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Modules

A subset of vertices M of a graph G = (V ,E ) is a module iff
∀x ∈ V \M, either M ⊆ N(x) or M ∩ N(x) = ∅
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Modules

A subset of vertices M of a graph G = (V ,E ) is a module iff
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Examples of modules:

I connected components

I connected components of G

I any vertex subset of the complete graph (or independent set)
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I A graph (a module) is prime is all its modules are trivial:
e.g. the P4.

I A graph (a module) is degenerate if every subset of vertices is
a module: cliques and stables.
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A permutation graph has a unique representation (up to reversal)
iff it is prime.
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Permutation graph recognition

Theorem [Gallai’67]
A permutation graph has a unique representation (up to reversal)
iff it is prime.

Recognition algorithm

I Recursively solve the problem on modules

I Solve the prime case (with linear time transitive orientation
algorithm)

Theorem [McConnell and Spinrad’99]
The permutation graph recognition problem can be solved in
O(n + m) time

I we need a linear time modular decomposition algorithm
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Partitive families

If M and M ′ are two overlapping modules then

I M \M ′is a module

I M ∩M ′ is a module

I M∆M ′ is a module

The set of modules of a graph forms a partitive family

A module is strong if it does not overlap any other module
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Strong modules are nested into an inclusion tree: the modular
decomposition tree MD(G )



Modular partition and quotient graph

A partition P of the vertex set of a graph G is a modular partition
if every part is a module of G .
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If P is a modular partition of G , the quotient graph G/P is the
induced subgraph obtained by choosing one vertex per part of P.
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If P is a modular partition of G , the quotient graph G/P is the
induced subgraph obtained by choosing one vertex per part of P.



Theorem [Gal’67,CHM81]

Let G = (V ,E ) be a graph. Then either

1. (parallel) G is not connected, or

2. (series) G is not connected, or

3. (prime) G/M(G) is a prime graph, with M(G ) the modular
partition containing the maximal strong modules of G .
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Let G = (V ,E ) be a graph. Then either

1. (parallel) G is not connected, or

2. (series) G is not connected, or

3. (prime) G/M(G) is a prime graph, with M(G ) the modular
partition containing the maximal strong modules of G .
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Theorem [Gal’67,CHM81]

Let G = (V ,E ) be a graph. Then either

1. (parallel) G is not connected, or

2. (series) G is not connected, or

3. (prime) G/M(G) is a prime graph, with M(G ) the modular
partition containing the maximal strong modules of G .
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Observation: If a P4 on {a, b, c , d} overlap a module M, then
|M ∩ {a, b, c , d}| = 1



Modular decomposition algorithms

I O(n4) [Cowan, James, Stanton’72]

I O(n3) [Blass, 1978], [Habib, Maurer’79]

I O(n2) [McConnell, Spinrad’89]

I O(n + mα(m, n)) [Spinrad’92], [Cournier, Habib’93]

I O(n + m) [McConnell, Spinrad’94], [Cournier, Habib’94]

I O(n + m log n) [Habib, Paul, Viennot’99] (factoring
permutation), [McConnell, Spinrad’00]

I O(n + m) [Capelle, Habib’97] (factoring permutation)
[Dahlhaus, Gustedt, McConnell’97], [Tedder, Corneil, Habib,
Paul’08]

I other many others for variants of modular decomposition
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Cographs - Totally decomposable graphs

Theorem: A graph is a cograph (a P4-free graph 1 2 3 4)
iff its modular decomposition tree does not contain any prime node
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Theorem: A graph is a cograph (a P4-free graph 1 2 3 4)
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Cographs can be built from the single vertex with the disjoint
union and series composition

Exercice: prove that cographs are permutation graphs



Cographs - Totally decomposable graphs

Theorem: A graph is a cograph (a P4-free graph 1 2 3 4)
iff its modular decomposition tree does not contain any prime node
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Linear time recognition algorithms

I incremental [Corneil, Pearl, Stewart’85]

I partition refinement [Habib, P.’05]

I LexBFS [Bretscher, Corneil, Habib, P.’08]
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Ehrenfeucht et al’s modular decomposition algorithm

M(G , v) is the modular partition composed by

I {v} and the maximal modules of G not containing v .
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1. Compute M(G , v)

2. Compute MD(G/M(G ,v))

3. For each X ∈M(G , v) compute MD(G [X ])



Computation ofM(G , v) (1)

Lemma [MR84] Let P be a modular partition of G = (V ,E ).
X ⊆ P is a module of G/P iff ∪M∈XM is a module of G .
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Lemma [MR84] Let P be a modular partition of G = (V ,E ).
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Lemma If x is a splitter for the set
S , then any module M containing S
must also contain x .



Computation ofM(G , v) (2)

Lemma If v is a splitter of a set S , then for any module M ⊆ S
either M ⊆ S ∩ N(v) or M ⊆ M ∩ N(v)

I O(n + m log n) time using vertex partitioning algorihtm
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Computation ofM(G , v) (2)

Lemma If v is a splitter of a set S , then for any module M ⊆ S
either M ⊆ S ∩ N(v) or M ⊆ M ∩ N(v)

I O(n + m log n) time using vertex partitioning algorihtm
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Computation of MD(G/M(G ,v)) (3)

I The modules of G/M(G ,v) are linearly nested:
any non-trivial module contains v

I The forcing graph F(G , v) has edge −→xy iff y separates x and v
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I The modules of G/M(G ,v) are linearly nested:
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Computation of MD(G/M(G ,v)) (4)

Complexity

I [Ehrenfeucht et al.’94] gives a O(n2) complexity.

I [MS00]: simple O(n + m log n) vertex partitioning algorithm

I [DGM’01]: O(n + m.α(n,m)) and a more complicated
O(n + m) implementation.

Other algorithms

I [CH94] and [MS94]: the first linear algorithms.

I [MS99]: O(n + m) algorithm which extends to transitive
orientation.



Computation of MD(G/M(G ,v)) (4)

Complexity

I [Ehrenfeucht et al.’94] gives a O(n2) complexity.

I [MS00]: simple O(n + m log n) vertex partitioning algorithm

I [DGM’01]: O(n + m.α(n,m)) and a more complicated
O(n + m) implementation.

Other algorithms

I [CH94] and [MS94]: the first linear algorithms.

I [MS99]: O(n + m) algorithm which extends to transitive
orientation.

[Spinrad’03] The new [linear time] algorithm [MS99] is currently
too complex to describe easily [...] I hope and believe that in a
number of years the linear algorithm can be simplified as well.

I [Tedder, Corneil, Habib, P.’08] simple linear time algorithm
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Back to permutations: common intervals

In a permutation σ, a set S of consecutive elements is called an
interval. Likewise a set S is a common interval of several
permutations σ1, σ2 . . . if it is an interval for every σi .
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Obs.: common intervals of σ1, σ2 are not modules of G (σ1, σ2)

I Computation of all common intervals in linear time - O(n2) -
[Uno, Yagura’00]



Back to permutations: common intervals

In a permutation σ, a set S of consecutive elements is called an
interval. Likewise a set S is a common interval of several
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Obs.: common intervals of σ1, σ2 are not modules of G (σ1, σ2)

Strong (common) interval doesn’t overlap other common intervals

Lemma [de Montgolfier] A set S is a strong interval of σ1 and σ2

iff it is a strong module of the permutation graph G (σ1, σ2)



Common intervals (2)

The family of common intervals is weakly partitive:
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I I1 ∩ I2 is a common interval
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The family of common intervals is weakly partitive:
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Common intervals (3)

Theorem Let σ be a permutation on [1, . . . n] and I be the
partition into maximal common intervals of σ, then either

1. σ/I = 1|I| - the identity on [1 . . . |I|]
2. σ/I = 1|I| - the reverse identity on [1 . . . |I|]
3. σ/I is prime - or simple (does not have non-trivial common

interval)



Common intervals (3)

Theorem Let σ be a permutation on [1, . . . n] and I be the
partition into maximal common intervals of σ, then either

1. σ/I = 1|I| - the identity on [1 . . . |I|]
2. σ/I = 1|I| - the reverse identity on [1 . . . |I|]
3. σ/I is prime - or simple (does not have non-trivial common

interval)

7 5 4 3 2 9 8 11 101 6

Theorem (see e.g. [Bergeron et al.’08])
The common interval tree can be computed in O(n) time.



Common intervals (4)

A permutation σ is separable if it does not contains the pattern
3 1 4 2

I 3 1 4 2 corresponds to the P4
1 2 3 4

I a permutation is separable iff
its common interval tree does not contains prime nodes

I a permutation is separable iff
the permutation graph G (σ,1) is a cograph (P4-free graph)
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Modular decomposition of tournaments
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Modular decomposition of tournaments
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A module in a tournament is a set S such that for every x /∈ S

I either ∀y ∈ S , x → y or ∀y ∈ S , y → x



Modular decomposition of tournaments
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A tournament is transitive if there exists a permutation σ of V (T )
with no backward arcs

Theorem: Let T be a tournament and M(T ) be the modular
partition into maximal strong modules, then

1. either T/M(T ) is transitive - contains no backward arc

2. or T/M(T ) is prime



Modular decomposition of tournaments
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A tournament is transitive if there exists a permutation σ of V (T )
with no backward arcs

Theorem: Let T be a tournament and M(T ) be the modular
partition into maximal strong modules, then

1. either T/M(T ) is transitive - contains no backward arc

2. or T/M(T ) is prime



Modular decomposition algorithm for tournaments

A factoring permutation of a tournament T (or a graph) is a
permutation σ of its vertices such that

every (strong) module of T is an interval of σ

I Modular decomposition tree from a factoring permutation in
linear time [Capelle’97]
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A factoring permutation of a tournament T (or a graph) is a
permutation σ of its vertices such that
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I Factoring permutation via a partition refinement algorithm in
linear time [de Mongolfier’03]
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I Modular decomposition tree from a factoring permutation in
linear time [Capelle’97]
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Modular decomposition algorithm for tournaments

A factoring permutation of a tournament T (or a graph) is a
permutation σ of its vertices such that

every (strong) module of T is an interval of σ

I Factoring permutation via a partition refinement algorithm in
linear time [de Mongolfier’03]

163 5 824 7

I Modular decomposition tree from a factoring permutation in
linear time [Capelle’97]
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FAST: Feedback Arc Set in Tournament

I A tournament T and an integer k

I Find a set of at most k arcs whose reversal transform T into a
transitive tournament
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I A tournament T and an integer k

I Find a permutation σ of the vertices with at most k backward
edges
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FAST: Feedback Arc Set in Tournament

I A tournament T and an integer k

I Find a permutation σ of the vertices with at most k backward
edges

4 873 51 2 6

I NP-Complete [Alon’06] [Charbit et al.’07]

I FTP [Raman, Saurabh’06] [Alon et al.’09]

I (1 + ε)-approximation scheme [Kenyon-Mathieu, Schudy’07]



FAST (2)

Obs.: A tournament is transitive iff there is no (directed) triangle
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7

6

Rule 1 [irrelevant vertex] If a vertex v is not contained in any
triangle, then delete v

A reduced tournament contains no source nor sink

Rule 2 [sunflower] If there is an arc
belonging to more that k distinct triangles,
then reverse it and decrease k by 1

The span s(−→uv) of a backward arc of a reduced tournament is 6 2k + 2
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Rule 3 [acyclic module] Let M be a maximal acyclic module.
If there are at most p = |M| arcs from N+(M) to N−(M),
then reverse all these arcs and decrease k by p.
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Rule 3 [acyclic module] Let M be a maximal acyclic module.
If there are at most p = |M| arcs from N+(M) to N−(M),
then reverse all these arcs and decrease k by p.

sunflower Rule ⇒∑
t2
i 6

∑
s(−→uv) 6 k(2k + 2)

Theorem [Bessy et al.’09]: Every instance (T , k) of k-FAST can
be reduced in polynomial time to an equivalent instance (T , k ′)
such that

|T | 6 2k +
∑

ti = O(k
√

k) and k ′ 6 k



Kernelization algorithm

(G’,k’)

|G’¦=f(k)

poly time
(G,k)

Given a parameterized instance (I, k) of a problem, a kernelization
algorithm computes in polytime an equivalent instance (I ′, k ′) st.

k ′ = f (k) and |I ′| 6 g(k)
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(G’,k’)

|G’¦=f(k)

poly time
(G,k)

Given a parameterized instance (I, k) of a problem, a kernelization
algorithm computes in polytime an equivalent instance (I ′, k ′) st.

k ′ = f (k) and |I ′| 6 g(k)

I we described a O(k
√

k)-vertex kernel for FAST based on
modular decomposition

I best known result: O(k)-vertex kernel ([Bessy et al.’09], [P.,
Perez, Thomassé’11])



Kernelization algorithm

(G’,k’)

|G’¦=f(k)

poly time
(G,k)

Given a parameterized instance (I, k) of a problem, a kernelization
algorithm computes in polytime an equivalent instance (I ′, k ′) st.

k ′ = f (k) and |I ′| 6 g(k)

Other modular decomposition kernelizations:

I O(k2)-vertex kernel for cluster editing

I O(k3)-vertex kernel for cograph editing

I also for min flip consensus tree, closest 3-leaf
power. . .



Some conclusions

I Modular decomposition plays an important role in the context
of many graph classes

I permutation graphs, interval graphs, comparability graphs . . .
I even perfect graph)

I Many examples of partitive (weakly partitive) families are
known in various contexts

I modules in undirected graphs, digraphs, hypergraphs
I common interval of permutations

I Various generalizations
I bimodular decomposition (module adapted to bipartite graphs)
I bipartitive families : eg. split decomposition of graphs -

O(n + α(n,m).m) circle graph recognition
I crossing families, union-difference families of sets. . .
I clique-width (cographs are clique-widht 2 graphs), rankwidth
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To learn / read more

I Habib and P. ”A survey of the algorithmic aspects of modular
decomposition” in Computer Science Review 4:41-59, 2010

I F. de Montgolfier, ”Décomposition modulaire de graphes,
théorie, extensions et algorithmes”, Phd Thesis (in French),
2003

I B.M. Bui Xuan, ”Tree-representation of set families in graph
decompositions and efficient algorithms”, Phd Thesis, 2008

I C. Crespelle, ”Représentations dynamiques de graphes”, PhD
Thesis (in French), 2007 attend I. Todinca’s talk !!!

I Common intervals and sorting by reversal:
attend M. Bouvel’s talk!!!
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I F. de Montgolfier, ”Décomposition modulaire de graphes,
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