Some Recent Combinatorial Approaches To Genome Comparison

Riccardo Dondi - Università di Bergamo Comatege - SeqBio2012

Talk Outline

Introduction

Variants of LCS

\square Repetition Free Longest Common Subsequence (RFLCS)
\square Exemplar Longest Common Subsequence (ELCS)
\square RFLCS and ELCS: complexity and algorithms

Genome Alignment

\square Duplication-Loss Model of evolution
\square Duplication-Loss Alignment problem
\square Minimum Labeling Alignment problem
Conclusion

Comparative genomics

- Comparative genomics: study of genome structure and function in different species
- Goals: understand
- Structure and function relationship
- Evolutionary histories of gene families
- From a combinatorial point of view: genomes can be considered as strings or permutations

Comparative genomics

Genome comparison inspiration for many interesting combinatorial problems [Fertin, Labarre, Rusu, Tannier and Vialette, Combinatorics of Genome Rearrangements, 2009]
\square Genome rearrangements
\square Phylogenetic problems
\square Variants of LCS

Comparative genomics

Recent approach [Holloway et al, RECOMB 2012]:
\square Consider an evolutionary model for genomes
\square Goal: inference of ancestral genomes and evolutionary events
\square Approach based on alignment of genomes

Variants of LCS

Exemplar model

- Genomes contain multiple copies of a gene
- Exemplar model [Sankoff, Bioinformatics, 1999]
- For each family of duplicated genes infer an exemplar
- Exemplar: representative from which all other genes have originated

Replacement approach

- Differences in gene order in two genomes: limited number of rearrangement operations
- The problem is easy when there are no duplicates, hard when there are several copies of the same gene
- Specific subsequences of genomes \rightarrow highly conserved sets of genes
- Greedy approach: replace each substring containing such subsequences by a symbol in both genomes
- Replacement approach \rightarrow each gene family must have (at least) an occurrence in the common subsequence

Variants of LCS

LCS-like problems with constraints on the symbols:
\square Exemplar model \rightarrow no repetition of a symbol in a subsequence
\square Replacement approach \rightarrow mandatory and optional symbols

Longest Common Subsequence

- LCS Well-known problem in Computational Biology
- Strings $s=s[1], s[2], \ldots, s[m]$ and $t=t[1], t[2], \ldots, t[/]$
- s is a subsequence of t if for some $j_{1}<j_{2}<\ldots<j_{m}$

$$
s[h]=t\left[j_{h}\right]
$$

- A longest common subsequence of s_{1} and s_{2} : a sequence s subsequence of both s_{1} and s_{2} of maximum length
- Longest common subsequence of a set S of sequences: a longest possible sequence s subsequence of each sequence in S.

Longest Common Subsequence

LCS - previous results:
\square Polynomial time algorithm for fixed number of strings via dynamic programming algorithms [Hsu and Du, JCSS, 1984]
\square NP-hard even for sequences over an alphabet of size 2 [Maier, Journal of the ACM, 1978]
\square Not approximable within factor $\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$, even if all symbols appear at most twice in each string [Jiang and Li. , SIAM Journal on Computing, 1995]

Repetition Free LCS

Repetition Free LCS (RFLCS)

Input: two strings s_{1}, s_{2} over alphabet A
Output: a longest common subsequence s of s_{1}, s_{2} such that each symbol in A occurs at most once in S

RFLCS

$A=\{a, b, c\}$

A LCS

A RFLCS

Exemplar LCS

Exemplar LCS (ELCS)

Input: two strings s_{1}, s_{2} over alphabet A

$$
A=A_{o} \cup A_{m}, A_{o} \cap A_{m}=\emptyset \text { where }
$$

A_{0} : set of optional symbols
A_{m} : set of mandatory symbols
Output: a longest common subsequence s of s_{1}, s_{2} that contains each symbol in A_{m}

Exemplar LCS

$A_{o}=\{b, c\}, A_{m}=\{a\}$

An ELCS

Exemplar LCS

Problem	Occurrences of mandatory symbols	Occurrences of optional symbols
$\operatorname{ELCS}(1 ; \leq 1)$	exactly 1	at most 1
$\operatorname{ELCS}(1)$	exactly 1	unrestricted
$\operatorname{ELCS}(\geq 1 ; \leq 1)$	at least 1	at most 1
$\operatorname{ELCS}(\geq 1)$	at least 1	unrestricted

Different versions of the problem according to the number of occurrences of each symbol in the solution
RFLCS $\rightarrow \operatorname{ELCS}(*, \leq 1)$ without mandatory symbols

RFLCS - complexity

RFLCS poly-time cases [Adi et al, DAM, 2010]:
\square each symbol occurs at most once in one of the input strings \rightarrow LCS
\square the number of symbols with multiple occurrences is bounded by a parameter \rightarrow guess the right subsequence of these symbols and add other symbols

RFLCS - complexity

Theorem [Adi et al, DAM, 2010]: RF-LCS is APX-hard, even when restricted to instances in which each input string contains at most two occurrences of each symbol.

Proof.

L-reduction from MAX 2,3-SAT
MAX 2,3-SAT: restriction of MAX SAT where
\square Each clause has at most two literals
\square Each variable occurs in at most three clauses

RFLCS - complexity

Proof.

$$
\begin{aligned}
& s_{1}=s\left(x_{1}\right) s\left(\neg x_{1}\right) D_{1} D_{2} \ldots D_{6} s\left(x_{2}\right) s\left(-x_{2}\right) D_{7} D_{8} \ldots D_{12} \ldots s\left(x_{n}\right) s\left(-x_{n}\right) \\
& s_{2}=s\left(\neg x_{1}\right) s\left(x_{1}\right) D_{1} D_{2} \ldots D_{6} s\left(\neg x_{2}\right) s\left(x_{2}\right) D_{7} D_{8} \ldots D_{12} \ldots s\left(\neg x_{n}\right) s\left(\neg x_{n}\right)
\end{aligned}
$$

$D_{1} D_{2} \ldots D_{k}$ separation symbols

RFLCS - complexity

Proof.

- Each symbol D_{i} in an RFLCS
- Solution of MAX 2-3 satisfies q clauses iff RLCS of length q + |D|
- Each clause satisfied retained in the corresponding block

Approximating RFLCS

h-approximation algorithm (where \mathbf{h} is the maximum number of occurrences of a symbol in an input string) [Adi et al, DAM, 2010]

1. compute a LCS
2. remove repetitions

Properties:

- LCS is an upper bound on the length of a RFLCS
- At most h removal

Approximating RFLCS

Randomized h-approximation algorithms [Adi et al, DAM, 2010]
In the input string containing more occurrences of a symbol x in A

- Choose one of the occurrences of x
- Remove the other occurrences

RFLCS - FPT algorithm

Theorem [Bonizzoni et al, IPL, 2010]: RFLCS is fixed parameter tractable when the parameter is the length of the solution.
$\mathbf{k} \rightarrow$ size of the solution
Algorithm: computes if there exists a solution of RFLCS of size at least k

RFLCS - FPT algorithm

Application of the color-coding technique
Two phases:
Phase 1) color the symbols in alphabet A with k colors such that each symbol in the solution is assigned a distinct color

Phase 2) by dynamic programming compute if a solution with k distinct colors exists

RFLCS - FPT algorithm

Phase 1
Use family F of perfect hash functions from A to the set of colors $\left\{c_{1}, \ldots, c_{k}\right\}$
By the properties of F, there exists a function f in F such that each symbol in the solution is assigned a distinct color

RFLCS - FPT algorithm

Phase 2)
Dynamic Programming
$\mathrm{L}[\mathrm{i}, \mathrm{j}, \mathrm{C}]$ represents a RFLCS for $\mathrm{s}_{1}[1, \mathrm{i}], \mathrm{s}_{2}[1, \mathrm{j}]$ that contains symbols colored by the set of colors C
$\mathrm{L}[\mathrm{i}, \mathrm{j}, \mathrm{C}]=\max$

- L[i-1,j, C]
- L[i,j-1,C]
- $\mathrm{L}\left[\mathrm{i}-1, \mathrm{j}-1, \mathrm{C}-\left\{c_{h}\right\}\right]$ if $\mathrm{s}_{1}[\mathrm{i}]=\mathrm{s}_{2}[\mathrm{j}]=a$ and $\mathrm{f}(a)=c_{h}$

RFLCS - FPT algorithm

Example

$s_{1}=a b c b d d$
$s_{2}=d b d c d a$
$A=\{a, b, c, d\}$
$s_{1}=a b c b d d$
$s_{2}=d b d c d a$
$A=\{a, b, c, d\}$

Solution $\mathrm{s}=\mathrm{bc} \mathrm{d}$

RFLCS - FPT algorithms

- Randomized FPT algorithm [Blin et al, IPL, 2012] that improves upon the time and space complexity, based on the multilinear detection technique
- Reduction to the problem of detecting a multilinear monomial (of degree k) in an arithmetic circuit

RFLCS - Parameterized complexity

Theorem [Blin et al, IPL, 2012]: RFLCS does not admit a polynomial size kernel unless NP in coNP/Poly.

Proof.

Recent technique: composition algorithm
\square Two instances of RFLCS $\left(s_{1}, s_{2}\right)$, $\left(s_{a}, s_{b}\right)$
\square An instance ($s_{1} s_{a}, s_{b} s_{2}$) of RFLCS such that

- There exists a solution of size k for RFLCS over instance ($s_{1} s_{a}, s_{b}$ s_{2}) iff there exists a solution of size k for RFLCS over one of the instance ($\mathrm{s}_{1}, \mathrm{~s}_{2}$), ($\mathrm{s}_{\mathrm{a}}, \mathrm{s}_{\mathrm{b}}$)

Exemplar LCS

Problem	Occurrences of mandatory symbols	Occurrences of optional symbols
$\operatorname{ELCS}(1 ; \leq 1)$	exactly 1	at most 1
$\operatorname{ELCS}(1)$	exactly 1	unrestricted
$\operatorname{ELCS}(\geq 1 ; \leq 1)$	at least 1	at most 1
$\operatorname{ELCS}(\geq 1)$	at least 1	unrestricted

1. Complexity of ELCS (existence of a feasible solution)
2. Complexity of $\operatorname{ELCS}(1 ; \leq 1), \operatorname{ELCS}(>=1 ; \leq 1)$

ELCS -complexity

ELCS: general version of the problem
Does a feasible solution exist?
Input: strings s_{1}, s_{2} over alphabet $A=A_{o} \cup A_{m}, A_{o} \cap A_{m}=\varnothing$, where
A_{o} : set of optional symbols
A_{m} : set of mandatory symbols
Output: does a common subsequence of sequences $\mathrm{s}_{1}, \mathrm{~s}_{2}$ that contains all mandatory symbols exist? Only mandatory symbols are relevant

ECLS - complexity

Theorem [Bonizzoni et al, TCBB, 2007]: ELCS problem is polynomial time solvable when each mandatory symbol appears totally at most three times in the input strings.

Proof.

Each mandatory symbol can have at most two occurrences in each input string
ELCS can be reduced to 2SAT

ECLS - complexity

Feasible solution: no crossing lines

1. Boolean variable for each occurrence of a symbol in an input string
2. Clause for each pair of crossing line

ECLS - complexity

Theorem [Bonizzoni et al, TCBB, 2007]: ELCS problem is NP-hard when each mandatory symbol appears at most three times in each input string.

Proof.

Reduction from 3SAT similar to the reduction for RFLCS

$\operatorname{ELCS}(1, \leq 1)$

Theorem [Bonizzoni et al, TCBB, 2007]: ELCS(1; $\leq 1)$ problem is APX-hard even when each symbol appears at most twice in each input string.

Proof.
Reduction from Max Independent Set on Cubic Graphs

$\operatorname{ELCS}(1, \leq 1)$

Proof.

\square Input strings $\mathrm{s}_{1}, \mathrm{~s}_{2}$ are divided in blocks
\square For each vertex v_{i} of $V \rightarrow$ a block $b_{j}\left(v_{i}\right)$ in string $s_{j}(j=1,2)$

$\operatorname{ELCS}(1, \leq 1)$

v_{i}	$\mathrm{e}_{1}\left(\mathrm{v}_{\mathrm{i}}\right)$	$\mathrm{e}_{2}\left(\mathrm{v}_{\mathrm{i}}\right)$	$\mathrm{e}_{3}\left(\mathrm{v}_{\mathrm{i}}\right)$	x_{i}
i-th block of s_{1}				

v_{k}	$\mathrm{e}_{1}\left(\mathrm{v}_{\mathrm{k}}\right)$	$\mathrm{e}_{2}\left(\mathrm{v}_{\mathrm{k}}\right)$	$\mathrm{e}_{3}\left(\mathrm{v}_{\mathrm{k}}\right)$	x_{k}

- Edge $\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{k}}\right\}$:
- first edge incident on v_{i},
- second edge incident on v_{k}
- Encoded by a mandatory symbol

$\operatorname{ELCS}(1, \leq 1)$

i-th block of s_{1}

v_{i}	$e_{1}\left(v_{i}\right)$	$e_{2}\left(v_{i}\right)$	$e_{3}\left(v_{i}\right)$	x_{i}

i-th block of s_{2}	$e_{1}\left(v_{i}\right)$	$e_{2}\left(v_{i}\right)$	$e_{3}\left(v_{i}\right)$	v_{i}	x_{i}

- Symbol x_{i} is mandatory
- Symbol v_{i} is optional
- $e_{j}\left(v_{i}\right)$: j-th edge incident on v_{i} encoded by a mandatory symbol

$\operatorname{ELCS}(1, \leq 1)$

		$b_{1}\left(v_{1}\right)$	$b_{1}\left(v_{2}\right)$	\cdots
s_{1}	$b_{1}\left(v_{n}\right)$			

- Any feasible solution s must contain symbol x_{i}
- Any feasible solution s can be divided in blocks
- Each block $f\left(v_{i}\right)$ is either $v_{i} x_{i}($ Max Ind Set $)$ or a subsequence of $e_{1}\left(v_{i}\right) e_{2}\left(v_{i}\right) e_{3}\left(v_{i}\right) x_{i}$

$\operatorname{ELCS}(\geq 1, \leq 1)$

Theorem [Bonizzoni et al, TCBB, 2007]: ELCS $(\geq 1$; $\leq 1)$ is APXhard even when each symbol appears at most twice in each input string.

Proof.

- Similar to the previous reduction
- Each mandatory symbol must have at least one occurrence
- Each optional symbol v_{i} is encoded with four optional symbols: $v_{i}{ }^{a} v_{i}{ }^{b} v_{i}{ }^{c} v_{i}{ }^{d}$

ELCS - Parameterized Complexity

Restriction of ELCS and ELCS(≥ 1) when the set A_{m} of mandatory symbols is a parameter [Bonizzoni et al, TCBB, 2007]:
\square Dynamic programming algorithm to

- Store the mandatory symbols used
- Fill the gaps between a pair of mandatory symbols

Variant of LCS - Open problems

Approximation complexity of RFLCS
\square Constant factor approximation algorithms?

- Hardness results?

ELCS

\square Complexity when each symbol occurs less than three times in one input string, more than three times in the other
Other variants with combined constraints

Genome Alignment

Genome comparison

Genome comparison \rightarrow infer mutations inside genomes

- macro-evolutionary events
- rearrangements (inversions, transpositions...)
- content modifying operations (duplications, losses, horizontal gene transfers,...)

Duplication-loss model

Duplication-loss model [Holloway et al., RECOMB 2012]: evolutionary model restricted to two evolutionary events

- duplications
- losses
\square Goal: inference of ancestral genomes and evolutionary events
\square Rearrangements operations ignored: organization preserved
\square Application to tRNA in bacteria

Duplication-loss model

Duplication of size k: operation that copies a substring of size k of a genome somewhere else in the genome

Duplication-loss model

A loss of size k is an operation that removes a substring of size k from a genome
loss

X^{\prime} \square

Genome Alignment

An alignment of genome X and $Y \rightarrow$ pair (X^{\prime}, Y^{\prime}) of strings obtained by filling X and Y respectively with gaps (i.e. -), such that:

- $\left|X^{\prime}\right|=\left|Y^{\prime}\right|$
- For each position i
- $X^{\prime}[i]=Y^{\prime}[i] \neq-$ (a match)
- Either $X^{\prime}[i]=$ - or $Y^{\prime}[i]=-($ a mismatch $)$

Genome Alignment

Genome Alignment

Given two aligned genomes:
\square matches: genes in both genomes
\square mismatches: genes (copies of genes) in one of the two genome
Labeling of the mismatched positions of the aligned genomes in terms of duplications and losses

Genome Alignment

Labeling $L(X)$ of an aligned genome X : set of losses and duplications, such that each mismatched position of X is labeled either as a loss or as a duplication

Genome Alignment

\square The cost of a labeling $L(X)$ is the cost of the underlying operations (losses and duplications)
\square The cost of a labeled alignment $(\mathrm{L}(\mathrm{X}), \mathrm{L}(\mathrm{Y}))$ is the sum of cost of the two labeling $L(X)$ and $L(Y)$

Usually cost $C(L(k))=k, c(D(k))=1$

Genome Alignment

Alignment of cost two:
 - one loss
 - one duplication

Genome Alignment

A labeling of an aligned genome can be cyclic \rightarrow not biologically consistent

Genome Alignment

Given an aligned genomes, a labeling is feasible if there is no subset of duplications that induces a duplication cycle

Genome Alignment

Duplication-Loss Alignment problem [DLA]

Input: Two genomes X and Y.
Output: A Feasible Labeled Alignment (L(X), L(Y)) of minimum cost.

Genome Alignment

Previous results

- Dynamic programming does not work [Holloway et al., RECOMB 2012]
- Exact Pseudo Boolean programming [Holloway et al., RECOMB 2012]
More recently [Canzar and Andreotti, Arxiv, 2012]
- DLA is NP-hard
- Branch and Cut Algorithm

Genome Alignment - New approach

Possible heuristic for DLA:

1. Align optimally two genomes \rightarrow dynamic programming
2. Label the given aligned genomes

Property

Each genome can be labeled independently

Minimum Labeling Alignment

Minimum Labeling Alignment Problem [MLA] Input: An aligned genome X.
Output: A Feasible Labeling $L(X)$ of minimum cost.

MLA - Complexity

Theorem [Dondi and El-Mabrouk, Arxiv, 2012]: Minimum Label Alignment is APX-hard.

Proof.

L-reduction from Minimum Vertex Cover on Cubic Graphs

$$
\begin{aligned}
X= & B\left(v_{1}\right) \ldots B\left(v_{n}\right) B\left(e_{1, a}\right) \ldots B\left(e_{z, w}\right) \\
& B\left(A, 1, v_{1}\right) \ldots B\left(A, 2, v_{1}\right) \ldots B\left(A, 1, v_{n}\right) \ldots B\left(A, 2, v_{n}\right)
\end{aligned}
$$

MLA - Complexity

High level idea:

- $\mathrm{B}\left(\mathrm{A}, \mathrm{x}, \mathrm{v}_{\mathrm{i}}\right) \rightarrow$ matched
- Labeling of $B\left(v_{i}\right)$:
- duplications from $B\left(e_{i, j}\right), B\left(e_{i, h}\right), B\left(e_{i, k}\right) B\left(A, 1, v_{i}\right) \rightarrow$ cost 7 (independent set)
- duplications from $\mathrm{B}\left(\mathrm{A}, 2, \mathrm{v}_{\mathrm{i}}\right) \rightarrow$ cost 8 (vertex cover)

MLA - Complexity

High level idea:

- Labeling of $B\left(\mathrm{e}_{\mathrm{i}, \mathrm{j}}\right)$:
- A duplication from one of $B\left(v_{i}\right), B\left(v_{j}\right)$
- To avoid cycles
- If there is a duplication from one of $\mathrm{B}\left(\mathrm{v}_{\mathrm{i}}\right)$ to $\mathrm{B}\left(\mathrm{e}_{\mathrm{i}, \mathrm{j}}\right) \rightarrow$ no duplication from $B\left(\mathrm{e}_{\mathrm{i}, \mathrm{j}}\right)$ to $\mathrm{B}(\mathrm{vi})$

MLA - Complexity

Lemma: there exists a vertex cover V ' of G iff there exists a feasible labeling of X of cost $8\left|V^{\prime}\right|+7 \mid V$ $V^{\prime}|+2| E \mid$.

Theorem: MLA is APX-hard even if each symbol has at most 5 occurrences in X.

Label Alignment - Open Problems

- Approximation complexity of DLA and MLA
- New (heuristics) approaches to DLA
- Complexity of MLA with $[3,4]$ occurrences for each symbol

Conclusion

Variants of LCS

- Repetition Free Longest Common Subsequence
- Complexity
- Approximation Algorithms
- FPT algorithms
- Exemplar Longest Common Subsequence (ELCS)
- Complexity of variants of ELCS

Genome Alignment

- Duplication-Loss Model of evolution
- Duplication-Loss Alignment problem
- Complexity
- Minimum Label Alignment problem
- Complexity of Minimum Label Alignment problem

References - RFLCS and ELCS

- Guillaume Blin, Paola Bonizzoni, Riccardo Dondi, Florian Sikora: On the parameterized complexity of the repetition free longest common subsequence problem. Inf. Process. Lett. 112(7): 272-276 (2012)
- Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, Yuri Pirola: Variants of constrained longest common subsequence. Inf. Process. Lett. 110(20): 877-881 (2010)
- Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, Guillaume Fertin, Raffaella Rizzi, Stéphane Vialette: Exemplar Longest Common Subsequence. IEEE/ACM Trans. Comput. Biology Bioinform. 4(4): 535-543 (2007)
- Carlos Eduardo Ferreira, Christian Tjandraatmadja: A branch-and-cut approach to the repetition-free longest common subsequence problem. Electronic Notes in Discrete Mathematics 36: 527-534 (2010)
- Said Sadique Adi, Marília D. V. Braga, Cristina G. Fernandes, Carlos Eduardo Ferreira, Fábio Viduani Martinez, Marie-France Sagot, Marco A. Stefanes, Christian Tjandraatmadja, Yoshiko Wakabayashi: Repetition-free longest common subsequence. Discrete Applied Mathematics 158(12): 1315-1324 (2010)
- Cristina G. Fernandes, Carlos Eduardo Ferreira, Christian Tjandraatmadja, Yoshiko Wakabayashi: A Polyhedral Investigation of the LCS Problem and a Repetition-Free Variant. LATIN 2008: 329-338

References - DLA and MLA

- Stefan Canzar, Sandro Andreotti: A Branch-and-Cut Algorithm for the 2-Species Duplication-Loss Phylogeny Problem. CoRR abs/1208.2698 (2012)
- Riccardo Dondi, Nadia El-Mabrouk: On the Complexity of Minimum Labeling Alignment of Two Genomes. CoRR abs/1206.1877 (2012)
- Patrick Holloway, Krister M. Swenson, David H. Ardell, Nadia El-Mabrouk: Evolution of Genome Organization by Duplication and Loss: An Alignment Approach. RECOMB 2012: 94-112

Some Recent Combinatorial Approaches To Genome Comparison

Thank you!

Questions?

