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A Markov chain

e Consider the symmetric group 6,441 on the elements {0, 1,...,d}.
e Start from the identity permutation 7(©) = 012...4.

e Apply an adjacent transposition, taken uniformly at random (probability 1/d
for each).

e Repeat.
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Periodicity

This chain, #(9) #(1) 7(2) s periodic of period 2: it takes an even number
of steps to return to a point.
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An aperiodic variant

This chain, #(9) #(1) 7(2) s periodic of period 2: it takes an even number
of steps to return to a point.
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e Do nothing with probability 1/(d+ 1), and otherwise apply an adjacent trans-
position chosen uniformly

This chain is aperiodic, irreducible and symmetric, and thus converges to the
uniform distribution on &441.



Motivations

e 1980 — 2012: Random walks in finite groups (Aldous, Diaconis, Letac,
Saloff-Coste, Wilson...)

Tools: coupling techniques, representation theory...



Motivations

e 1980 — 2012: Random walks in finite groups (Aldous, Diaconis, Letac,
Saloff-Coste, Wilson...)

Tools: coupling techniques, representation theory...

e More recently: Computational biology (N. Beresticky, Durrett, Eriksen, Hult-
man, H. Eriksson, K. Eriksson, Sjostrand...)

A transposition: a gene mutation



What do we ask? What do we expect?

e Mixing time: How much time does it take to “reach” the uniform distribution?

The total variation distance between the distribution at time n and the uniform
distribution on G 41:
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What do we ask? What do we expect?

e Mixing time: How much time does it take to “reach” the uniform distribution?

The total variation distance between the distribution at time n and the uniform
distribution on G 41:
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[Aldous 83, Diaconis & Saloff-Coste 93, Wilson 04]



What do we ask? What do we expect?

e Focus on observables, for instance the inversion number Z,,, = inv(x(™).

The expected value of the inversion number, |, :=E(Zy,,):

—— Estimate the number of transpositions (mutations) that have occurred,
and hence the evolutionary distance between species.

Of particular interest: what happens before mixing.



A formula for the expected inversion number

Theorem: The expected number of inversions after n adjacent transpositions
in 6d—|—1 IS

oo ddry 0 i (¢ ‘|‘Ck)2 _
i 4 8(d + 1)2 k=0 s Sk J
where
. (2k + 1)
Ccp — COS o, S = SIN oy, ap = >d + 2 ,
and

T =1— E(l —cjcr).

Remark: For d large enough (d > 8), lg.n, inCreases, as n grows, to d(deLl), which
is the average inversion number of a random permutation in G4 1.



Another formula for the expected inversion number [Eriksen 05]

in= 2 () 2 (2 )9 0uihen
r=1 s=1
with
d 2[s/2] — 1
sd = (=1)*(p - 20)
Js.d ggkgo b <(s/21 + 0+ k(d+ 1))
and

RSV 2[s/2]
e ;%:z( % <LS/2J+j(d+ 1))'

Based on [Eriksson & Eriksson & Sjdstrand 00]

Beresticky & Durrett 08: it is far from obvious how to extract useful asymp-
totic from this formula”.

Combinatorialists could not throw in the sponge!
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The expected inversion number: asymptotics

Three regimes, as d and n tend to oo

e \When n is “small”, each step of the chain increases the inversion number with
high probability. For example,

G =1, B(vG@)=2)=1-  F(ivG™) =n)=1-0().



The expected inversion number: asymptotics

Three regimes, as d and n tend to oo

e \When n is “small”, each step of the chain increases the inversion number with
high probability. For example,

G =1, B(vG@)=2)=1-  F(ivG™) =n)=1-0().

e When n is “large”, the expected inversion number must approach its limit
value d(d+1)/4 ~ d?/4.



The expected inversion number: asymptotics

Three regimes, as d and n tend to oo

e \When n is “small”, each step of the chain increases the inversion number with

high probability. For example,
1

G =1, B(vG@)=2)=1-  F(ivG™) =n)=1-0().

e When n is “large”, the expected inversion number must approach its limit
value d(d+1)/4 ~ d?/4.

e An intermediate regime?



Small times: linear and before

e Sub-linear regime. If n = o(d),

lan _ 4 + O(n/d).
n



Small times: linear and before

e Sub-linear regime. If n = o(d),

Id,n

— 14+ 0(n/d).
e Linear regime. If n ~ kd,
i = () + O(1/d)
where
) = ?1&/000 1— expt(z_(?ﬁft/z()l + t2))dt
) jzzo(_l)jﬂ(ﬁ)ll>!2(2“>j'

The function f(k) decreases from f(0) =1 to f(o0) = 0.



Large times: cubic and beyond

e Super-cubic regime. If n > d3,




Large times: cubic and beyond

e Super-cubic regime. If n > d3,

e Cubic regime. If n ~ kd3,

ld,n

o~ 9(k)

where

205, 2 2
1 16 e~k (2j+1)%/2
g(m)_4_ﬂ4<z (2j + 1)2 )

720

The function g(k) increases from ¢g(0) = 0 to g(oco0) = 1/4.



The intermediate regime

o If d < n<d3

Id,n _ \/5
vVdn T

Remark. For a related continuous time chain, the normalized inversion number
Tan/Vdn converges in probability to \/2/7 [Beresticky & Durrett 08]



A formula for the expected inversion number

Theorem: The expected number of inversions after n adjacent transpositions
in 6d—|—1 IS
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and
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Where are the inversions? [Eriksson et al. 00]

For : <y, let pz(?-) be the probability that there is an inversion at time n in the
positions ¢ and 5 4+ 1:

" =P(x{™ > x{™).

e T he expected number of inversions at time n is
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Where are the inversions? [Eriksson et al. 00]

For : <y, let pz(?-) be the probability that there is an inversion at time n in the
positions ¢ and 5 4+ 1:

" =P(x{™ > x{™).

e T he numbers pz{?) can be described recursively by examining where were the

values w,i(”) and 7r§7j_)1 at time n — 1. For instance:

— If + = 57 and the nth transposition has switched the :th and ¢ 4 1st values:

1) 1
(1-#57)3

— etc.



A recursion for the inversion probabilities

Lemma. The inversion probabilities pzo;-) are characterized by:
PP =0 for 0<i<j<d,
and for n > 0,
(n+1) _ (n) 4 1 (n) ()Y 4 Y (n)
pij  =Pig g 2 (pk,e ~Pij ) T4 (1 — 2P )
(k,0)<>(i,5)
where 57;,]- = 1 if ¢+ = 5 and O otherwise, and the neighbour relations « are those
of the following graph:

(d—1)

~ A (weighted) walk in a triangle.



A functional equation for the GF of the inversion probabilities

Let P(¢;u,v) be the generating function of the numbers pz(?})i

P(t;u,v) = P(u,v) := > " > p,gz)uivj.

n>0 0<i<j<d



A functional equation for the GF of the inversion probabilities

(n).

Let P(t; u,v) be the generating function of the numbers p; ;"

P(tu,v) = P(u,v) 1= > _ t" > pgg)uivj.

n>0 0<i<j<d
The above recursion translates as

t _ _
(1—t—|—g(4—u—u—v—v)>P(u,v):
t 1 — ydd
&((1—11,@)(1—75)

where v = 1/u, v = 1/v, and the series P, P, and Py describe the numbers p
on the boundaries of the graph:

(= DPw) — (v — 1)1 P(u) — (u+ @>p5<uv>> |

(n)
2,]

J

Py (Ieft)

Py(v) = Pi(t;v) = P(¢;0;v)

& Z-



Back to the inversion number

We are interested in
Im (t) = Z |d,ntn = P(1;1,1),
n>0
which, according to the functional equation, may be rewritten

t 2tPs(1)
(1—1)2 d(1—1t)

1S B> D

P(t;u,v) = P(u,v) 1= > _ t" > pgg)uivj.

n>0 0<i<j<d

I () =

(1—t—|—§(4—u—ﬁ—v—6))P(u,v}:

t 1 — udyd - 1\p -1 p -
d ((1 —uv)(1l —1) —(@—=1)P(v) = (v —1)v p(u) — (u+ ) 5(uv)> :



(1—t—|—§(4—u—ﬁ—v—6))P(u,’U)=
t 1 — y%pd
é<(1—uv)(1—t)

— (- 1)P(v) — (v — Do 1P (w) = (u+ 17)P5(uv)>



What a beautiful equation!

(1—t—|—2(4—u—ﬂ—v—6)>P(u,v}=
t 1 — udyd
&((1—uv)(1—t)

—(z-1)P(v) — (v — D 1P w) - (u+ 5)P5(uv)>

Analogies with:

e \Walks with steps +£1 in a strip of height d:

(1 —t(u+0))P) =1—tuPy — tu®T1P,

e \Walks in the quarter plane

(1—t(tu+u4+v+2)P(u,v) =
1 —tuP(0,v) — tvP(u,0)

e and others...



The ingredients of the solution
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e Cancel the kernel (1 —t—|—§(4—u—a—v—6)) by coupling v and v
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The ingredients of the solution

(1—t—|—2(4—u—ﬁ—v—fz_})>P(u,v)=

t 1 — udyd
d ((1 —av)(1 —t)

—(z-1)P(v) — (v — D 1P w) = (u+ 5)P5(uv)>

e Cancel the kernel (1 —t—|—§(4—u—a—v—6)) by coupling v and v

e Exploit the symmetries of this kernel, which is invariant by (u,v) — (u,v)
(u,v) — (u,v), (u,v) — (u,v) (the reflection principle)

e Plus one more coupling between u and w.

One obtains an explicit expression of Ps(q) at every ¢ #= —1 such that ¢¢+1 = —1,

and this is enough to reconstruct the whole polynomial Ps(u) (and in particular,
Ps(1)) by interpolation.



The final result

The generating function 1;(t) = >,>0lgnt" is

() = dd+1) 1 zd: (cj + ck)Q 1
4(1—t) 8(d+1)2 k=0 s Sk 1 —txp
with
. (2k + V)7
CcL — COS o, S = SIn oy, Q. = 2d + 2 ,
and

CIZ’]k = 1-— E(l — cjck).
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Perspectives

e Other generators (ex: all transpositions [Sjostrand 10], transpositions (0,1),
block transpositions...)

e Other statistics: inversion number — measure of the “distance” between the
identity and a permutation (ex: [Eriksen & Hultman 04], expected transposition
distance after n transpositions)

e Other groups: mostly, finite irreducible Coxeter groups, with the length as
the distance statistics ([Troili 02]: the case of I»(d)). When the generators are

all reflections, see [Sjostrand 10].

Thank youl!



Around the mixing time (super-cubic regime)

Assume n ~ xkd3 logd.

o If k < 1/72, there exists v > 0 such that

d(d—+1
< REED _ g(qttn,
’ 4
o If k> 1/72, there exists v > 0 such that
d(d + 1) _
ldn = 4 — O(dl 7).

e For the critical value x = 1/72, the following refined estimate holds: if
n ~ 1/m2d3logd+ ad> + o(d3), then

. d(d+ 1) 16d
B 4 w4

i e (14 0(1)).



What do we ask? What do we expect?

Let @ = (Qos,r) be the transition matrix of the chain:

210
0 1/2 1/2 0 0 0 ) RN

1/2 0 0 0 1/2 0 120 201
Q=|12 0 0 1/2 0 O | |
0O 0 1/2 0 0 1/2 102 021

\ 0 0O o0 1/2 1/2 0 | \012/

e Then for all o0 € 6441,

2P (W(n) — 0) = 2. Qlgot ((1 B tQ)—1>id

n>0 n>0 0
IS a rational series in t.

e The GF of the expected inversion number

S EUg )" = > | X inv(@P (M =0)|t"= Y inv(e)Ge(t)

n>0 n>0 066d+1 UEGd—I—l
is rational as well.



