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Sorting by Comparisons

Input: a set V, totally ordered by an unknown order <

Goal: Discover < by making queries “is x < y?", for some
x,y eV

Objective function: #queries

» Calssical problem in algorithms

» O(|V]log|V]) queries necessary and sufficient (Heap Sort,
Merge Sort)



Sorting by Comparisons under Partial Information
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Partial Orders and Linear Extensions

> Hasse diagram: maximum on top, transitive reduction

» e(P) := #linear extensions of P

QU O T Q.0 & o
2. O 2

O Q. 92 O Q. 0 <



Lower Bound

Every comparison-based sorting algorithm can be forced to do at
least

lg e(P)

comparisons.



Balanced Pairs

Does there always exist a comparison that "splits” the set of linear
extensions into roughly equal part?
» 1/3 —2/3 conjecture: In any partial order P, there exists a
pair of elements a, b such that the fraction of linear extensions
having a < b is between 1/3 and 2/3

» Proved for smaller values
Brightwell, Felsner, and Trotter, 1995 — Brightwell, 1999



A Counting Issue

» Computing e(P), or computing the fraction of linear
extensions in which a < b for some pair a, b are #P-Complete
problems Brightwell and Winkler, 1991

Goal of this talk:

» Insights into approximations of Ig e(P) that will eventually
yield efficient sorting algorithms



Plan

v

The Order Polytope O(P) of P and how it relates to Ig e(P)
The Chain Polytope C(P) and how it relates to O(P)

» Approximating Ig e(P) using the graph entropy and how it
relates to the two polytopes

v

» A sorting algorithm



The Order Polytope

» We consider the Euclidean space RY of all functions
f:V-R

» the Order Polytope O(P) of P is the subset of RY defined by:

0<f(x)<1 V¥xeV
f(x)<f(y) ifx<py



Interpretation

» O(P) is the intersection of the subsets depicted below, for
each comparable pair a <p b

f(b)
A
1
b
a
0 > fla)



Example



Volume of the Order Polytope

vol(O(P)) = e(P)/| V!

Stanley, 1986

A short proof:
» Every linear extension of P defines a simplex of O(P)

» Every simplex has volume 1/|V/|!



Volume of the Order Polytope
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Volume of the Order Polytope
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The Chain Polytope

» The Chain polytope C(P) of P is the subset of RY defined by

0<g(x) VxeV

Zg <1 for every chain C in P
xeC

» Convex hull of the characteristic vectors of subsets of
mutually incomparable elements (antichains)

» Convex corner: contains the convex hull of the origin and the
basis vectors



Example




Example

independent  sets:

{a}, {b},{c},{b,c}




From the Order Polytope to the Chain Polytope

» Define the transfer map ¢ : O(P) — C(P) as follows: if
f € O(P) and x € V, then

[(6F)(x) = min{f(x) = F(y) : ¥ <p x}|

> It can be checked that ¢ is a continuous, piecewise-linear
bijection from O(P) onto C(P)



Example

» the function f is increasing along the chain

» the function g has sum at most one along the chain

f(b) g(b)
C 1 1/2 { ]ﬂ
Y5120 7() RN
1 1~‘.~~
abipap - i@ 0



Consequence

vol(C(P)) = vol(O(P)) = e(P)/|V|!

Stanley, 1986

» We may work with either polytope

» Considering the Chain polytope allows us to borrow ideas
from graph theory



Approximation of (log)e(P)

Approximating the volume of a convex corner by an enclosed box:

A




Maximizing the Box Volume

» For any x € C(P), the box with the origin and x as opposite
corners is fully contained in C(P)

> Let us define the following maximum included box program:

max H Xy

veVv
st. xeC(P)



Entropy

Taking the log, normalizing by n := |V/|, and changing sign:

min —% Z Ig x,

veV
st. xe€C(P),x>0



Entropy

> Let us give it a name:

1
H(P)= min —-
(P) min  —— Z lg x,
veVv
st. xeC(P),x>0

» Special case of the Graph Entropy Kérner, 1973

» Applications to data compression, Boolean formulas,
optimization




Entropy

» For P a total order, C(P) is the convex hull of the basis
vectors only
» We set x, = 1/n Vv € V, and obtain H(P) = logn
» For P an empty order, C(P) is the unit cube
» We set x, =1 Vv € V, and obtain H(P) =0

» Intuitively, H(P) measures the quantity of information
contained in P



Approximation

» Let x define the optimal box
» The volume of the box is bounded by that of the polytope:

[[x < eP)/n

veV

HP) = —,17|og<Hxv>

veV
nlogn—nH(P) < Ige(P)+ 1.443n



Approximation

» In fact, we can show that

lge(P) = ©(nlogn — nH(P))

Kahn and Kim, 1992
» Furthermore, computing H(P) is a convex programming
problem, that can be solved in polynomial time

» Hence we get a polynomial time constant-factor
approximation algorithm for the sorting lower bound Ig e(P)



A Sorting Algorithm

2. lteratively merge two smallest chains

1. Compute greedy chain decomposition of P
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A Sorting Algorithm

ETC.



Analysis (Outline)

This algorithm performs (1 + ¢)lg e(P) + O-(n) comparisons
C., Fiorini, Joret, Jungers, Munro, 2010

Proof outline:
> The tree of merges is a Huffman tree

» Hence the number of comparisons is at most g + O(n),

where : .
n
g:=> |Gllg =
i=1 IGil

» We could prove that g is a good approximation of
nlog n — nH(P), hence of Ige(P)



Summary

1. Volume of the Order Polytope O(P) of P proportional to e(P)
2. Chain Polytope C(P) = ¢O(P)

3. Maximum included box in C(P) — entropy — approximates
lg e(P)

4. Cost of Greedy Merge Sort approximates entropy



Extending the Scope

» The graph entropy framework provides efficient algorithms for
approximating the number of linear extensions of a partial
order

» Can it be used for other applications?

» Can it be used to approximate other quantities?



Thank You!
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