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The context: Sorting by reversals

Biological motivations

Reconstruction of evolution scenarios
↪→ Operation on genome = reversal

Model for genome = signed
permutation

Reversal = reverse a window of the
permutation while changing the signs

1 7 6 10 9 8 2 11 3 5 4

⇓ Reversal ⇓

1 7 6 10 9 8 2 4 5 3 11
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The context: Sorting by reversals

Sorting by reversals: the problem and solution

The problem:

input: Two signed permutations σ1 and σ2

output: A parsimonious scenario from σ1 to σ2 or σ2

Parsimonious = shortest, i.e. minimal number of reversals.
Without loss of generality, σ2 = Id = 1 2 . . . n

The solution:

Hannenhalli-Pevzner theory

Polynomial algorithms: from O(n4) to O(n
√

n log n)

Remark: the problem is NP-hard when permutations are unsigned.

Mathilde Bouvel

Average-case complexity analysis of perfect sorting by reversals



Sorting by reversals Perfect sorting by reversals Average-case complexity analysis Separable permutations Conclusion

The problem we consider: Perfect sorting by reversals

Definition and motivation

Perfect sorting by reversals: do not break common intervals

Common interval between σ1 and σ2: windows of σ1 and σ2

containing the same elements (with no sign)
Example: σ1 = 5 1 3 7 6 2 4 and σ2 = 6 4 7 1 3 2 5

When σ2 = Id, interval of σ1 = window forming a range (in �)
Example: σ1 = 4 7 5 6 3 1 2

Biological argument: groups of identical (or homologous) genes
appearing together in two species are likely to be

together in the common ancestor

never separated during evolution
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The problem we consider: Perfect sorting by reversals

Algorithm and complexity

The problem:

input: Two signed permutations σ1 and σ2

output: A parsimonious perfect scenario (=shortest among
perfect scenarios) from σ1 to σ2 or σ2

Without loss of generality, σ2 = Id = 1 2 . . . n

Watch out!: Parsimonious perfect⇒� parsimonious

Complexity: NP-hard problem

Algorithm [Bérard, Bergeron, Chauve, Paul]: take advantage of
decomposition trees to produce a FPT algorithm

(
2p · nO(1)

)
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The problem we consider: Perfect sorting by reversals

Strong intervals of (signed) permutations

Strong interval = does not overlap any other interval

Interval I is strong iff ∀J, I ⊆ J or J ⊆ I or I ∩ J = ∅

Example of intervals and strong intervals:

5 6 7 9 4 3 1 2 8 10 17 13 15 12 11 14 18 19 16

Trivial intervals are always among strong intervals
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The problem we consider: Perfect sorting by reversals

Decomposition trees of (signed) permutations

Also known as strong interval trees

Inclusion order on strong intervals: a tree-like ordering

[1..19]
�

[1..9]
2 4 1 3

[5..7]
�

5 6 7

9 [1..4]
�

4 3[1..2]�

1 2

8

10 [11..19]
3 1 4 2

17 [11..15]
2 4 1 3

13 15

[11..12]
�

1211
14

[18..19]
�

18 19

16

Computation: in linear time
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The problem we consider: Perfect sorting by reversals

Decomposition trees of (signed) permutations

Quotient permutation =
order of the children (that are intervals)

Example: ...
[1..9]
2 4 1 3

[5..7]...
9 [1..4]...

8Two types of nodes:
Linear nodes (�):

increasing, i.e. quotient permutation = 1 2 . . . k
⇒ label �

decreasing, i.e. quotient permutation = k (k − 1) . . . 2 1
⇒ label �

Prime nodes (©): the quotient permutation is simple

Simple permutations:
the only intervals are 1, 2,. . ., n and σ

Example: 425163, i.e.
425163

4 2 5 1 6 3
Mathilde Bouvel

Average-case complexity analysis of perfect sorting by reversals



Sorting by reversals Perfect sorting by reversals Average-case complexity analysis Separable permutations Conclusion

The problem we consider: Perfect sorting by reversals

Simplified decomposition tree

Remark: redundant information⇒ forget the leaves and intervals

[1..19]
�

[1..9]
2 4 1 3

[5..7]
�

5 6 7

9 [1..4]
�

4 3 [1..2]�

1 2

8

10 [11..19]
3 1 4 2

17 [11..15]
2 4 1 3

13 15

[11..12]
�

12 11
14

[18..19]
�

18 19

16
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The problem we consider: Perfect sorting by reversals

Simplified decomposition tree

Remark: redundant information⇒ forget the leaves and intervals

�

2 4 1 3

�

•
+
•
−
•
−

•
+

�

•
+
•
−

�

•
+
•
+

•
−

•
−

3 1 4 2

•
−

2 4 1 3

•
+
•
−

�

•
+
•
+

•
−

�

•
+
•
−

•
−

Tree uniquely defined by

labels of internal nodes

+signs of the leaves
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The problem we consider: Perfect sorting by reversals

Idea of the algorithm to solve perfect sorting

Put labels + or − on the nodes of the decomposition tree of σ

Leaf: sign of the element in σ

Linear node: + for � (increasing) and − for � (decreasing)

Prime node whose parent is linear: sign of its parent
Other prime node: ???
↪→ Test labels + and − and choose the shortest scenario

Algorithm:

Perform Hannenhalli-Pevzner (or improved version) on prime
nodes

Signed node belongs to scenario iff its sign is different from
its linear parent
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The problem we consider: Perfect sorting by reversals

Example of labeled decomposition tree

+
�

+
2 4 1 3

+
�

•
+
•
−
•
−

•
+

−
�

•
+
•
−

+
�

•
+
•
+

•
−

•
−

+
3 1 4 2

•
−

???
2 4 1 3

•
+
•
−

−
�

•
+
•
+

•
−

+
�

•
+
•
−
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−
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The problem we consider: Perfect sorting by reversals

Complexity results

Complexity:

O(2pn
√

n log n), with p = ] prime nodes

polynomial on separable permutations (p = 0)

Our work:

polynomial with probability 1 asymptotically

polynomial on average
in a parsimonious perfect scenario for separable permutations

average number of reversals ∼ 1.27n
average length of a reversal ∼ 1.054

√
n

Probability distribution: always uniform
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Average-case complexity analysis

“Average shape“ of decomposition trees

Enumeration of simple permutations: asymptotically n!
e2

⇒ Asymptotically, a proportion 1
e2 of decom- prime node

. . .-position trees are reduced to one prime node.

Thm: Asymptotically, the proportion of prime node

� � � . . .decomposition trees made of a prime root
with children that are leaves or twins is 1.

twin = linear node with only two children, that are leaves

Consequence: Asymptotically, with probability 1, the algorithm
runs in polynomial time.

Rem.: The number of twins follows a Poisson distribution of parameter 2.
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Average-case complexity analysis

Average complexity

Average complexity on permutations of size n:

n∑
p=0

]{σ with p prime nodes} C 2pn
√

n log n

n!

Thm: When p ≥ 2, the number of (unsigned) permutations of size
n with p prime nodes is at most 48(n−1)!

2p .

Proof: induction on p

Consequence: Average complexity on permutations of size n is
≤ 51Cn

√
n log n. In particular, polynomial on average.
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Restriction to the class of separable permutations

Separable (= commuting) permutations

Def.: Commuting permutation = permutation
sorted by a scenario where any pair of reversals
commutes (= does not overlap)

Rem.: Here, scenario = set of intervals, in any
order

Equivalently: Commuting permutation =
permutation with no prime node in its
decomposition tree
Also called separable permutations.

Example:
54231687 i.e.

�

�

5 4 �

2 3

1

6 �

8 7
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Restriction to the class of separable permutations

Scenarios for separable permutations

In general, in the computed scenario, reversals are

linear nodes with label different from its linear parent

inside prime nodes

Prop.: No � − � nor � − � edge in decomposition trees

Consequence: For separable permutations,
reversals = linear nodes with label different from its linear parent

=

all internal nodes except the root

+leaves with label different from its parent

Reversals ≈ internals nodes − the root + half of the leaves

⇒ The shape of the tree is sufficient to study reversals
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Restriction to the class of separable permutations

Bijection between separable perm. and Schröder trees

Decomposition trees of (unsigned) Schröder trees
separable permutation + label � or � on the root

�

�

5 �

�

2 1

3 4

6 �

12 �

1011

�

7 8 9

◦

◦

◦

◦

◦

◦ ◦

size of σ ←→ number of leaves
reversal of length ≥ 2 ←→ internal node except the root

reversal of length 1 ←→ some leaves (half of them)
length of a reversal ←→ size (= ] leaves) of the subtree
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Restriction to the class of separable permutations

Parameters on Schröder trees

Two parameters on Schröder trees:

Number of internal nodes

Pathlength = sum of the sizes of the subtrees

Study their average gives access to:

Average number of reversals

Average length of a reversal

in a scenario for a separable permutation

Analytic combinatorics:
average from bivariate generating functions S(x, y) =

∑
sn,k xnyk

where sn,k = number of Schröder trees with n leaves and k
internal nodes (resp. pathlength k )

Mathilde Bouvel
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Restriction to the class of separable permutations

Average value of a parameter (number of internal nodes)

Definition: S(x, y) =
∑

sn,k xnyk ,

where sn,k = number of Schröder trees with n leaves and k
internal nodes

Combinatorial specification: S = • +

◦

S S . . . S

Functional equation: S(x, y) = x + y S(x,y)2

1−S(x,y)

Solution: S(x, y) =
(x+1)−

√
(x+1)2−4x(y+1)
2(y+1)

Average number of internal nodes =
∑

k ksn,k∑
k sn,k

=
[xn]

∂S(x,y)
∂y |y=1

[xn]S(x,1)

Asymptotic estimate of [xn]S(x, 1) when n → +∞: from
asymptotic estimate of S(x, 1) when x → dominant singularity
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Restriction to the class of separable permutations

Results

Application of the methodology of [Flajolet, Sedgewick]

In Schröder trees with n leaves:

Average number of internal nodes: ∼ n√
2

Average pathlength: ∼ 1.27n
3
2

In scenarios for separable permutations of size n:

Average number of reversals:∼ 1+
√

2
2 n

Average length of a reversal: ∼ 1.054
√

n
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Conclusion and future work under non-uniform distributions

Results so far and future work

Perfect sorting by reversals for signed permutations:

NP-hard problem
algorithm running in polynomial time
↪→ on average
↪→ asymptotically with probability 1
↪→ for the uniform distribution on permutations of size n

Special case of separable permutations (no prime nodes):

expected length of a parsimonious perfect scenario ∼ 1.27n

expected length of a reversal in such a scenario ∼ 1.054
√

n

using analytic combinatorics techniques

Work in progress: influence on the probability distribution to obtain
a model closer to the biological observations
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Conclusion and future work under non-uniform distributions

Non-uniform distributions

Results under the uniform distribution: mostly theoretical results
Biological data: not uniformly distributed (few prime nodes,. . . )

Combinatorial specification as decomposition trees: allows to
introduce some constraints on the prime nodes (maximal arity,
number, . . . ) for:

the study of parameters (on average)
(Boltzmann) random generation

under non uniform distributions

Comparison between these results (theoretical or simulation) and
biological data
↪→ to describe models that are closer to the biological reality
↪→ to identify non-random evolution (w.r.t. a good distribution)
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