The expected number of inversions after n adjacent transpositions

Mireille Bousquet-Mélou CNRS, LaBRI, Bordeaux, France

ArXiv 0909:0103

- ullet Consider the symmetric group \mathfrak{S}_{d+1} on the elements $\{0,1,\ldots,d\}$.
- Start from the identity permutation $\pi^{(0)} = 012 \cdots d$.
- ullet Apply an adjacent transposition, taken uniformly at random (probability 1/d for each).
- Repeat.

- ullet Consider the symmetric group \mathfrak{S}_{d+1} on the elements $\{0,1,\ldots,d\}$.
- Start from the identity permutation $\pi^{(0)} = 012 \cdots d$.
- ullet Apply an adjacent transposition, taken uniformly at random (probability 1/d for each).
- Repeat.

- ullet Consider the symmetric group \mathfrak{S}_{d+1} on the elements $\{0,1,\ldots,d\}$.
- Start from the identity permutation $\pi^{(0)} = 012 \cdots d$.
- ullet Apply an adjacent transposition, taken uniformly at random (probability 1/d for each).
- Repeat.

- ullet Consider the symmetric group \mathfrak{S}_{d+1} on the elements $\{0,1,\ldots,d\}$.
- Start from the identity permutation $\pi^{(0)} = 012 \cdots d$.
- ullet Apply an adjacent transposition, taken uniformly at random (probability 1/d for each).
- Repeat.

- ullet Consider the symmetric group \mathfrak{S}_{d+1} on the elements $\{0,1,\ldots,d\}$.
- Start from the identity permutation $\pi^{(0)} = 012 \cdots d$.
- ullet Apply an adjacent transposition, taken uniformly at random (probability 1/d for each).
- Repeat.

- ullet Consider the symmetric group \mathfrak{S}_{d+1} on the elements $\{0,1,\ldots,d\}$.
- Start from the identity permutation $\pi^{(0)} = 012 \cdots d$.
- ullet Apply an adjacent transposition, taken uniformly at random (probability 1/d for each).
- Repeat.

Periodicity

This chain, $\pi^{(0)}, \pi^{(1)}, \pi^{(2)}, \ldots$ is periodic of period 2: it takes an even number of steps to return to a point.

An aperiodic variant

This chain, $\pi^{(0)}, \pi^{(1)}, \pi^{(2)}, \ldots$ is periodic of period 2: it takes an even number of steps to return to a point.

ullet Do nothing with probability 1/(d+1), and otherwise apply an adjacent transposition chosen uniformly

This chain is aperiodic, irreducible and symmetric, and thus converges to the uniform distribution on \mathfrak{S}_{d+1} .

Motivations

ullet 1980 ightarrow 2012: Random walks in finite groups (Aldous, Diaconis, Letac, Saloff-Coste, Wilson...)

Tools: coupling techniques, representation theory...

Motivations

ullet 1980 o 2012: Random walks in finite groups (Aldous, Diaconis, Letac, Saloff-Coste, Wilson...)

Tools: coupling techniques, representation theory...

• More recently: Computational biology (N. Beresticky, Durrett, Eriksen, Hultman, H. Eriksson, K. Eriksson, Sjöstrand...)

A transposition: a gene mutation

• Mixing time: How much time does it take to "reach" the uniform distribution?

The total variation distance between the distribution at time n and the uniform distribution on \mathfrak{S}_{d+1} :

• Mixing time: How much time does it take to "reach" the uniform distribution?

The total variation distance between the distribution at time n and the uniform distribution on \mathfrak{S}_{d+1} :

[Aldous 83, Diaconis & Saloff-Coste 93, Wilson 04]

• Focus on observables, for instance the inversion number $\mathcal{I}_{d,n} = \operatorname{inv}(\pi^{(n)})$.

The expected value of the inversion number, $I_{d,n} := \mathbb{E}(\mathcal{I}_{d,n})$:

=> Estimate the number of transpositions (mutations) that have occurred, and hence the evolutionary distance between species.

Of particular interest: what happens before mixing.

A formula for the expected inversion number

Theorem: The expected number of inversions after n adjacent transpositions in \mathfrak{S}_{d+1} is

$$I_{d,n} = \frac{d(d+1)}{4} - \frac{1}{8(d+1)^2} \sum_{k,j=0}^{d} \frac{(c_j + c_k)^2}{s_j^2 s_k^2} x_{jk}^n,$$

where

$$c_k = \cos \alpha_k, \quad s_k = \sin \alpha_k, \quad \alpha_k = \frac{(2k+1)\pi}{2d+2},$$

and

$$x_{jk} = 1 - \frac{4}{d}(1 - c_j c_k).$$

Remark: For d large enough $(d \ge 8)$, $I_{d,n}$ increases, as n grows, to $\frac{d(d+1)}{4}$, which is the average inversion number of a random permutation in \mathfrak{S}_{d+1} .

Another formula for the expected inversion number [Eriksen 05]

$$I_{d,n} = \sum_{r=1}^{n} \frac{1}{d^r} {n \choose r} \sum_{s=1}^{r} {r-1 \choose s-1} (-4)^{r-s} g_{s,d} h_{s,d},$$

with

$$g_{s,d} = \sum_{\ell=0}^{d} \sum_{k>0} (-1)^k (p-2\ell) {2\lceil s/2 \rceil - 1 \choose \lceil s/2 \rceil + \ell + k(d+1)}$$

and

$$h_{s,d} = \sum_{j \in \mathbb{Z}} (-1)^j {2\lfloor s/2 \rfloor \choose \lfloor s/2 \rfloor + j(d+1)}.$$

Based on [Eriksson & Eriksson & Sjöstrand 00]

Beresticky & Durrett 08: "it is far from obvious how to extract useful asymptotic from this formula".

Combinatorialists could not throw in the sponge!

A formula for the expected inversion number

Theorem: The expected number of inversions after n adjacent transpositions in \mathfrak{S}_{d+1} is

$$I_{d,n} = \frac{d(d+1)}{4} - \frac{1}{8(d+1)^2} \sum_{k,j=0}^{d} \frac{(c_j + c_k)^2}{s_j^2 s_k^2} x_{jk}^n,$$

where

$$c_k = \cos \alpha_k, \quad s_k = \sin \alpha_k, \quad \alpha_k = \frac{(2k+1)\pi}{2d+2},$$

and

$$x_{jk} = 1 - \frac{4}{d}(1 - c_j c_k).$$

Remark: For d large enough $(d \ge 8)$, $I_{d,n}$ increases, as n grows, to $\frac{d(d+1)}{4}$, which is the average inversion number of a random permutation in \mathfrak{S}_{d+1} .

The expected inversion number: asymptotics

Three regimes, as d and n tend to ∞

ullet When n is "small", each step of the chain increases the inversion number with high probability. For example,

$$\operatorname{inv}(\pi^{(1)}) = 1,$$
 $\mathbb{P}\left(\operatorname{inv}(\pi^{(2)}) = 2\right) = 1 - \frac{1}{d},$ $\mathbb{P}\left(\operatorname{inv}(\pi^{(n)}) = n\right) = 1 - O\left(\frac{1}{d}\right).$

The expected inversion number: asymptotics

Three regimes, as d and n tend to ∞

ullet When n is "small", each step of the chain increases the inversion number with high probability. For example,

$$\operatorname{inv}(\pi^{(1)}) = 1, \qquad \mathbb{P}\left(\operatorname{inv}(\pi^{(2)}) = 2\right) = 1 - \frac{1}{d}, \qquad \mathbb{P}\left(\operatorname{inv}(\pi^{(n)}) = n\right) = 1 - O\left(\frac{1}{d}\right).$$

• When n is "large", the expected inversion number must approach its limit value $d(d+1)/4 \sim d^2/4$.

The expected inversion number: asymptotics

Three regimes, as d and n tend to ∞

 \bullet When n is "small", each step of the chain increases the inversion number with high probability. For example,

$$\operatorname{inv}(\pi^{(1)}) = 1, \qquad \mathbb{P}\left(\operatorname{inv}(\pi^{(2)}) = 2\right) = 1 - \frac{1}{d}, \qquad \mathbb{P}\left(\operatorname{inv}(\pi^{(n)}) = n\right) = 1 - O\left(\frac{1}{d}\right).$$

- When n is "large", the expected inversion number must approach its limit value $d(d+1)/4 \sim d^2/4$.
- An intermediate regime?

Small times: linear and before

• Sub-linear regime. If n = o(d),

$$\frac{\mathsf{I}_{d,n}}{n} = 1 + O(n/d).$$

Small times: linear and before

• Sub-linear regime. If n = o(d),

$$\frac{\mathsf{I}_{d,n}}{n} = 1 + O(n/d).$$

• Linear regime. If $n \sim \kappa d$,

$$\frac{\mathsf{I}_{d,n}}{n} = f(\kappa) + O(1/d)$$

where

$$f(\kappa) = \frac{1}{2\pi\kappa} \int_0^\infty \frac{1 - \exp(-8\kappa t^2/(1+t^2))}{t^2(1+t^2)} dt$$
$$= \sum_{j>0} (-1)^j \frac{(2j)!}{j!(j+1)!^2} (2\kappa)^j.$$

The function $f(\kappa)$ decreases from f(0) = 1 to $f(\infty) = 0$.

Large times: cubic and beyond

• Super-cubic regime. If $n \gg d^3$,

$$\frac{\mathsf{I}_{d,n}}{d^2} o \frac{1}{4}.$$

Large times: cubic and beyond

• Super-cubic regime. If $n \gg d^3$,

$$\frac{\mathsf{I}_{d,n}}{d^2} \to \frac{1}{4}.$$

• Cubic regime. If $n \sim \kappa d^3$,

$$\frac{\mathsf{I}_{d,n}}{d^2} \sim g(\kappa)$$

where

$$g(\kappa) = \frac{1}{4} - \frac{16}{\pi^4} \left(\sum_{j \ge 0} \frac{e^{-\kappa \pi^2 (2j+1)^2/2}}{(2j+1)^2} \right)^2.$$

The function $g(\kappa)$ increases from g(0) = 0 to $g(\infty) = 1/4$.

The intermediate regime

• If $d \ll n \ll d^3$,

$$\frac{\mathsf{I}_{d,n}}{\sqrt{dn}} o \sqrt{\frac{2}{\pi}}.$$

Remark. For a related continuous time chain, the normalized inversion number $\mathcal{I}_{d,n}/\sqrt{dn}$ converges in probability to $\sqrt{2/\pi}$ [Beresticky & Durrett 08]

A formula for the expected inversion number

Theorem: The expected number of inversions after n adjacent transpositions in \mathfrak{S}_{d+1} is

$$I_{d,n} = \frac{d(d+1)}{4} - \frac{1}{8(d+1)^2} \sum_{k,j=0}^{d} \frac{(c_j + c_k)^2}{s_j^2 s_k^2} x_{jk}^n,$$

where

$$c_k = \cos \alpha_k, \quad s_k = \sin \alpha_k, \quad \alpha_k = \frac{(2k+1)\pi}{2d+2},$$

and

$$x_{jk} = 1 - \frac{4}{d}(1 - c_j c_k).$$

Where are the inversions? [Eriksson et al. 00]

For $i \leq j$, let $p_{i,j}^{(n)}$ be the probability that there is an inversion at time n in the positions i and j+1:

$$p_{i,j}^{(n)} = \mathbb{P}(\pi_i^{(n)} > \pi_{j+1}^{(n)}).$$

ullet The expected number of inversions at time n is

$$I_{d,n} = \sum_{0 \le i \le j < d} p_{i,j}^{(n)}.$$

Where are the inversions? [Eriksson et al. 00]

For $i \leq j$, let $p_{i,j}^{(n)}$ be the probability that there is an inversion at time n in the positions i and j+1:

$$p_{i,j}^{(n)} = \mathbb{P}(\pi_i^{(n)} > \pi_{j+1}^{(n)}).$$

• The numbers $p_{i,j}^{(n)}$ can be described recursively by examining where were the values $\pi_i^{(n)}$ and $\pi_{i+1}^{(n)}$ at time n-1.

Where are the inversions? [Eriksson et al. 00]

For $i \leq j$, let $p_{i,j}^{(n)}$ be the probability that there is an inversion at time n in the positions i and j+1:

$$p_{i,j}^{(n)} = \mathbb{P}(\pi_i^{(n)} > \pi_{j+1}^{(n)}).$$

- The numbers $p_{i,j}^{(n)}$ can be described recursively by examining where were the values $\pi_i^{(n)}$ and $\pi_{i+1}^{(n)}$ at time n-1. For instance:
 - If i = j and the nth transposition has switched the ith and i + 1st values:

$$\left(1 - p_{i,j}^{(n-1)}\right) \frac{1}{d}$$

– etc.

A recursion for the inversion probabilities

Lemma. The inversion probabilities $p_{i,j}^{(n)}$ are characterized by:

$$p_{i,j}^{(0)} = 0$$
 for $0 \le i \le j < d$,

and for $n \geq 0$,

$$p_{i,j}^{(n+1)} = p_{i,j}^{(n)} + \frac{1}{d} \sum_{(k,\ell) \leftrightarrow (i,j)} \left(p_{k,\ell}^{(n)} - p_{i,j}^{(n)} \right) + \frac{\delta_{i,j}}{d} \left(1 - 2p_{i,j}^{(n)} \right),$$

where $\delta_{i,j}=1$ if i=j and 0 otherwise, and the neighbour relations \leftrightarrow are those of the following graph:

→ A (weighted) walk in a triangle.

A functional equation for the GF of the inversion probabilities

Let P(t; u, v) be the generating function of the numbers $p_{i,j}^{(n)}$:

$$P(t; u, v) \equiv P(u, v) := \sum_{n \ge 0} t^n \sum_{0 \le i \le j < d} p_{i,j}^{(n)} u^i v^j.$$

A functional equation for the GF of the inversion probabilities

Let P(t; u, v) be the generating function of the numbers $p_{i,j}^{(n)}$:

$$P(t; u, v) \equiv P(u, v) := \sum_{n \ge 0} t^n \sum_{0 \le i \le j < d} p_{i,j}^{(n)} u^i v^j.$$

The above recursion translates as

$$\left(1 - t + \frac{t}{d}(4 - u - \bar{u} - v - \bar{v})\right) P(u, v) =
\frac{t}{d} \left(\frac{1 - u^{d}v^{d}}{(1 - uv)(1 - t)} - (\bar{u} - 1)P_{\ell}(v) - (v - 1)v^{d - 1}P_{t}(u) - (u + \bar{v})P_{\delta}(uv)\right),$$

where $\bar{u}=1/u$, $\bar{v}=1/v$, and the series P_ℓ , P_t and P_δ describe the numbers $p_{i,j}^{(n)}$ on the boundaries of the graph:

Back to the inversion number

We are interested in

$$I_m(t) = \sum_{n \ge 0} I_{d,n} t^n = P(t; 1, 1),$$

which, according to the functional equation, may be rewritten

$$I_m(t) = \frac{t}{(1-t)^2} - \frac{2tP_{\delta}(1)}{d(1-t)}.$$

$$\triangleleft \triangleleft \diamond \triangleright \triangleright$$

$$P(t; u, v) \equiv P(u, v) := \sum_{n \ge 0} t^n \sum_{0 \le i \le j < d} p_{i,j}^{(n)} u^i v^j.$$

$$\left(1 - t + \frac{t}{d}(4 - u - \bar{u} - v - \bar{v})\right) P(u, v) =
\frac{t}{d} \left(\frac{1 - u^{d}v^{d}}{(1 - uv)(1 - t)} - (\bar{u} - 1)P_{\ell}(v) - (v - 1)v^{d - 1}P_{t}(u) - (u + \bar{v})P_{\delta}(uv)\right),$$

$$\left(1 - t + \frac{t}{d}(4 - u - \bar{u} - v - \bar{v})\right)P(u, v) =
\frac{t}{d}\left(\frac{1 - u^{d}v^{d}}{(1 - uv)(1 - t)} - (\bar{u} - 1)P_{\ell}(v) - (v - 1)v^{d - 1}P_{t}(u) - (u + \bar{v})P_{\delta}(uv)\right)$$

What a beautiful equation!

$$\left(1 - t + \frac{t}{d}(4 - u - \bar{u} - v - \bar{v})\right)P(u, v) =
\frac{t}{d}\left(\frac{1 - u^{d}v^{d}}{(1 - uv)(1 - t)} - (\bar{u} - 1)P_{\ell}(v) - (v - 1)v^{d - 1}P_{t}(u) - (u + \bar{v})P_{\delta}(uv)\right)$$

Analogies with:

• Walks with steps ± 1 in a strip of height d:

$$(1 - t(u + \bar{u}))P(u) = 1 - t\bar{u}P_0 - tu^{d+1}P_d$$

• Walks in the quarter plane

$$(1 - t(u + \bar{u} + v + \bar{v}))P(u, v) = 1 - t\bar{u}P(0, v) - t\bar{v}P(u, 0)$$

and others...

$$\left(1 - t + \frac{t}{d}(4 - u - \bar{u} - v - \bar{v})\right) P(u, v) =
\frac{t}{d} \left(\frac{1 - u^d v^d}{(1 - uv)(1 - t)} - (\bar{u} - 1)P_{\ell}(v) - (v - 1)v^{d - 1}P_{t}(u) - (u + \bar{v})P_{\delta}(uv)\right)$$

ullet Cancel the kernel $\left(1-t+\frac{t}{d}(4-u-\bar{u}-v-\bar{v})\right)$ by coupling u and v

$$\left(1 - t + \frac{t}{d}(4 - u - \bar{u} - v - \bar{v})\right) P(u, v) =
\frac{t}{d} \left(\frac{1 - u^d v^d}{(1 - uv)(1 - t)} - (\bar{u} - 1)P_{\ell}(v) - (v - 1)v^{d - 1}P_{t}(u) - (u + \bar{v})P_{\delta}(uv)\right)$$

- ullet Cancel the kernel $\left(1-t+\frac{t}{d}(4-u-\bar{u}-v-\bar{v})\right)$ by coupling u and v
- Exploit the symmetries of this kernel, which is invariant by $(u,v)\mapsto (\bar u,v)$ $(u,v)\mapsto (u,\bar v)$, $(u,v)\mapsto (\bar u,\bar v)$ (the reflection principle)

$$\left(1 - t + \frac{t}{d}(4 - u - \bar{u} - v - \bar{v})\right) P(u, v) =
\frac{t}{d} \left(\frac{1 - u^d v^d}{(1 - uv)(1 - t)} - (\bar{u} - 1)P_{\ell}(v) - (v - 1)v^{d - 1}P_{t}(u) - (u + \bar{v})P_{\delta}(uv)\right)$$

- ullet Cancel the kernel $\left(1-t+\frac{t}{d}(4-u-\bar{u}-v-\bar{v})\right)$ by coupling u and v
- Exploit the symmetries of this kernel, which is invariant by $(u,v)\mapsto (\bar u,v)$ $(u,v)\mapsto (u,\bar v)$, $(u,v)\mapsto (\bar u,\bar v)$ (the reflection principle)
- ullet Plus one more coupling between u and v.

$$\left(1 - t + \frac{t}{d}(4 - u - \bar{u} - v - \bar{v})\right) P(u, v) =
\frac{t}{d} \left(\frac{1 - u^d v^d}{(1 - uv)(1 - t)} - (\bar{u} - 1)P_{\ell}(v) - (v - 1)v^{d - 1}P_{t}(u) - (u + \bar{v})P_{\delta}(uv)\right)$$

- \bullet Cancel the kernel $\left(1-t+\frac{t}{d}(4-u-\bar{u}-v-\bar{v})\right)$ by coupling u and v
- Exploit the symmetries of this kernel, which is invariant by $(u,v) \mapsto (\bar{u},v)$ $(u,v) \mapsto (u,\bar{v}), (u,v) \mapsto (\bar{u},\bar{v})$ (the reflection principle)
- ullet Plus one more coupling between u and v.

One obtains an explicit expression of $P_{\delta}(q)$ at every $q \neq -1$ such that $q^{d+1} = -1$, and this is enough to reconstruct the whole polynomial $P_{\delta}(u)$ (and in particular, $P_{\delta}(1)$) by interpolation.

The final result

The generating function $I_d(t) = \sum_{n>0} I_{d,n}t^n$ is

$$I_d(t) = \frac{d(d+1)}{4(1-t)} - \frac{1}{8(d+1)^2} \sum_{k,j=0}^d \frac{(c_j + c_k)^2}{s_j^2 s_k^2} \frac{1}{1 - tx_{jk}}$$

with

$$c_k = \cos \alpha_k, \quad s_k = \sin \alpha_k, \quad \alpha_k = \frac{(2k+1)\pi}{2d+2},$$

and

$$x_{jk} = 1 - \frac{4}{d}(1 - c_j c_k).$$

ullet Other generators (ex: all transpositions [Sjöstrand 10], transpositions (0,i), block transpositions...)

- Other generators (ex: all transpositions [Sjöstrand 10], transpositions (0, i), block transpositions...)
- Other statistics: inversion number \mapsto measure of the "distance" between the identity and a permutation (ex: [Eriksen & Hultman 04], expected transposition distance after n transpositions)

- Other generators (ex: all transpositions [Sjöstrand 10], transpositions (0, i), block transpositions...)
- Other statistics: inversion number \mapsto measure of the "distance" between the identity and a permutation (ex: [Eriksen & Hultman 04], expected transposition distance after n transpositions)
- Other groups: mostly, finite irreducible Coxeter groups, with the length as the distance statistics ([Troili 02]: the case of $I_2(d)$). When the generators are all reflections, see [Sjöstrand 10].

- Other generators (ex: all transpositions [Sjöstrand 10], transpositions (0, i), block transpositions...)
- Other statistics: inversion number \mapsto measure of the "distance" between the identity and a permutation (ex: [Eriksen & Hultman 04], expected transposition distance after n transpositions)
- Other groups: mostly, finite irreducible Coxeter groups, with the length as the distance statistics ([Troili 02]: the case of $I_2(d)$). When the generators are all reflections, see [Sjöstrand 10].

Thank you!

Around the mixing time (super-cubic regime)

Assume $n \sim \kappa d^3 \log d$.

• If $\kappa < 1/\pi^2$, there exists $\gamma > 0$ such that

$$I_{d,n} \le \frac{d(d+1)}{4} - \Theta(d^{1+\gamma}),$$

• If $\kappa > 1/\pi^2$, there exists $\gamma > 0$ such that

$$I_{d,n} = \frac{d(d+1)}{4} - O(d^{1-\gamma}).$$

• For the critical value $\kappa=1/\pi^2$, the following refined estimate holds: if $n\sim 1/\pi^2 d^3\log d + \alpha d^3 + o(d^3)$, then

$$I_{d,n} = \frac{d(d+1)}{4} - \frac{16d}{\pi^4} e^{-\alpha \pi^2} (1 + o(1)).$$

Let $Q = (Q_{\sigma,\tau})$ be the transition matrix of the chain:

• Then for all $\sigma \in \mathfrak{S}_{d+1}$,

$$\sum_{n>0} \mathbb{P}\left(\pi^{(n)} = \sigma\right) t^n = \sum_{n>0} Q_{\mathsf{id},\sigma}^n t^n = \left((1 - tQ)^{-1}\right)_{\mathsf{id},\sigma}$$

is a rational series in t.

The GF of the expected inversion number

$$\sum_{n\geq 0} \mathbb{E}(I_{d,n}) t^n = \sum_{n\geq 0} \left(\sum_{\sigma\in\mathfrak{S}_{d+1}} \operatorname{inv}(\sigma) \mathbb{P}\left(\pi^{(n)} = \sigma\right) \right) t^n = \sum_{\sigma\in\mathfrak{S}_{d+1}} \operatorname{inv}(\sigma) G_{\sigma}(t)$$

is rational as well.