Permutation graphs - an introduction

Ioan Todinca
LIFO - Université d'Orléans

Algorithms and permutations, february 2012

Permutation graphs

- Optimisation algorithms
use, as input, the intersection model (realizer)
- Recognition algorithms
output the intersection(s) model(s)

Plan of the talk

1. Relationship with other graph classes
2. Optimisation problems : MaxIndependentSet/MaxClique/Coloring; Treewidth
3. Recognition algorithm
4. Encoding all realizers via modular decomposition
5. Conclusion

Definition and basic properties

- Realizer: $\left(\pi_{1}, \pi_{2}\right)$
- One can "reverse" the realizer upside-down or right-left : $\left(\pi_{1}, \pi_{2}\right) \sim\left(\pi_{2}, \pi_{1}\right) \sim\left(\overline{\pi_{1}}, \overline{\pi_{2}}\right) \sim\left(\overline{\pi_{2}}, \overline{\pi_{1}}\right)$
- Complements of permutation graphs are permutation graphs.
\rightarrow Reverse the ordering of the bottoms of the segments:
$\left(\pi_{1}, \pi_{2}\right) \rightarrow\left(\pi_{1}, \overline{\pi_{2}}\right)$

Definition and basic properties

- Realizer: $\left(\pi_{1}, \pi_{2}\right)$
- One can "reverse" the realizer upside-down or right-left : $\left(\pi_{1}, \pi_{2}\right) \sim\left(\pi_{2}, \pi_{1}\right) \sim\left(\overline{\pi_{1}}, \overline{\pi_{2}}\right) \sim\left(\overline{\pi_{2}}, \overline{\pi_{1}}\right)$
- Complements of permutation graphs are permutation graphs.
\rightarrow Reverse the ordering of the bottoms of the segments:
$\left(\pi_{1}, \pi_{2}\right) \rightarrow\left(\pi_{1}, \overline{\pi_{2}}\right)$

Definition and basic properties

- Realizer: $\left(\pi_{1}, \pi_{2}\right)$
- One can "reverse" the realizer upside-down or right-left : $\left(\pi_{1}, \pi_{2}\right) \sim\left(\pi_{2}, \pi_{1}\right) \sim\left(\overline{\pi_{1}}, \overline{\pi_{2}}\right) \sim\left(\overline{\pi_{2}}, \overline{\pi_{1}}\right)$
- Complements of permutation graphs are permutation graphs. \rightarrow Reverse the ordering of the bottoms of the segments : $\left(\pi_{1}, \pi_{2}\right) \rightarrow\left(\pi_{1}, \overline{\pi_{2}}\right)$

Definition and basic properties

- Realizer: $\left(\pi_{1}, \pi_{2}\right)$
- One can "reverse" the realizer upside-down or right-left : $\left(\pi_{1}, \pi_{2}\right) \sim\left(\pi_{2}, \pi_{1}\right) \sim\left(\overline{\pi_{1}}, \overline{\pi_{2}}\right) \sim\left(\overline{\pi_{2}}, \overline{\pi_{1}}\right)$
- Complements of permutation graphs are permutation graphs. \rightarrow Reverse the ordering of the bottoms of the segments : $\left(\pi_{1}, \pi_{2}\right) \rightarrow\left(\pi_{1}, \overline{\pi_{2}}\right)$

More intersection graph classes

Circle graphs

Trapezoid graphs

Books on graph classes : [Golumbic '80; Brandstädt, Le, Spinrad '99; Spinrad 2003]

MaxIndependentSet via Dynamic Programming

- Dynamic programming from left to right :

$$
M I S[i]=1+\max _{j \text { left to } i} M I S[j]
$$

- MaxIndependentSet corresponds to the longest increasing sequence in a permutation - $O(n \log n)$
- MaxClique : longest decreasing sequence
- Coloring : chromatic number $=$ max clique (perfect graphs)

Treewidth via dynamic programming on scanlines

- Minimal separators correspond to scanlines
- Bags correspond to areas between two scanlines
- Treewidth can be solved in polynomial time [Bodlaender, Kloks, Kratsch 95 ; Meister 2010]

Treewidth via dynamic programming on scanlines

- Minimal separators correspond to scanlines
- Bags correspond to areas between two scanlines
- Treewidth can be solved in polynomial time [Bodlaender, Kloks, Kratsch 95 ; Meister 2010]

Treewidth via dynamic programming on scanlines

- Minimal separators correspond to scanlines
- Bags correspond to areas between two scanlines
- Treewidth can be solved in polynomial time [Bodlaender, Kloks, Kratsch 95 ; Meister 2010]

Recognition algorithm

Theorem ([Pnueli, Lempel, Even '71], see also [Golumbic '80]) G is a permutation graph if and only if G and \bar{G} are comparability graphs.

Algorithm

1. Find a transitive orientation of G and one of \bar{G}
2. Construct an intersection model for G

In $O(n+m)$ time by [McConnell, Spinrad '99]

permutation \subseteq comparability \cap co-comparability

Transitive orientation of a permutation graph G : orient edges according to the top endpoints of the segments.

If $x y, y z \in E$ and $\pi_{1}(x)<\pi_{1}(y)<\pi_{1}(z)$ then $x z \in E$.

permutation \subseteq comparability \cap co-comparability

Transitive orientation of a permutation graph G : orient edges according to the top endpoints of the segments.

If $x y, y z \in E$ and $\pi_{1}(x)<\pi_{1}(y)<\pi_{1}(z)$ then $x z \in E$.

comparability \cap co-comparability \subseteq permutation

Let $E_{t r}$ be a transitive orientation of G and $F_{t r}$ a transitive orientation of its complement.

Lemma
$E_{t r} \cup F_{t r}$ induces a total ordering $\pi_{1}\left(E_{t r} \cup F_{t r}\right)$ on the vertex set.

comparability \cap co-comparability \subseteq permutation

Let $E_{t r}$ be a transitive orientation of G and $F_{t r}$ a transitive orientation of its complement.

Lemma
$E_{t r} \cup F_{t r}$ induces a total ordering $\pi_{1}\left(E_{t r} \cup F_{t r}\right)$ on the vertex set. $r e v\left(E_{t r}\right) \cup F_{t r}$ induces another total ordering $\pi_{2}\left(\operatorname{rev}\left(E_{t r}\right) \cup F_{t r}\right)$.

A realizer of G

Permutations $\pi_{1}\left(E_{t r} \cup F_{t r}\right)$ and $\pi_{2}\left(\operatorname{rev}\left(E_{t r}\right) \cup F_{t r}\right)$ form a realizer of G.

Segments x and y intersect iff $(x y) \in E_{t r}$ and $(y x) \in \operatorname{rev}\left(E_{t r}\right)$ or vice-versa ; equivalently, iff $x y \in E$.

Modules and common intervals

- Substituting a segment (vertex) by the realizer of a permutation graph (module) produces a new permutation graph.

- A common interval of π_{1} and π_{2} forms a module in G
- Strong modules correspond exactly to strong common intervals [de Mongolfier 2003]
- A graph is a permutation graphs iff all prime nodes in the modular decomposition are permutation graphs.

Modules and common intervals

- Substituting a segment (vertex) by the realizer of a permutation graph (module) produces a new permutation graph.

- A common interval of π_{1} and π_{2} forms a module in G
- Strong modules correspond exactly to strong common intervals [de Mongolfier 2003]
- A graph is a permutation graphs iff all prime nodes in the modular decomposition are permutation graphs.

Encoding realizers

Theorem ([Gallai '67])

A prime permutation graph has a unique realizer, up to reversals.

The modular decomposition tree + realizers of prime nodes encode all possible realizers of G, cf. [Crespelle, Paul 2010].

Conclusion

Summary

- Many optimization problems become polynomial on permutation graphs
- Representations (intersection models) based on modular decompositions

Some questions

- Is BANDWIDTH polynomial or NP-complete on permutation graphs?
- What about subgraph isomorphism from parametrized point of view?

Conclusion

Summary

- Many optimization problems become polynomial on permutation graphs
- Representations (intersection models) based on modular decompositions
Some questions
- Is BANDWIDTH polynomial or NP-complete on permutation graphs?
- What about subgraph isomorphism from parametrized point of view?
Thank you! Your questions?

