
1/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Permutation graphs — an introduction

Ioan Todinca

LIFO - Université d’Orléans
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Permutation graphs
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• Optimisation algorithms
use, as input, the intersection model (realizer)

• Recognition algorithms
output the intersection(s) model(s)
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Plan of the talk

1. Relationship with other graph classes

2. Optimisation problems :
MaxIndependentSet/MaxClique/Coloring ;
Treewidth

3. Recognition algorithm

4. Encoding all realizers via modular decomposition

5. Conclusion
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Definition and basic properties
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• Realizer : (π1, π2)

• One can ”reverse” the realizer upside-down or right-left :
(π1, π2) ∼ (π2, π1) ∼ (π1, π2) ∼ (π2, π1)

• Complements of permutation graphs are permutation graphs.
→ Reverse the ordering of the bottoms of the segments :
(π1, π2)→ (π1, π2)
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More intersection graph classes

Circle graphs Trapezoid graphs

Books on graph classes : [Golumbic ’80 ; Brandstädt, Le, Spinrad
’99 ; Spinrad 2003]
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MaxIndependentSet via Dynamic Programming
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• Dynamic programming from left to right :

MIS [i ] = 1 + max
j left to i

MIS [j ]

• MaxIndependentSet corresponds to the longest increasing
sequence in a permutation — O(n log n)

• MaxClique : longest decreasing sequence

• Coloring : chromatic number = max clique (perfect graphs)
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Treewidth via dynamic programming on scanlines
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• Minimal separators correspond to scanlines

• Bags correspond to areas between two scanlines

• Treewidth can be solved in polynomial time [Bodlaender,
Kloks, Kratsch 95 ; Meister 2010]
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• Minimal separators correspond to scanlines

• Bags correspond to areas between two scanlines

• Treewidth can be solved in polynomial time [Bodlaender,
Kloks, Kratsch 95 ; Meister 2010]
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Treewidth via dynamic programming on scanlines
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• Minimal separators correspond to scanlines

• Bags correspond to areas between two scanlines

• Treewidth can be solved in polynomial time [Bodlaender,
Kloks, Kratsch 95 ; Meister 2010]
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Recognition algorithm

Theorem ([Pnueli, Lempel, Even ’71], see also [Golumbic ’80])

G is a permutation graph if and only if G and G are comparability
graphs.

Algorithm

1. Find a transitive orientation of G and one of G

2. Construct an intersection model for G

In O(n + m) time by [McConnell, Spinrad ’99]
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permutation ⊆ comparability ∩ co-comparability

Transitive orientation of a permutation graph G : orient edges
according to the top endpoints of the segments.
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If xy , yz ∈ E and π1(x) < π1(y) < π1(z) then xz ∈ E .
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comparability ∩ co-comparability ⊆ permutation

Let Etr be a transitive orientation of G and Ftr a transitive
orientation of its complement.
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Lemma

Etr ∪ Ftr induces a total ordering π1(Etr ∪ Ftr ) on the vertex set.

rev(Etr ) ∪ Ftr induces another total ordering π2(rev(Etr ) ∪ Ftr ).
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Etr ∪ Ftr induces a total ordering π1(Etr ∪ Ftr ) on the vertex set.
rev(Etr ) ∪ Ftr induces another total ordering π2(rev(Etr ) ∪ Ftr ).
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A realizer of G

Permutations π1(Etr ∪ Ftr ) and π2(rev(Etr ) ∪ Ftr ) form a realizer
of G .
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Segments x and y intersect iff (xy) ∈ Etr and (yx) ∈ rev(Etr ) or
vice-versa ; equivalently, iff xy ∈ E .
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Modules and common intervals

• Substituting a segment (vertex) by the realizer of a
permutation graph (module) produces a new permutation
graph.

• A common interval of π1 and π2 forms a module in G
• Strong modules correspond exactly to strong common

intervals [de Mongolfier 2003]

• A graph is a permutation graphs iff all prime nodes in the
modular decomposition are permutation graphs.
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Encoding realizers

Theorem ([Gallai ’67])

A prime permutation graph has a
unique realizer, up to reversals.

The modular decomposition tree
+ realizers of prime nodes
encode all possible realizers of G ,
cf. [Crespelle, Paul 2010].
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Conclusion

Summary

• Many optimization problems become polynomial on
permutation graphs

• Representations (intersection models) based on modular
decompositions

Some questions

• Is Bandwidth polynomial or NP-complete on permutation
graphs ?

• What about subgraph isomorphism from parametrized point
of view ?

Thank you ! Your questions ?
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