Sorting

AND
 a Tale of Two Polytopes

Jean Cardinal

ULB, Brussels, Belgium
Algorithms \& Permutations, Paris, 2012

Sorting by Comparisons

Input: a set V, totally ordered by an unknown order \leqslant
Goal: Discover \leqslant by making queries "is $x \leqslant y$?", for some $x, y \in V$

Objective function: \#queries

- Calssical problem in algorithms
- $\Theta(|V| \log |V|)$ queries necessary and sufficient (Heap Sort, Merge Sort)

Sorting by Comparisons under Partial Information

Input:

- a set V, totally ordered by an unknown order \leqslant
- a partial order $P=\left(V, \leqslant_{P}\right)$ compatible with \leqslant

Goal: Discover \leqslant by making queries "is $x \leqslant y$?", for some $x, y \in V$

Objective function: \#queries

Sorting by Comparisons under Partial Information

Input:

- a set V, totally ordered by an unknown order \leqslant
- a partial order $P=(V, \leqslant P)$ compatible with \leqslant

Goal: Discover \leqslant by making queries "is $x \leqslant y$?", for some $x, y \in V$

Objective function: \#queries

Sorting by Comparisons under Partial Information

Input:

- a set V, totally ordered by an unknown order \leqslant
- a partial order $P=(V, \leqslant P)$ compatible with \leqslant

Goal: Discover \leqslant by making queries "is $x \leqslant y$?", for some $x, y \in V$

Objective function: \#queries

Sorting by Comparisons under Partial Information

Input:

- a set V, totally ordered by an unknown order \leqslant
- a partial order $P=(V, \leqslant P)$ compatible with \leqslant

Goal: Discover \leqslant by making queries "is $x \leqslant y$?", for some $x, y \in V$

Objective function: \#queries

Sorting by Comparisons under Partial Information

Input:

- a set V, totally ordered by an unknown order \leqslant
- a partial order $P=(V, \leqslant P)$ compatible with \leqslant

Goal: Discover \leqslant by making queries "is $x \leqslant y$?", for some $x, y \in V$

Objective function: \#queries

Sorting by Comparisons under Partial Information

 Input:- a set V, totally ordered by an unknown order \leqslant
- a partial order $P=(V, \leqslant P)$ compatible with \leqslant

Goal: Discover \leqslant by making queries "is $x \leqslant y$?", for some $x, y \in V$
Objective function: \#queries

Sorting by Comparisons under Partial Information

Input:

- a set V, totally ordered by an unknown order \leqslant
- a partial order $P=(V, \leqslant P)$ compatible with \leqslant

Goal: Discover \leqslant by making queries "is $x \leqslant y$?", for some $x, y \in V$

Objective function: \#queries

Sorting by Comparisons under Partial Information

 Input:- a set V, totally ordered by an unknown order \leqslant
- a partial order $P=(V, \leqslant P)$ compatible with \leqslant

Goal: Discover \leqslant by making queries "is $x \leqslant y$?", for some $x, y \in V$

Objective function: \#queries

Sorting by Comparisons under Partial Information

 Input:- a set V, totally ordered by an unknown order \leqslant
- a partial order $P=(V, \leqslant p)$ compatible with \leqslant

Goal: Discover \leqslant by making queries "is $x \leqslant y$?", for some $x, y \in V$
Objective function: \#queries

Partial Orders and Linear Extensions

- Hasse diagram: maximum on top, transitive reduction
- $e(P):=$ \#linear extensions of P

$$
\begin{aligned}
& { }^{a} \mathrm{O} \\
& { }^{c} 0 \\
& { }^{b} 0 \\
& { }^{2} 0 \\
& e(P)=5
\end{aligned}
$$

Lower Bound

Every comparison-based sorting algorithm can be forced to do at least

$$
\lg e(P)
$$

comparisons.

Balanced Pairs

Does there always exist a comparison that "splits" the set of linear extensions into roughly equal part?

- $1 / 3-2 / 3$ conjecture: In any partial order P, there exists a pair of elements a, b such that the fraction of linear extensions having $a<b$ is between $1 / 3$ and $2 / 3$
- Proved for smaller values

Brightwell, Felsner, and Trotter, 1995 - Brightwell, 1999

A Counting Issue

- Computing $e(P)$, or computing the fraction of linear extensions in which $a<b$ for some pair a, b are \#P-Complete problems

Brightwell and Winkler, 1991

Goal of this talk:

- Insights into approximations of $\lg e(P)$ that will eventually yield efficient sorting algorithms

Plan

- The Order Polytope $\mathcal{O}(P)$ of P and how it relates to $\lg e(P)$
- The Chain Polytope $\mathcal{C}(P)$ and how it relates to $\mathcal{O}(P)$
- Approximating $\lg e(P)$ using the graph entropy and how it relates to the two polytopes
- A sorting algorithm

The Order Polytope

- We consider the Euclidean space \mathbb{R}^{V} of all functions $f: V \rightarrow \mathbb{R}$
- the Order Polytope $\mathcal{O}(P)$ of P is the subset of \mathbb{R}^{V} defined by:

$$
\begin{aligned}
0 \leq f(x) \leq 1 & \forall x \in V \\
f(x) \leq f(y) & \text { if } x \leqslant P y
\end{aligned}
$$

Interpretation

- $\mathcal{O}(P)$ is the intersection of the subsets depicted below, for each comparable pair $a \leqslant p b$

Example

Volume of the Order Polytope

$$
\operatorname{vol}(\mathcal{O}(P))=e(P) /|V|!
$$

Stanley, 1986

A short proof:

- Every linear extension of P defines a simplex of $\mathcal{O}(P)$
- Every simplex has volume $1 /|V|$!

Volume of the Order Polytope

Volume of the Order Polytope

Volume of the Order Polytope

The Chain Polytope

- The Chain polytope $\mathcal{C}(P)$ of P is the subset of \mathbb{R}^{V} defined by

$$
\begin{aligned}
0 \leq g(x) & \forall x \in V \\
\sum_{x \in C} g(x) \leq 1 & \text { for every chain } C \text { in } P
\end{aligned}
$$

- Convex hull of the characteristic vectors of subsets of mutually incomparable elements (antichains)
- Convex corner: contains the convex hull of the origin and the basis vectors

Example

$$
\begin{aligned}
& g(a)+g(b) \leq 1 \\
& g(a)+g(c) \leq 1 \\
& g(a), g(b), g(c) \geq 0
\end{aligned}
$$

Example

From the Order Polytope to the Chain Polytope

- Define the transfer map $\phi: \mathcal{O}(P) \rightarrow \mathcal{C}(P)$ as follows: if $f \in \mathcal{O}(P)$ and $x \in V$, then

$$
(\phi f)(x)=\min \left\{f(x)-f(y): y<_{p} x\right\}
$$

- It can be checked that ϕ is a continuous, piecewise-linear bijection from $\mathcal{O}(P)$ onto $\mathcal{C}(P)$

Example

- the function f is increasing along the chain
- the function g has sum at most one along the chain

Consequence

$$
\operatorname{vol}(\mathcal{C}(P))=\operatorname{vol}(\mathcal{O}(P))=e(P) /|V|!
$$

- We may work with either polytope
- Considering the Chain polytope allows us to borrow ideas from graph theory

Approximation of $(\log) e(P)$

Approximating the volume of a convex corner by an enclosed box:

Maximizing the Box Volume

- For any $x \in \mathcal{C}(P)$, the box with the origin and x as opposite corners is fully contained in $\mathcal{C}(P)$
- Let us define the following maximum included box program:

$$
\begin{array}{ll}
\max & \prod_{V \in V} x_{V} \\
\text { s.t. } & x \in \mathcal{C}(P)
\end{array}
$$

Entropy

Taking the log, normalizing by $n:=|V|$, and changing sign:

$$
\begin{array}{ll}
\min & -\frac{1}{n} \sum_{v \in V} \lg x_{v} \\
\text { s.t. } & x \in \mathcal{C}(P), x>0
\end{array}
$$

Entropy

- Let us give it a name:

$$
\begin{aligned}
H(P)=\min & -\frac{1}{n} \sum_{v \in V} \lg x_{v} \\
\text { s.t. } & x \in \mathcal{C}(P), x>0
\end{aligned}
$$

- Special case of the Graph Entropy

Körner, 1973

- Applications to data compression, Boolean formulas, optimization

Entropy

- For P a total order, $\mathcal{C}(P)$ is the convex hull of the basis vectors only
- We set $x_{v}=1 / n \forall v \in V$, and obtain $H(P)=\log n$
- For P an empty order, $\mathcal{C}(P)$ is the unit cube
- We set $x_{v}=1 \forall v \in V$, and obtain $H(P)=0$
- Intuitively, $H(P)$ measures the quantity of information contained in P

Approximation

- Let x define the optimal box
- The volume of the box is bounded by that of the polytope:

$$
\begin{aligned}
\prod_{v \in V} x_{v} & \leq e(P) / n! \\
H(P) & =-\frac{1}{n} \log \left(\prod_{v \in V} x_{v}\right) \\
n \log n-n H(P) & \leq \lg e(P)+1.443 n
\end{aligned}
$$

Approximation

- In fact, we can show that

$$
\lg e(P)=\Theta(n \log n-n H(P))
$$

Kahn and Kim, 1992

- Furthermore, computing $H(P)$ is a convex programming problem, that can be solved in polynomial time
- Hence we get a polynomial time constant-factor approximation algorithm for the sorting lower bound $\lg e(P)$

A Sorting Algorithm

1. Compute greedy chain decomposition of P
2. Iteratively merge two smallest chains

A Sorting Algorithm

1. Compute greedy chain decomposition of P
2. Iteratively merge two smallest chains

A Sorting Algorithm

1. Compute greedy chain decomposition of P
2. Iteratively merge two smallest chains

A Sorting Algorithm

1. Compute greedy chain decomposition of P
2. Iteratively merge two smallest chains

$$
\begin{aligned}
& 0-0-0-0-0-0-0 \\
& 0-0-0-0
\end{aligned}
$$

A Sorting Algorithm

1. Compute greedy chain decomposition of P
2. Iteratively merge two smallest chains

A Sorting Algorithm

ETC.

Analysis (Outline)

This algorithm performs $(1+\varepsilon) \lg e(P)+O_{\varepsilon}(n)$ comparisons
C., Fiorini, Joret, Jungers, Munro, 2010

Proof outline:

- The tree of merges is a Huffman tree
- Hence the number of comparisons is at most $g+O(n)$, where :

$$
g:=\sum_{i=1}^{k}\left|C_{i}\right| \lg \frac{n}{\left|C_{i}\right|}
$$

- We could prove that g is a good approximation of $n \log n-n H(P)$, hence of $\lg e(P)$

Summary

1. Volume of the Order Polytope $\mathcal{O}(P)$ of P proportional to $e(P)$
2. Chain Polytope $\mathcal{C}(P)=\phi \mathcal{O}(P)$
3. Maximum included box in $\mathcal{C}(P) \rightarrow$ entropy \rightarrow approximates $\lg e(P)$
4. Cost of Greedy Merge Sort approximates entropy

Extending the Scope

- The graph entropy framework provides efficient algorithms for approximating the number of linear extensions of a partial order
- Can it be used for other applications?
- Can it be used to approximate other quantities?

Thank You!

Pointers: Stanley's map

R R. P. Stanley.
Two poset polytopes.
Discrete Comput. Geom., 1:9-23, 1986.

Pointers: Counting Linear Extensions

目 G. R. Brightwell and P. Winkler.
Counting linear extensions.
Order, 8(3):225-242, 1991.

Pointers：Sorting

國 M．L．Fredman．
How good is the information theory bound in sorting？
Theor．Comput．Sci．，1（4）：355－361， 1976.
N．Linial．
The information－theoretic bound is good for merging．
SIAM J．Comput．，13（4）：795－801， 1984.
围 J．Kahn and M．E．Saks．
Balancing poset extensions．
Order，1：113－126， 1984.
圊 J．Kahn and N．Linial．
Balancing extensions via Brunn－Minkowski．
Combinatorica，11：363－368， 1991.
目 G．R．Brightwell．
Balanced pairs in partial orders．
Discrete Mathematics，201（1－3）：25－52， 1999.

Pointers: Entropy

围 J. Körner.
Coding of an information source having ambiguous alphabet and the entropy of graphs.
In Transactions of the 6th Prague Conference on Information
Theory, pages 411-425, 1973.
圊 G. Simonyi.
Graph entropy: a survey.
In Combinatorial optimization (New Brunswick, NJ, 1992-1993), volume 20 of DIMACS Ser. Discrete Math.
Theoret. Comput. Sci., pages 399-441. Amer. Math. Soc.,
Providence, RI, 1995.

Pointers：Sorting and Entropy

囯 J．Kahn and J．H．Kim．
Entropy and sorting．
J．Comput．Syst．Sci．，51（3）：390－399， 1995.
囯 A．C．－C．Yao．
Graph entropy and quantum sorting problems．
In STOC＇04：36th Annual ACM Symposium on Theory of
Computing，pages 112－117， 2004.
圊 J．C．，S．Fiorini，G．Joret，R．Jungers，and J．I．Munro．
An efficient algorithm for partial order production． In STOC＇09：41st ACM Symposium on Theory of Computing， 2009.

雷 J．C．，S．Fiorini，G．Joret，R．Jungers，and J．I．Munro． Sorting under Partial Information（without the Ellipsoid Algorithm）．
In STOC＇10：42nd ACM Symposium on Theory of
Computing， 2010.

