Average-case complexity analysis of perfect sorting by reversals

Mathilde Bouvel
with Cedric Chauve, Marni Mishna and Dominique Rossin

Algorithms and Permutations 2012

Outline of the talk

1 The context: Sorting by reversals
2 The problem we consider: Perfect sorting by reversals

3 Average-case complexity analysis
4 Restriction to the class of separable permutations

5 Conclusion and future work under non-uniform distributions

Biological motivations

G Genome Research

Reconstruction of evolution scenarios \hookrightarrow Operation on genome = reversal

- Model for genome = signed permutation
■ Reversal = reverse a window of the permutation while changing the signs

$$
1 \overline{7} 6 \overline{10} 9 \overline{8} 2 \overline{11} \overline{3} 54
$$

\Downarrow Reversal \Downarrow
$1 \overline{7} 6 \overline{10} 9 \overline{8} 2 \overline{4} \overline{5} 311$

Sorting by reversals: the problem and solution

The problem:
■ input: Two signed permutations σ_{1} and σ_{2}
■ оитРит: A parsimonious scenario from σ_{1} to σ_{2} or $\overline{\sigma_{2}}$
Parsimonious = shortest, i.e. minimal number of reversals.
Without loss of generality, $\sigma_{2}=I d=12 \ldots n$

The solution:
■ Hannenhalli-Pevzner theory
■ Polynomial algorithms: from $O\left(n^{4}\right)$ to $O(n \sqrt{n \log n})$

Remark: the problem is $N P$-hard when permutations are unsigned.

Definition and motivation

Perfect sorting by reversals: do not break common intervals

Common interval between σ_{1} and σ_{2} : windows of σ_{1} and σ_{2} containing the same elements (with no sign)
Example: $\sigma_{1}=5 \overline{1} \overline{3} 76 \overline{2} 4$ and $\sigma_{2}=6 \overline{4} 71 \overline{3} 2 \overline{5}$

When $\sigma_{2}=I d$, interval of $\sigma_{1}=$ window forming a range (in \mathbb{N}) Example: $\sigma_{1}=4 \overline{7} \overline{5} 63 \overline{1} 2$

Biological argument: groups of identical (or homologous) genes appearing together in two species are likely to be

■ together in the common ancestor
■ never separated during evolution

Algorithm and complexity

The problem:
■ input: Two signed permutations σ_{1} and σ_{2}
■ оutput: A parsimonious perfect scenario (=shortest among perfect scenarios) from σ_{1} to σ_{2} or $\overline{\sigma_{2}}$
Without loss of generality, $\sigma_{2}=I d=12 \ldots n$

Watch out!: Parsimonious perfect \nRightarrow parsimonious

Complexity: NP-hard problem

Algorithm [Bérard, Bergeron, Chauve, Paul]: take advantage of decomposition trees to produce a FPT algorithm $\left(2^{p} \cdot n^{O(1)}\right)$

Strong intervals of (signed) permutations

■ Strong interval = does not overlap any other interval
■ Interval I is strong iff $\forall J, I \subseteq J$ or $J \subseteq I$ or $I \cap J=\emptyset$
Example of intervals and strong intervals:

Trivial intervals are always among strong intervals

Strong intervals of (signed) permutations

■ Strong interval = does not overlap any other interval
■ Interval I is strong iff $\forall J, I \subseteq J$ or $J \subseteq I$ or $I \cap J=\emptyset$
Example of intervals and strong intervals:

Trivial intervals are always among strong intervals

Strong intervals of (signed) permutations

■ Strong interval = does not overlap any other interval
■ Interval I is strong iff $\forall J, I \subseteq J$ or $J \subseteq I$ or $I \cap J=\emptyset$
Example of intervals and strong intervals:

Trivial intervals are always among strong intervals

The problem we consider: Perfect sorting by reversals

Decomposition trees of (signed) permutations

Also known as strong interval trees
■ Inclusion order on strong intervals: a tree-like ordering

Computation: in linear time

Decomposition trees of（signed）permutations

Quotient permutation＝ order of the children（that are intervals）

Two types of nodes：
■ Linear nodes（ㅁ）：
$■$ increasing，i．e．quotient permutation $=12 \ldots k$
\Rightarrow label $⿴ 囗 十$
－decreasing，i．e．quotient permutation $=k(k-1) \ldots 21$
\Rightarrow label 日
■ Prime nodes (\bigcirc) ：the quotient permutation is simple

Simple permutations： the only intervals are $1,2, \ldots, n$ and σ

Example：425163，i．e．

The problem we consider: Perfect sorting by reversals

Simplified decomposition tree

Remark: redundant information \Rightarrow forget the leaves and intervals

Simplified decomposition tree

Remark: redundant information \Rightarrow forget the leaves and intervals

Tree uniquely defined by $\left\{\begin{array}{l}\text { labels of internal nodes } \\ + \text { signs of the leaves }\end{array}\right.$

Idea of the algorithm to solve perfect sorting

Put labels + or - on the nodes of the decomposition tree of σ
■ Leaf: sign of the element in σ
$■$ Linear node: + for \boxplus (increasing) and - for \boxminus (decreasing)
■ Prime node whose parent is linear: sign of its parent
■ Other prime node: ???
\hookrightarrow Test labels + and - and choose the shortest scenario

Algorithm:
■ Perform Hannenhalli-Pevzner (or improved version) on prime nodes

■ Signed node belongs to scenario iff its sign is different from its linear parent

The problem we consider: Perfect sorting by reversals

Example of labeled decomposition tree

Complexity results

Complexity:
■ $O\left(2^{p} n \sqrt{n \log n}\right)$, with $p=\#$ prime nodes
■ polynomial on separable permutations $(p=0)$

Our work:
■ polynomial with probability 1 asymptotically
■ polynomial on average
■ in a parsimonious perfect scenario for separable permutations
■ average number of reversals $\sim 1.27 n$
■ average length of a reversal $\sim 1.054 \sqrt{n}$

Probability distribution: always uniform

"Average shape" of decomposition trees

Enumeration of simple permutations: asymptotically $\frac{n!}{e^{2}}$
\Rightarrow Asymptotically, a proportion $\frac{1}{e^{2}}$ of decom--position trees are reduced to one prime node.

Thm: Asymptotically, the proportion of decomposition trees made of a prime root with children that are leaves or twins is 1 .

twin = linear node with only two children, that are leaves
Consequence: Asymptotically, with probability 1, the algorithm runs in polynomial time.

Rem.: The number of twins follows a Poisson distribution of parameter 2.

Average complexity

Average complexity on permutations of size n :

$$
\sum_{p=0}^{n} \sharp\{\sigma \text { with } p \text { prime nodes }\} C 2^{p} n \sqrt{n \log n}
$$

$$
n!
$$

Thm: When $p \geq 2$, the number of (unsigned) permutations of size n with p prime nodes is at most $\frac{48(n-1)!}{2^{p}}$.

Proof: induction on p

Consequence: Average complexity on permutations of size n is $\leq 51 C n \sqrt{n \log n}$. In particular, polynomial on average.

Separable (= commuting) permutations

Def.: Commuting permutation = permutation sorted by a scenario where any pair of reversals commutes (= does not overlap)

Example:

54231687 i.e.
Rem.: Here, scenario = set of intervals, in any order

Equivalently: Commuting permutation = permutation with no prime node in its
 decomposition tree Also called separable permutations.

Scenarios for separable permutations

In general，in the computed scenario，reversals are
■ linear nodes with label different from its linear parent
－inside prime nodes
Prop．：No $⿴ 囗 十$－\boxplus nor 日－曰 edge in decomposition trees
Consequence：For separable permutations， reversals＝linear nodes with label different from its linear parent $=\left\{\begin{array}{l}\text { all internal nodes except the root } \\ + \text { leaves with label different from its parent }\end{array}\right.$

Reversals \approx internals nodes - the root + half of the leaves
\Rightarrow The shape of the tree is sufficient to study reversals

Bijection between separable perm. and Schröder trees

Decomposition trees of (unsigned) separable permutation

size of σ reversal of length ≥ 2 reversal of length 1 length of a reversal
\longleftrightarrow
\longleftrightarrow
\leftrightarrows
\leftrightarrows

Schröder trees + label \boxplus or \boxminus on the root

number of leaves internal node except the root some leaves (half of them) size (= $\#$ leaves) of the subtree

Parameters on Schröder trees

Two parameters on Schröder trees:
■ Number of internal nodes
■ Pathlength = sum of the sizes of the subtrees
Study their average gives access to:

- Average number of reversals

■ Average length of a reversal
in a scenario for a separable permutation
Analytic combinatorics:
average from bivariate generating functions $S(x, y)=\sum s_{n, k} x^{n} y^{k}$ where $s_{n, k}=$ number of Schröder trees with n leaves and k internal nodes (resp. pathlength k)

Average value of a parameter (number of internal nodes)

Definition: $S(x, y)=\sum s_{n, k} x^{n} y^{k}$,
 where $s_{n, k}=$ number of Schröder trees with n leaves and k internal nodes

Combinatorial specification: $\mathcal{S}=\bullet+$

Functional equation: $S(x, y)=x+y \frac{S(x, y)^{2}}{1-S(x, y)}$
Solution: $S(x, y)=\frac{(x+1)-\sqrt{(x+1)^{2}-4 x(y+1)}}{2(y+1)}$
Average number of internal nodes $=\frac{\sum_{k} k s_{n, k}}{\sum_{k} s_{n, k}}=\frac{\left.\left[x^{n}\right] \frac{\partial S(x, y)}{\partial y} \right\rvert\, y=1}{\left[x^{n}\right] S(x, 1)}$
Asymptotic estimate of $\left[x^{n}\right] S(x, 1)$ when $n \rightarrow+\infty$: from asymptotic estimate of $S(x, 1)$ when $x \rightarrow$ dominant singularity

Results

Application of the methodology of [Flajolet, Sedgewick]

In Schröder trees with n leaves:

- Average number of internal nodes: $\sim \frac{n}{\sqrt{2}}$

■ Average pathlength: $\sim 1.27 n^{\frac{3}{2}}$
In scenarios for separable permutations of size n :
■ Average number of reversals: $\sim \frac{1+\sqrt{2}}{2} n$
■ Average length of a reversal: $\sim 1.054 \sqrt{n}$

Results so far and future work

Perfect sorting by reversals for signed permutations:
■ NP-hard problem

- algorithm running in polynomial time
\hookrightarrow on average
\hookrightarrow asymptotically with probability 1
\hookrightarrow for the uniform distribution on permutations of size n
Special case of separable permutations (no prime nodes):
■ expected length of a parsimonious perfect scenario $\sim 1.27 n$
■ expected length of a reversal in such a scenario $\sim 1.054 \sqrt{n}$ using analytic combinatorics techniques

Work in progress: influence on the probability distribution to obtain a model closer to the biological observations

Non-uniform distributions

Results under the uniform distribution: mostly theoretical results Biological data: not uniformly distributed (few prime nodes,...)

Combinatorial specification as decomposition trees: allows to introduce some constraints on the prime nodes (maximal arity, number, ...) for:

■ the study of parameters (on average)

- (Boltzmann) random generation under non uniform distributions

Comparison between these results (theoretical or simulation) and biological data
\hookrightarrow to describe models that are closer to the biological reality
\hookrightarrow to identify non-random evolution (w.r.t. a good distribution)

