
1/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Permutation graphs — an introduction

Ioan Todinca

LIFO - Université d’Orléans

Algorithms and permutations, february 2012



2/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Permutation graphs

3

5 6

1 2 4

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

1
43

65

2

• Optimisation algorithms
use, as input, the intersection model (realizer)

• Recognition algorithms
output the intersection(s) model(s)



3/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Plan of the talk

1. Relationship with other graph classes

2. Optimisation problems :
MaxIndependentSet/MaxClique/Coloring ;
Treewidth

3. Recognition algorithm

4. Encoding all realizers via modular decomposition

5. Conclusion



4/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Definition and basic properties

3

5 6

1 2 4

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

1

2

1

34561

42365

43

65

2

• Realizer : (π1, π2)

• One can ”reverse” the realizer upside-down or right-left :
(π1, π2) ∼ (π2, π1) ∼ (π1, π2) ∼ (π2, π1)

• Complements of permutation graphs are permutation graphs.
→ Reverse the ordering of the bottoms of the segments :
(π1, π2)→ (π1, π2)



4/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Definition and basic properties

3

5 6

1 2 4

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

5

2

1

34561

4236

• Realizer : (π1, π2)

• One can ”reverse” the realizer upside-down or right-left :
(π1, π2) ∼ (π2, π1) ∼ (π1, π2) ∼ (π2, π1)

• Complements of permutation graphs are permutation graphs.
→ Reverse the ordering of the bottoms of the segments :
(π1, π2)→ (π1, π2)



4/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Definition and basic properties

3

5 6

1 2 4

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

3

2 34561

1564 2

• Realizer : (π1, π2)

• One can ”reverse” the realizer upside-down or right-left :
(π1, π2) ∼ (π2, π1) ∼ (π1, π2) ∼ (π2, π1)

• Complements of permutation graphs are permutation graphs.
→ Reverse the ordering of the bottoms of the segments :
(π1, π2)→ (π1, π2)



4/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Definition and basic properties

5 6

1 2 43

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

3

2 34561

1564 2

• Realizer : (π1, π2)

• One can ”reverse” the realizer upside-down or right-left :
(π1, π2) ∼ (π2, π1) ∼ (π1, π2) ∼ (π2, π1)

• Complements of permutation graphs are permutation graphs.
→ Reverse the ordering of the bottoms of the segments :
(π1, π2)→ (π1, π2)



5/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

More intersection graph classes

Circle graphs Trapezoid graphs

Books on graph classes : [Golumbic ’80 ; Brandstädt, Le, Spinrad
’99 ; Spinrad 2003]



6/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

MaxIndependentSet via Dynamic Programming

6

21 3 64 5

12 34 5

• Dynamic programming from left to right :

MIS [i ] = 1 + max
j left to i

MIS [j ]

• MaxIndependentSet corresponds to the longest increasing
sequence in a permutation — O(n log n)

• MaxClique : longest decreasing sequence

• Coloring : chromatic number = max clique (perfect graphs)



7/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Treewidth via dynamic programming on scanlines

6

1 2 43

5

23

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

25612 34

�
�
�
�

5

2

1

34561

4236

• Minimal separators correspond to scanlines

• Bags correspond to areas between two scanlines

• Treewidth can be solved in polynomial time [Bodlaender,
Kloks, Kratsch 95 ; Meister 2010]



7/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Treewidth via dynamic programming on scanlines

5 6

1 2 43

23

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

25612 34

�
�
�
�

5

2

1

34561

4236

• Minimal separators correspond to scanlines

• Bags correspond to areas between two scanlines

• Treewidth can be solved in polynomial time [Bodlaender,
Kloks, Kratsch 95 ; Meister 2010]



7/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Treewidth via dynamic programming on scanlines

5 6

1 432

23

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

25612 34

�
�
�
�

5 36

2

1

34561

42

• Minimal separators correspond to scanlines

• Bags correspond to areas between two scanlines

• Treewidth can be solved in polynomial time [Bodlaender,
Kloks, Kratsch 95 ; Meister 2010]



8/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Recognition algorithm

Theorem ([Pnueli, Lempel, Even ’71], see also [Golumbic ’80])

G is a permutation graph if and only if G and G are comparability
graphs.

Algorithm

1. Find a transitive orientation of G and one of G

2. Construct an intersection model for G

In O(n + m) time by [McConnell, Spinrad ’99]



9/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

permutation ⊆ comparability ∩ co-comparability

Transitive orientation of a permutation graph G : orient edges
according to the top endpoints of the segments.

3

5 6

1 2 4

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

5

2

1

34561

4236

If xy , yz ∈ E and π1(x) < π1(y) < π1(z) then xz ∈ E .



9/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

permutation ⊆ comparability ∩ co-comparability

Transitive orientation of a permutation graph G : orient edges
according to the top endpoints of the segments.

5 6

1 2 43

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

5

2

1

34561

4236

If xy , yz ∈ E and π1(x) < π1(y) < π1(z) then xz ∈ E .



10/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

comparability ∩ co-comparability ⊆ permutation

Let Etr be a transitive orientation of G and Ftr a transitive
orientation of its complement.

6

1 2 43

5

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

Lemma

Etr ∪ Ftr induces a total ordering π1(Etr ∪ Ftr ) on the vertex set.

rev(Etr ) ∪ Ftr induces another total ordering π2(rev(Etr ) ∪ Ftr ).



10/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

comparability ∩ co-comparability ⊆ permutation

Let Etr be a transitive orientation of G and Ftr a transitive
orientation of its complement.

6

1 2 43

5

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

Lemma

Etr ∪ Ftr induces a total ordering π1(Etr ∪ Ftr ) on the vertex set.
rev(Etr ) ∪ Ftr induces another total ordering π2(rev(Etr ) ∪ Ftr ).



11/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

A realizer of G

Permutations π1(Etr ∪ Ftr ) and π2(rev(Etr ) ∪ Ftr ) form a realizer
of G .

5

2

1

34561

4236

3

5 6

1 2 4

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

Segments x and y intersect iff (xy) ∈ Etr and (yx) ∈ rev(Etr ) or
vice-versa ; equivalently, iff xy ∈ E .



12/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Modules and common intervals

• Substituting a segment (vertex) by the realizer of a
permutation graph (module) produces a new permutation
graph.

• A common interval of π1 and π2 forms a module in G
• Strong modules correspond exactly to strong common

intervals [de Mongolfier 2003]

• A graph is a permutation graphs iff all prime nodes in the
modular decomposition are permutation graphs.



12/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Modules and common intervals

• Substituting a segment (vertex) by the realizer of a
permutation graph (module) produces a new permutation
graph.

• A common interval of π1 and π2 forms a module in G
• Strong modules correspond exactly to strong common

intervals [de Mongolfier 2003]

• A graph is a permutation graphs iff all prime nodes in the
modular decomposition are permutation graphs.



13/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Encoding realizers

Theorem ([Gallai ’67])

A prime permutation graph has a
unique realizer, up to reversals.

The modular decomposition tree
+ realizers of prime nodes
encode all possible realizers of G ,
cf. [Crespelle, Paul 2010].

3

5 6

1 2 4

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

1 4

series

parallel

prime

5 6

1

2 43

3
2



14/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Conclusion

Summary

• Many optimization problems become polynomial on
permutation graphs

• Representations (intersection models) based on modular
decompositions

Some questions

• Is Bandwidth polynomial or NP-complete on permutation
graphs ?

• What about subgraph isomorphism from parametrized point
of view ?

Thank you ! Your questions ?



14/14

Introduction Optimization problems Recognition Encoding all realizers Conclusion

Conclusion

Summary

• Many optimization problems become polynomial on
permutation graphs

• Representations (intersection models) based on modular
decompositions

Some questions

• Is Bandwidth polynomial or NP-complete on permutation
graphs ?

• What about subgraph isomorphism from parametrized point
of view ?

Thank you ! Your questions ?


	Introduction
	Optimization problems
	Recognition
	Encoding all realizers
	Conclusion

