(5)$.

So we have:
Second solution: [Cicalese, F., Lipták, PSC 2009] Compute and store the tables of F_{a} and f_{a}.

- $O\left(n^{2}\right)$ preprocessing time,
- $2 n$ index size,
- $O(1)$ query time.

So we have:
Second solution: [Cicalese, F., Lipták, PSC 2009] Compute and store the tables of F_{a} and f_{a}.

- $O\left(n^{2}\right)$ preprocessing time,
- $2 n$ index size,
- $O(1)$ query time.

Question: Is it possible to reduce the preprocessing time?

So we have:
Second solution: [Cicalese, F., Lipták, PSC 2009] Compute and store the tables of F_{a} and f_{a}.

- $O\left(n^{2}\right)$ preprocessing time,
- $2 n$ index size,
- $O(1)$ query time.

Question: Is it possible to reduce the preprocessing time?
Best bound known:

- $O\left(n^{2} / \log n\right)$ (Burcsi, Cicalese, F., Lipták, FUN 2010 \& Moosa, Rahman, IPL 2010)
- $O\left(n^{2} / \log ^{2} n\right)$ in the RAM model (Moosa, Rahman, JDA 2012)
- $O\left(n^{1+\epsilon}\right)$ randomized Monte Carlo algorithm (Cicalese, Laber, Weimann, Yuster, CPM 2012)

Alternatively, one can define:
$G_{a}(i)=\min \{\# b ' s$ in a substring containing $i a ' s\}$
$g_{a}(i)=\max \{\# b$'s in a substring containing $i a ' s\}$

Alternatively, one can define:
$G_{a}(i)=\min \{\# b$'s in a substring containing $i a ' s\}$
$g_{a}(i)=\max \{\# b$'s in a substring containing $i a ' s\}$

Example

$s=$ aabababbaaabbaabbb.

i	0	1	2	3	4	5	6	7	8	9
$G_{a}(i)$	0	0	0	0	2	2	4	4	6	6
$g_{a}(i)$	3	3	5	5	5	7	8	9	9	9

Let $(x, y)=(1,4)$. To answer the query check whether $G_{a}(1) \leq 4 \leq g_{a}(1)$.

Example

$s=$ aabababbaaabbaabbb .

i	0	1	2	3	4	5	6	7	8	9
$G_{a}(i)$	0	0	0	0	2	2	4	4	6	6
$g_{a}(i)$	3	3	5	5	5	7	8	9	9	9

Remark: It is sufficient to store the points where the function changes! So we define the (oredered) sets:

$$
\begin{gathered}
L_{G}=\{(3,0),(5,2),(7,4),(9,6)\} \\
L_{g}=\{(0,3),(2,5),(5,7),(6,8),(7,9)\}
\end{gathered}
$$

We call $L=\left(L_{G}, L_{g}\right)$ the Corner Index of s.

Computation of the Corner Index

Definition
 We say that (x, y) dominates $\left(x^{\prime}, y^{\prime}\right)$, denoted $(x, y) \triangleright\left(x^{\prime}, y^{\prime}\right)$, if $(x, y) \neq\left(x^{\prime}, y^{\prime}\right), x \geq x^{\prime}$ and $y \leq y^{\prime}$.

Computation of the Corner Index

Definition

We say that (x, y) dominates $\left(x^{\prime}, y^{\prime}\right)$, denoted $(x, y) \triangleright\left(x^{\prime}, y^{\prime}\right)$, if $(x, y) \neq\left(x^{\prime}, y^{\prime}\right), x \geq x^{\prime}$ and $y \leq y^{\prime}$.

Algorithm: For L_{G} : Compute the Parikh vectors of substring starting with the i th a-run and spanning k a-runs. If no element of L_{G} dominates (x, y), then it is added to L_{G}, and all elements of L_{G} which (x, y) dominates are removed from the list.
$s=a a b a b a b b a a a b b a a b b b$

$$
\left.\begin{array}{c|ccccc}
a & 2 & 1 & 1 & 3 & 2 \\
b & 1 & 1 & 2 & 2 & 3
\end{array}\right] \begin{gathered}
L_{G}: \\
\begin{array}{c}
(2,0),(3,0),(4,2),(5,2), \\
(6,4),(7,4),(9,6)
\end{array}
\end{gathered}
$$

Let ρ be the length of the Run-Length Encoding of s. We have:
Third solution: [Badkobeh, F., Kroon, Lipták, 2012] Compute and store the Corner Index.

- $O\left(\rho^{2} \log \rho\right)$ preprocessing time,
- $\leq \min \left(2 n, \rho^{2}\right)$ index size,
- $O(\log \rho)$ query time.

Let ρ be the length of the Run-Length Encoding of s. We have:
Third solution: [Badkobeh, F., Kroon, Lipták, 2012] Compute and store the Corner Index.

- $O\left(\rho^{2} \log \rho\right)$ preprocessing time,
- $\leq \min \left(2 n, \rho^{2}\right)$ index size,
- $O(\log \rho)$ query time.

The construction time is better than all previous solutions for strings with short RLE (actually, as long as $\rho=O(n / \log n)$).

Experimental results: We generated strings consisting of r a-runs and $r-1 b$-runs (so $\rho=2 r-1$), with run-lengths chosen uniformly from the range $[1, R]$, for various choices of r and R.

Experimental results: We generated strings consisting of r a-runs and $r-1 b$-runs (so $\rho=2 r-1$), with run-lengths chosen uniformly from the range $[1, R]$, for various choices of r and R.

- 10000 strings for each pair (r, R), with $r=10,100,200,300,500$ and $R=10,2050,100,200,500,700,1000$.

Experimental results: We generated strings consisting of r a-runs and $r-1 b$-runs (so $\rho=2 r-1$), with run-lengths chosen uniformly from the range $[1, R]$, for various choices of r and R.

- 10000 strings for each pair (r, R), with $r=10,100,200,300,500$ and $R=10,2050,100,200,500,700,1000$.
- $0.8 \rho \leq|L| \leq 3 \rho\left(\right.$ we had $\left.|L| \leq \rho^{2}\right)$.

Experimental results: We generated strings consisting of r a-runs and $r-1 b$-runs (so $\rho=2 r-1$), with run-lengths chosen uniformly from the range $[1, R]$, for various choices of r and R.

- 10000 strings for each pair (r, R), with $r=10,100,200,300,500$ and $R=10,2050,100,200,500,700,1000$.
- $0.8 \rho \leq|L| \leq 3 \rho$ (we had $|L| \leq \rho^{2}$).
- In more than 99% of cases, the maximal size MaxL of the index during the computation never exceeded the final index size $|L|$. In the remaining $<1 \%$ of cases, $M a x L-|L| \leq 6$.

Experimental results: We generated strings consisting of r a-runs and $r-1 b$-runs (so $\rho=2 r-1$), with run-lengths chosen uniformly from the range $[1, R]$, for various choices of r and R.

- 10000 strings for each pair (r, R), with $r=10,100,200,300,500$ and $R=10,2050,100,200,500,700,1000$.
- $0.8 \rho \leq|L| \leq 3 \rho$ (we had $\left.|L| \leq \rho^{2}\right)$.
- In more than 99% of cases, the maximal size MaxL of the index during the computation never exceeded the final index size $|L|$. In the remaining $<1 \%$ of cases, $M a x L-|L| \leq 6$.

Open problem 1: Can the bound $|L|=O\left(\rho^{2}\right)$ be reduced to $|L|=O(\rho)$?
Open problem 2: Does a bound exist on MaxL - |L|?

Prefix Normal Forms

Take the values of the tables $F_{a}(s)$ and $f_{a}(s)$ and write a when the value increases, b otherwise. Denote by $\operatorname{PNF}_{a}(s)$ and $\mathrm{PNF}_{b}(s)$ the words so obtained.

Example

$s=$ aabababbaaabbaabbb.

m	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
F_{a}	0	1	2	3	3	3	4	5	5	5	6	7	7	7	8	9	9	9	9
f_{a}	0	0	0	0	1	2	2	2	3	4	5	5	5	6	6	7	7	8	9

$\operatorname{PNF}_{a}(s)=a a a b b a a b b a a b b a a b b b$
$\operatorname{PNF}_{b}(s)=b b b a a b b a a a b b a b a b a a$

Prefix Normal Forms

Take the values of the tables $F_{a}(s)$ and $f_{a}(s)$ and write a when the value increases, b otherwise. Denote by $\mathrm{PNF}_{a}(s)$ and $\mathrm{PNF}_{b}(s)$ the words so obtained.

Example

$s=$ aabababbaaabbaabbb.

m	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
F_{a}	0	1	2	3	3	3	4	5	5	5	6	7	7	7	8	9	9	9	9
f_{a}	0	0	0	0	1	2	2	2	3	4	5	5	5	6	6	7	7	8	9

$$
\begin{aligned}
& \operatorname{PNF}_{a}(s)=\text { aaabbaabbaabbaabbb } \\
& \operatorname{PNF}_{b}(s)=\text { bbbaabbaaabbababaa }
\end{aligned}
$$

Question: What is the relationship between the PNFs of s and s ?

Theorem (F., Lipták, DLT 2011)

$P N F_{a}(s)$ is the unique word having the same table F_{a} as s and realizing the maxima on its prefixes (i.e., for each m, no factor of $P N F_{a}(s)$ of length m contains more a's than the prefix of $P N F_{a}(s)$ of length m).

Theorem (F., Lipták, DLT 2011)

$P N F_{a}(s)$ is the unique word having the same table F_{a} as s and realizing the maxima on its prefixes (i.e., for each m, no factor of $P N F_{a}(s)$ of length m contains more a's than the prefix of $P N F_{a}(s)$ of length m).

$$
\begin{aligned}
s & =\text { aabababbaaabbaabbb } \\
\operatorname{PNF}_{a}(s) & =\text { aaabbaabbaabbaabbb }
\end{aligned}
$$

Theorem (F., Lipták, DLT 2011)

$P N F_{a}(s)$ is the unique word having the same table F_{a} as s and realizing the maxima on its prefixes (i.e., for each m, no factor of $P N F_{a}(s)$ of length m contains more a's than the prefix of $P N F_{a}(s)$ of length m).

$$
\begin{aligned}
s & =\text { aabababbaaabbaabbb } \\
\operatorname{PNF}_{a}(s) & =\text { aaabbaabbaabbaabbb }
\end{aligned}
$$

Theorem (F., Lipták, DLT 2011)
Two words $u, v \in\{a, b\}^{*}$ have the same Parikh Set if and only if $P N F_{a}(u)=P N F_{a}(v)$ and $P N F_{b}(u)=P N F_{b}(v)$.

Figure: $\operatorname{PNF}_{a}(s)=$ aaabbaabbaabbaabbb, $\operatorname{PNF}_{b}(s)=b b b a a b b a a a b b a b a b a a$.
Recall that

$$
\begin{aligned}
L_{G} & =\{(3,0),(5,2),(7,4),(9,6)\} \\
L_{g} & =\{(0,3),(2,5),(5,7),(6,8),(7,9)\}
\end{aligned}
$$

These are the "corner points" of $\mathrm{PNF}_{a}(s)$ and $\mathrm{PNF}_{b}(s)$.

So we have:
Theorem
The size of the Corner Index is given by the lengths of the RLE of the PNFs.

So we have:
Theorem
The size of the Corner Index is given by the lengths of the RLE of the PNFs.

Open problems:

1. What is the relationship between the RLEs of s and of its PNFs?
2. What are the words with the "worst" PNFs (w.r.t. the RLE)?
3. Is it possible to compute the PNFs in $o\left(n^{2} / \log n\right)$ time?
