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Sorting by Comparisons

Input: a set V , totally ordered by an unknown order 6

Goal: Discover 6 by making queries “is x 6 y?”, for some
x , y ∈ V

Objective function: #queries

I Calssical problem in algorithms

I Θ(|V | log |V |) queries necessary and sufficient (Heap Sort,
Merge Sort)
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Partial Orders and Linear Extensions

I Hasse diagram: maximum on top, transitive reduction

I e(P) := #linear extensions of P
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Lower Bound

Every comparison-based sorting algorithm can be forced to do at
least

lg e(P)

comparisons.



Balanced Pairs

Does there always exist a comparison that ”splits” the set of linear
extensions into roughly equal part?

I 1/3− 2/3 conjecture: In any partial order P, there exists a
pair of elements a, b such that the fraction of linear extensions
having a < b is between 1/3 and 2/3

I Proved for smaller values
Brightwell, Felsner, and Trotter, 1995 – Brightwell, 1999



A Counting Issue

I Computing e(P), or computing the fraction of linear
extensions in which a < b for some pair a, b are #P-Complete
problems Brightwell and Winkler, 1991

Goal of this talk:

I Insights into approximations of lg e(P) that will eventually
yield efficient sorting algorithms



Plan

I The Order Polytope O(P) of P and how it relates to lg e(P)

I The Chain Polytope C(P) and how it relates to O(P)

I Approximating lg e(P) using the graph entropy and how it
relates to the two polytopes

I A sorting algorithm



The Order Polytope

I We consider the Euclidean space RV of all functions
f : V → R

I the Order Polytope O(P) of P is the subset of RV defined by:

0 ≤ f (x) ≤ 1 ∀x ∈ V

f (x) ≤ f (y) if x 6P y



Interpretation

I O(P) is the intersection of the subsets depicted below, for
each comparable pair a 6P b
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Example
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0 ≤ f (a), f (b), f (c) ≤ 1



Volume of the Order Polytope

vol(O(P)) = e(P)/|V |!
Stanley, 1986

A short proof:

I Every linear extension of P defines a simplex of O(P)

I Every simplex has volume 1/|V |!



Volume of the Order Polytope
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Volume of the Order Polytope
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The Chain Polytope

I The Chain polytope C(P) of P is the subset of RV defined by

0 ≤ g(x) ∀x ∈ V∑
x∈C

g(x) ≤ 1 for every chain C in P

I Convex hull of the characteristic vectors of subsets of
mutually incomparable elements (antichains)

I Convex corner: contains the convex hull of the origin and the
basis vectors



Example
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Example
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From the Order Polytope to the Chain Polytope

I Define the transfer map φ : O(P)→ C(P) as follows: if
f ∈ O(P) and x ∈ V , then

(φf )(x) = min{f (x)− f (y) : y <P x}

I It can be checked that φ is a continuous, piecewise-linear
bijection from O(P) onto C(P)



Example

I the function f is increasing along the chain

I the function g has sum at most one along the chain
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Consequence

vol(C(P)) = vol(O(P)) = e(P)/|V |!
Stanley, 1986

I We may work with either polytope

I Considering the Chain polytope allows us to borrow ideas
from graph theory



Approximation of (log)e(P)

Approximating the volume of a convex corner by an enclosed box:



Maximizing the Box Volume

I For any x ∈ C(P), the box with the origin and x as opposite
corners is fully contained in C(P)

I Let us define the following maximum included box program:

max
∏
v∈V

xv

s.t. x ∈ C(P)



Entropy

Taking the log, normalizing by n := |V |, and changing sign:

min −1

n

∑
v∈V

lg xv

s.t. x ∈ C(P), x > 0



Entropy

I Let us give it a name:

H(P) = min −1

n

∑
v∈V

lg xv

s.t. x ∈ C(P), x > 0

I Special case of the Graph Entropy Körner, 1973

I Applications to data compression, Boolean formulas,
optimization



Entropy

I For P a total order, C(P) is the convex hull of the basis
vectors only

I We set xv = 1/n ∀v ∈ V , and obtain H(P) = log n

I For P an empty order, C(P) is the unit cube
I We set xv = 1 ∀v ∈ V , and obtain H(P) = 0

I Intuitively, H(P) measures the quantity of information
contained in P



Approximation

I Let x define the optimal box

I The volume of the box is bounded by that of the polytope:

∏
v∈V

xv ≤ e(P)/n!

H(P) = −1

n
log

(∏
v∈V

xv

)
n log n − nH(P) ≤ lg e(P) + 1.443n



Approximation

I In fact, we can show that

lg e(P) = Θ(n log n − nH(P))

Kahn and Kim, 1992

I Furthermore, computing H(P) is a convex programming
problem, that can be solved in polynomial time

I Hence we get a polynomial time constant-factor
approximation algorithm for the sorting lower bound lg e(P)



A Sorting Algorithm

1. Compute greedy chain decomposition of P

2. Iteratively merge two smallest chains

C1 C2 C3
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A Sorting Algorithm

ETC.



Analysis (Outline)

This algorithm performs (1 + ε)lg e(P) + Oε(n) comparisons
C., Fiorini, Joret, Jungers, Munro, 2010

Proof outline:

I The tree of merges is a Huffman tree

I Hence the number of comparisons is at most g + O(n),
where :

g :=
k∑

i=1

|Ci | lg
n

|Ci |
I We could prove that g is a good approximation of

n log n − nH(P), hence of lg e(P)



Summary

1. Volume of the Order Polytope O(P) of P proportional to e(P)

2. Chain Polytope C(P) = φO(P)

3. Maximum included box in C(P) → entropy → approximates
lg e(P)

4. Cost of Greedy Merge Sort approximates entropy



Extending the Scope

I The graph entropy framework provides efficient algorithms for
approximating the number of linear extensions of a partial
order

I Can it be used for other applications?

I Can it be used to approximate other quantities?



Thank You!
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