
Sorting
and

a Tale of Two Polytopes

Jean Cardinal
ULB, Brussels, Belgium

Algorithms & Permutations, Paris, 2012

Sorting by Comparisons

Input: a set V , totally ordered by an unknown order 6

Goal: Discover 6 by making queries “is x 6 y?”, for some
x , y ∈ V

Objective function: #queries

I Calssical problem in algorithms

I Θ(|V | log |V |) queries necessary and sufficient (Heap Sort,
Merge Sort)

Sorting by Comparisons under Partial Information

Input:

I a set V , totally ordered by an unknown order 6

I a partial order P = (V ,6P) compatible with 6

Goal: Discover 6 by making queries “is x 6 y?”, for some
x , y ∈ V

Objective function: #queries

Sorting by Comparisons under Partial Information

Input:

I a set V , totally ordered by an unknown order 6

I a partial order P = (V ,6P) compatible with 6

Goal: Discover 6 by making queries “is x 6 y?”, for some
x , y ∈ V

Objective function: #queries

Sorting by Comparisons under Partial Information

Input:

I a set V , totally ordered by an unknown order 6

I a partial order P = (V ,6P) compatible with 6

Goal: Discover 6 by making queries “is x 6 y?”, for some
x , y ∈ V

Objective function: #queries

Sorting by Comparisons under Partial Information

Input:

I a set V , totally ordered by an unknown order 6

I a partial order P = (V ,6P) compatible with 6

Goal: Discover 6 by making queries “is x 6 y?”, for some
x , y ∈ V

Objective function: #queries

OR ?

Sorting by Comparisons under Partial Information

Input:

I a set V , totally ordered by an unknown order 6

I a partial order P = (V ,6P) compatible with 6

Goal: Discover 6 by making queries “is x 6 y?”, for some
x , y ∈ V

Objective function: #queries

?OR

Sorting by Comparisons under Partial Information
Input:

I a set V , totally ordered by an unknown order 6
I a partial order P = (V ,6P) compatible with 6

Goal: Discover 6 by making queries “is x 6 y?”, for some
x , y ∈ V

Objective function: #queries

Sorting by Comparisons under Partial Information
Input:

I a set V , totally ordered by an unknown order 6

I a partial order P = (V ,6P) compatible with 6

Goal: Discover 6 by making queries “is x 6 y?”, for some
x , y ∈ V

Objective function: #queries

OR ?

Sorting by Comparisons under Partial Information
Input:

I a set V , totally ordered by an unknown order 6
I a partial order P = (V ,6P) compatible with 6

Goal: Discover 6 by making queries “is x 6 y?”, for some
x , y ∈ V

Objective function: #queries

OR ?

Sorting by Comparisons under Partial Information
Input:

I a set V , totally ordered by an unknown order 6
I a partial order P = (V ,6P) compatible with 6

Goal: Discover 6 by making queries “is x 6 y?”, for some
x , y ∈ V

Objective function: #queries

Partial Orders and Linear Extensions

I Hasse diagram: maximum on top, transitive reduction

I e(P) := #linear extensions of P

a b

c d

b

a

d

c

b

a

c

d

a

b

d

c

a

b

c

d

a

c

b

dP

e(P) = 5

Lower Bound

Every comparison-based sorting algorithm can be forced to do at
least

lg e(P)

comparisons.

Balanced Pairs

Does there always exist a comparison that ”splits” the set of linear
extensions into roughly equal part?

I 1/3− 2/3 conjecture: In any partial order P, there exists a
pair of elements a, b such that the fraction of linear extensions
having a < b is between 1/3 and 2/3

I Proved for smaller values
Brightwell, Felsner, and Trotter, 1995 – Brightwell, 1999

A Counting Issue

I Computing e(P), or computing the fraction of linear
extensions in which a < b for some pair a, b are #P-Complete
problems Brightwell and Winkler, 1991

Goal of this talk:

I Insights into approximations of lg e(P) that will eventually
yield efficient sorting algorithms

Plan

I The Order Polytope O(P) of P and how it relates to lg e(P)

I The Chain Polytope C(P) and how it relates to O(P)

I Approximating lg e(P) using the graph entropy and how it
relates to the two polytopes

I A sorting algorithm

The Order Polytope

I We consider the Euclidean space RV of all functions
f : V → R

I the Order Polytope O(P) of P is the subset of RV defined by:

0 ≤ f (x) ≤ 1 ∀x ∈ V

f (x) ≤ f (y) if x 6P y

Interpretation

I O(P) is the intersection of the subsets depicted below, for
each comparable pair a 6P b

a

f (a)

f (b)

0 1

1

b

Example

a

b c

f (a)

f (b)

f (c)

0 1

1

1

f (a) ≤ f (b)

f (a) ≤ f (c)

0 ≤ f (a), f (b), f (c) ≤ 1

Volume of the Order Polytope

vol(O(P)) = e(P)/|V |!
Stanley, 1986

A short proof:

I Every linear extension of P defines a simplex of O(P)

I Every simplex has volume 1/|V |!

Volume of the Order Polytope

a

b c

f (a)

f (b)

f (c)

0 1

1

1

?

f (a) ≤ f (b)

f (a) ≤ f (c)

0 ≤ f (a), f (b), f (c) ≤ 1

a

c

Volume of the Order Polytope

a

f (a)

f (b)

f (c)

0 1

1

1

b

c

f (a) ≤ f (b) ≤ f (c)

0 ≤ f (a), f (b), f (c) ≤ 1

Volume of the Order Polytope

a

f (a)

f (b)

f (c)

0 1

1

1

b

c

f (a) ≤ f (c) ≤ f (b)

0 ≤ f (a), f (b), f (c) ≤ 1

The Chain Polytope

I The Chain polytope C(P) of P is the subset of RV defined by

0 ≤ g(x) ∀x ∈ V∑
x∈C

g(x) ≤ 1 for every chain C in P

I Convex hull of the characteristic vectors of subsets of
mutually incomparable elements (antichains)

I Convex corner: contains the convex hull of the origin and the
basis vectors

Example

a

b c

0 1

1

1

g(a)

g(b)

g(c)
g(a) + g(b) ≤ 1

g(a) + g(c) ≤ 1

g(a), g(b), g(c) ≥ 0

Example

a

b c

0 1

1

1

g(a)

g(b)

g(c)independent sets:

{a}, {b}, {c}, {b, c}

From the Order Polytope to the Chain Polytope

I Define the transfer map φ : O(P)→ C(P) as follows: if
f ∈ O(P) and x ∈ V , then

(φf)(x) = min{f (x)− f (y) : y <P x}

I It can be checked that φ is a continuous, piecewise-linear
bijection from O(P) onto C(P)

Example

I the function f is increasing along the chain

I the function g has sum at most one along the chain

a
f(a)

f(b)

f(c)

0
1

1

1

b

c

g(a)

g(b)

g(c)

0
1

1

1

1/2

1/2

1 1/2

0

1/2

Consequence

vol(C(P)) = vol(O(P)) = e(P)/|V |!
Stanley, 1986

I We may work with either polytope

I Considering the Chain polytope allows us to borrow ideas
from graph theory

Approximation of (log)e(P)

Approximating the volume of a convex corner by an enclosed box:

Maximizing the Box Volume

I For any x ∈ C(P), the box with the origin and x as opposite
corners is fully contained in C(P)

I Let us define the following maximum included box program:

max
∏
v∈V

xv

s.t. x ∈ C(P)

Entropy

Taking the log, normalizing by n := |V |, and changing sign:

min −1

n

∑
v∈V

lg xv

s.t. x ∈ C(P), x > 0

Entropy

I Let us give it a name:

H(P) = min −1

n

∑
v∈V

lg xv

s.t. x ∈ C(P), x > 0

I Special case of the Graph Entropy Körner, 1973

I Applications to data compression, Boolean formulas,
optimization

Entropy

I For P a total order, C(P) is the convex hull of the basis
vectors only

I We set xv = 1/n ∀v ∈ V , and obtain H(P) = log n

I For P an empty order, C(P) is the unit cube
I We set xv = 1 ∀v ∈ V , and obtain H(P) = 0

I Intuitively, H(P) measures the quantity of information
contained in P

Approximation

I Let x define the optimal box

I The volume of the box is bounded by that of the polytope:

∏
v∈V

xv ≤ e(P)/n!

H(P) = −1

n
log

(∏
v∈V

xv

)
n log n − nH(P) ≤ lg e(P) + 1.443n

Approximation

I In fact, we can show that

lg e(P) = Θ(n log n − nH(P))

Kahn and Kim, 1992

I Furthermore, computing H(P) is a convex programming
problem, that can be solved in polynomial time

I Hence we get a polynomial time constant-factor
approximation algorithm for the sorting lower bound lg e(P)

A Sorting Algorithm

1. Compute greedy chain decomposition of P

2. Iteratively merge two smallest chains

C1 C2 C3

A Sorting Algorithm

1. Compute greedy chain decomposition of P

2. Iteratively merge two smallest chains

C1 C2 C3 C4 C5 C6 C7

A Sorting Algorithm

1. Compute greedy chain decomposition of P

2. Iteratively merge two smallest chains

A Sorting Algorithm

1. Compute greedy chain decomposition of P

2. Iteratively merge two smallest chains

A Sorting Algorithm

1. Compute greedy chain decomposition of P

2. Iteratively merge two smallest chains

A Sorting Algorithm

ETC.

Analysis (Outline)

This algorithm performs (1 + ε)lg e(P) + Oε(n) comparisons
C., Fiorini, Joret, Jungers, Munro, 2010

Proof outline:

I The tree of merges is a Huffman tree

I Hence the number of comparisons is at most g + O(n),
where :

g :=
k∑

i=1

|Ci | lg
n

|Ci |
I We could prove that g is a good approximation of

n log n − nH(P), hence of lg e(P)

Summary

1. Volume of the Order Polytope O(P) of P proportional to e(P)

2. Chain Polytope C(P) = φO(P)

3. Maximum included box in C(P) → entropy → approximates
lg e(P)

4. Cost of Greedy Merge Sort approximates entropy

Extending the Scope

I The graph entropy framework provides efficient algorithms for
approximating the number of linear extensions of a partial
order

I Can it be used for other applications?

I Can it be used to approximate other quantities?

Thank You!

Pointers: Stanley’s map

R. P. Stanley.
Two poset polytopes.
Discrete Comput. Geom., 1:9–23, 1986.

Pointers: Counting Linear Extensions

G. R. Brightwell and P. Winkler.
Counting linear extensions.
Order, 8(3):225–242, 1991.

Pointers: Sorting

M. L. Fredman.
How good is the information theory bound in sorting?
Theor. Comput. Sci., 1(4):355–361, 1976.

N. Linial.
The information-theoretic bound is good for merging.
SIAM J. Comput., 13(4):795–801, 1984.

J. Kahn and M. E. Saks.
Balancing poset extensions.
Order, 1:113–126, 1984.

J. Kahn and N. Linial.
Balancing extensions via Brunn-Minkowski.
Combinatorica, 11:363–368, 1991.

G. R. Brightwell.
Balanced pairs in partial orders.
Discrete Mathematics, 201(1–3):25–52, 1999.

Pointers: Entropy

J. Körner.
Coding of an information source having ambiguous alphabet
and the entropy of graphs.
In Transactions of the 6th Prague Conference on Information
Theory, pages 411–425, 1973.

G. Simonyi.
Graph entropy: a survey.
In Combinatorial optimization (New Brunswick, NJ,
1992–1993), volume 20 of DIMACS Ser. Discrete Math.
Theoret. Comput. Sci., pages 399–441. Amer. Math. Soc.,
Providence, RI, 1995.

Pointers: Sorting and Entropy

J. Kahn and J. H. Kim.
Entropy and sorting.
J. Comput. Syst. Sci., 51(3):390–399, 1995.

A. C.-C. Yao.
Graph entropy and quantum sorting problems.
In STOC’04: 36th Annual ACM Symposium on Theory of
Computing, pages 112–117, 2004.

J. C., S. Fiorini, G. Joret, R. Jungers, and J. I. Munro.
An efficient algorithm for partial order production.
In STOC ’09: 41st ACM Symposium on Theory of Computing,
2009.

J. C., S. Fiorini, G. Joret, R. Jungers, and J. I. Munro.
Sorting under Partial Information (without the Ellipsoid
Algorithm).
In STOC ’10: 42nd ACM Symposium on Theory of
Computing, 2010.

