Ioan Todinca

LIFO - Université d'Orléans

Algorithms and permutations, february 2012

Permutation graphs

- Optimisation algorithms
 use, as input, the intersection model (realizer)
- Recognition algorithms output the intersection(s) model(s)

Plan of the talk

- 1. Relationship with other graph classes
- 2. Optimisation problems:

 MAXINDEPENDENTSET/MAXCLIQUE/COLORING;
 TREEWIDTH
- 3. Recognition algorithm
- 4. Encoding all realizers via modular decomposition
- 5. Conclusion

- Realizer : (π_1, π_2)
- One can "reverse" the realizer upside-down or right-left : $(\pi_1,\pi_2)\sim (\pi_2,\pi_1)\sim (\overline{\pi_1},\overline{\pi_2})\sim (\overline{\pi_2},\overline{\pi_1})$
- Complements of permutation graphs are permutation graphs.
 → Reverse the ordering of the bottoms of the segments :

$$(\pi_1,\pi_2) \rightarrow (\pi_1,\overline{\pi_2})$$

- Realizer : (π_1, π_2)
- One can "reverse" the realizer upside-down or right-left : $(\pi_1,\pi_2)\sim (\pi_2,\pi_1)\sim (\overline{\pi_1},\overline{\pi_2})\sim (\overline{\pi_2},\overline{\pi_1})$
- Complements of permutation graphs are permutation graphs.
 → Reverse the ordering of the bottoms of the segments :
 - $(\pi_1,\pi_2) o (\pi_1,\overline{\pi_2})$

- Realizer : (π_1, π_2)
- One can "reverse" the realizer upside-down or right-left : $(\pi_1,\pi_2)\sim(\pi_2,\pi_1)\sim(\overline{\pi_1},\overline{\pi_2})\sim(\overline{\pi_2},\overline{\pi_1})$
- Complements of permutation graphs are permutation graphs.
 - \rightarrow Reverse the ordering of the bottoms of the segments : $(\pi_1,\pi_2) \rightarrow (\pi_1,\overline{\pi_2})$

- Realizer : (π_1, π_2)
- One can "reverse" the realizer upside-down or right-left : $(\pi_1,\pi_2)\sim(\pi_2,\pi_1)\sim(\overline{\pi_1},\overline{\pi_2})\sim(\overline{\pi_2},\overline{\pi_1})$
- Complements of permutation graphs are permutation graphs.
 - \rightarrow Reverse the ordering of the bottoms of the segments : $(\pi_1,\pi_2) \rightarrow (\pi_1,\overline{\pi_2})$

More intersection graph classes

Circle graphs

Trapezoid graphs

Books on graph classes : [Golumbic '80; Brandstädt, Le, Spinrad '99; Spinrad 2003]

MAXINDEPENDENTSET via Dynamic Programming

• Dynamic programming from left to right :

$$\mathit{MIS}[i] = 1 + \max_{j \text{ left to } i} \mathit{MIS}[j]$$

- MAXINDEPENDENTSET corresponds to the longest increasing sequence in a permutation — $O(n \log n)$
- MAXCLIQUE: longest decreasing sequence
- COLORING: chromatic number = max clique (perfect graphs)

TREEWIDTH via dynamic programming on scanlines

- Minimal separators correspond to scanlines
- Bags correspond to areas between two scanlines
- Treewidth can be solved in polynomial time [Bodlaender, Kloks, Kratsch 95; Meister 2010]

TREEWIDTH via dynamic programming on scanlines

- Minimal separators correspond to scanlines
- Bags correspond to areas between two scanlines
- TREEWIDTH can be solved in polynomial time [Bodlaender, Kloks, Kratsch 95; Meister 2010]

TREEWIDTH via dynamic programming on scanlines

- Minimal separators correspond to scanlines
- Bags correspond to areas between two scanlines
- TREEWIDTH can be solved in polynomial time [Bodlaender, Kloks, Kratsch 95; Meister 2010]

Recognition algorithm

Theorem ([Pnueli, Lempel, Even '71], see also [Golumbic '80])

G is a permutation graph if and only if G and \overline{G} are comparability graphs.

Algorithm

- 1. Find a transitive orientation of G and one of \overline{G}
- 2. Construct an intersection model for G

In O(n+m) time by [McConnell, Spinrad '99]

permutation \subseteq comparability \cap co-comparability

Transitive orientation of a permutation graph G: orient edges according to the top endpoints of the segments.

If $xy, yz \in E$ and $\pi_1(x) < \pi_1(y) < \pi_1(z)$ then $xz \in E$.

permutation \subseteq comparability \cap co-comparability

Transitive orientation of a permutation graph G: orient edges according to the top endpoints of the segments.

If $xy, yz \in E$ and $\pi_1(x) < \pi_1(y) < \pi_1(z)$ then $xz \in E$.

comparability \cap co-comparability \subseteq permutation

Let E_{tr} be a transitive orientation of G and F_{tr} a transitive orientation of its complement.

Lemma

 $E_{tr} \cup F_{tr}$ induces a total ordering $\pi_1(E_{tr} \cup F_{tr})$ on the vertex set.

comparability \cap co-comparability \subseteq permutation

Let E_{tr} be a transitive orientation of G and F_{tr} a transitive orientation of its complement.

Lemma

 $E_{tr} \cup F_{tr}$ induces a total ordering $\pi_1(E_{tr} \cup F_{tr})$ on the vertex set. $rev(E_{tr}) \cup F_{tr}$ induces another total ordering $\pi_2(rev(E_{tr}) \cup F_{tr})$.

Permutations $\pi_1(E_{tr} \cup F_{tr})$ and $\pi_2(rev(E_{tr}) \cup F_{tr})$ form a realizer of G.

Segments x and y intersect iff $(xy) \in E_{tr}$ and $(yx) \in rev(E_{tr})$ or vice-versa; equivalently, iff $xy \in E$.

Modules and common intervals

 Substituting a segment (vertex) by the realizer of a permutation graph (module) produces a new permutation graph.

- A common interval of π_1 and π_2 forms a module in G
- Strong modules correspond exactly to strong common intervals [de Mongolfier 2003]
- A graph is a permutation graphs iff all prime nodes in the modular decomposition are permutation graphs.

Modules and common intervals

 Substituting a segment (vertex) by the realizer of a permutation graph (module) produces a new permutation graph.

- A common interval of π_1 and π_2 forms a module in G
- Strong modules correspond exactly to strong common intervals [de Mongolfier 2003]
- A graph is a permutation graphs iff all prime nodes in the modular decomposition are permutation graphs.

Encoding realizers

Theorem ([Gallai '67])

A prime permutation graph has a unique realizer, up to reversals.

The modular decomposition tree + realizers of prime nodes encode all possible realizers of *G*, cf. [Crespelle, Paul 2010].

Conclusion

Summary

- Many optimization problems become polynomial on permutation graphs
- Representations (intersection models) based on modular decompositions

Some questions

- Is Bandwidth polynomial or NP-complete on permutation graphs?
- What about subgraph isomorphism from parametrized point of view?

Conclusion

Summary

- Many optimization problems become polynomial on permutation graphs
- Representations (intersection models) based on modular decompositions

Some questions

- Is BANDWIDTH polynomial or NP-complete on permutation graphs?
- What about subgraph isomorphism from parametrized point of view?

Thank you! Your questions?