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Examples of modules:
» connected components

» connected components of G
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Modules

A subset of vertices M of a graph G = (V/, E) is a module iff
Vx € V\ M, either M C N(x) or M N N(x) =10

» A graph (a module) is prime is all its modules are trivial:

e.g. the Pa. f

» A graph (a module) is degenerate if every subset of vertices is
a module: cliques and stables.
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Permutation graph recognition

Theorem [Gallai'67]
A permutation graph has a unique representation (up to reversal)
iff it is prime.

Recognition algorithm

» Recursively solve the problem on modules

» Solve the prime case (with linear time transitive orientation
algorithm)

Theorem [McConnell and Spinrad'99]
The permutation graph recognition problem can be solved in
O(n+ m) time

» we need a linear time modular decomposition algorithm
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Partitive families

If M and M’ are two overlapping modules then
» M\ M'is a module
» M N M is a module
» MAM' is a module

The set of modules of a graph forms a partitive family

A module is strong if it does not overlap any other module

1 234 5 67 8 91011

Strong modules are nested into an inclusion tree: the modular
decomposition tree MD(G)



Modular partition and quotient graph

A partition P of the vertex set of a graph G is a modular partition
if every part is a module of G.
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Modular partition and quotient graph

A partition P of the vertex set of a graph G is a modular partition
if every part is a module of G.

If P is a modular partition of G, the quotient graph G/p is the
induced subgraph obtained by choosing one vertex per part of P.
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Theorem [Gal'67,CHM81]

Let G = (V, E) be a graph. Then either
1. (parallel) G is not connected, or
2. (series) G is not connected, or
3. (prime) G/aq(c) is a prime graph, with M(G) the modular
partition containing the maximal strong modules of G.
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Theorem [Gal'67,CHM81]

Let G = (V, E) be a graph. Then either
1. (parallel) G is not connected, or
2. (series) G is not connected, or
3. (prime) G/aq(c) is a prime graph, with M(G) the modular
partition containing the maximal strong modules of G.

.—A—.

*—o oo

1 234 5 6 7 891011

Observation: If a P4 on {a, b, c, d} overlap a module M, then
IMN{a,b,c,d}| =1



Modular decomposition algorithms
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Modular decomposition algorithms

» O
» O(n?) [Blass, 1978], [Habib, Maurer'79]

(n*) [Cowan, James, Stanton'72]
(
» O(n?) [McConnell, Spinrad'89]
(
(

» O(n+ ma(m,n)) [Spinrad'92], [Cournier, Habib'93]
» O(n+ m) [McConnell, Spinrad'94], [Cournier, Habib'94]

» O(n+ mlogn) [Habib, Paul, Viennot'99] (factoring
permutation), [McConnell, Spinrad’00]

» O(n+ m) [Capelle, Habib'97] (factoring permutation)
[Dahlhaus, Gustedt, McConnell'97], [Tedder, Corneil, Habib,
Paul’08]

» other many others for variants of modular decomposition
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Cographs - Totally decomposable graphs

1 2 3 4)

Theorem: A graph is a cograph (a Ps-free graph
iff its modular decomposition tree does not contain any prime node

Series

Parallel

Cographs can be built from the single vertex with the disjoint
union and series composition

Exercice: prove that cographs are permutation graphs



Cographs - Totally decomposable graphs

Theorem: A graph is a cograph (a Ps-free graph ¢ 3 2 3)
iff its modular decomposition tree does not contain any prime node

Linear time recognition algorithms
» incremental [Corneil, Pearl, Stewart'85]
> partition refinement [Habib, P.'05]
> LexBFS [Bretscher, Corneil, Habib, P.'08]
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Ehrenfeucht et al's modular decomposition algorithm

M(G,v) is the modular partition composed by

» {v} and the maximal modules of G not containing v.

<

1. Compute M(G,v)
2. Compute MD(G/pq(6,v))
3. For each X € M(G, v) compute MD(G[X])



Computation of M(G,v) (1)

Lemma [MR84] Let P be a modular partition of G = (V, E).
X C P is a module of Gp iff Uyex M is a module of G.
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Lemma [MR84] Let P be a modular partition of G = (V, E).
X C P is a module of Gp iff Uyex M is a module of G.

A vertex x is a splitter for a set S of vertices if

Jy,z€ Swith xy € Sand xz ¢ E
We say that x separate y and z.
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Computation of M(G,v) (1)

Lemma [MR84] Let P be a modular partition of G = (V, E).
X C P is a module of Gp iff Uyex M is a module of G.

A vertex x is a splitter for a set S of vertices if
Jy,z€ Swith xy € Sand xz ¢ E
We say that x separate y and z.
2
6 Lemma If x is a splitter for the set
‘V‘Y

S, then any module M containing S
must also contain x.




Computation of M(G,v) (2)

Lemma If v is a splitter of a set S, then for any module M C S
either M C SN N(v) or M C MnN N(v)
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Computation of M(G,v) (2)

Lemma If v is a splitter of a set 5, then for any module M C S
either M C SN N(v) or M C MnN N(v)

» O(n+ mlog n) time using vertex partitioning algorihtm
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Lemma If v is a splitter of a set 5, then for any module M C S
either M C SN N(v) or M C MnN N(v)

» O(n+ mlog n) time using vertex partitioning algorihtm
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Computation of M(G,v) (2)

Lemma If v is a splitter of a set 5, then for any module M C S
either M C SN N(v) or M C MnN N(v)

» O(n+ mlog n) time using vertex partitioning algorihtm
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Computation of MD(G/rc.v)) (3)

» The modules of G, r(g,v) are linearly nested:
any non-trivial module contains v
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» The modules of G/ (g,v) are linearly nested:
any non-trivial module contains v

» The forcing graph F(G, v) has edge xy iff y separates x and v




Computation of MD(Grc.v)) (4)

Complexity
> [Ehrenfeucht et al.’94] gives a O(n?) complexity.
» [MS00]: simple O(n+ mlog n) vertex partitioning algorithm
» [DGM'01]: O(n+ m.c(n, m)) and a more complicated
O(n + m) implementation.
Other algorithms
» [CH94] and [MS94]: the first linear algorithms.

» [MS99]: O(n+ m) algorithm which extends to transitive
orientation.



Computation of MD(Grc.v)) (4)

Complexity
> [Ehrenfeucht et al.’94] gives a O(n?) complexity.
» [MS00]: simple O(n+ mlog n) vertex partitioning algorithm
» [DGM'01]: O(n+ m.c(n, m)) and a more complicated
O(n + m) implementation.
Other algorithms
» [CH94] and [MS94]: the first linear algorithms.

» [MS99]: O(n+ m) algorithm which extends to transitive
orientation.

[Spinrad’03] The new [linear time| algorithm [MS99] is currently
too complex to describe easily [...] | hope and believe that in a
number of years the linear algorithm can be simplified as well.

» [Tedder, Corneil, Habib, P.'08] simple linear time algorithm
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Back to permutations: common intervals

In a permutation o, a set S of consecutive elements is called an
interval. Likewise a set S is a common interval of several
permutations 01,07 ... if it is an interval for every o;.

Obs.: common intervals of o1, o2 are not modules of G(o1,02)

» Computation of all common intervals in linear time - O(n?) -
[Uno, Yagura'00]



Back to permutations: common intervals

In a permutation o, a set S of consecutive elements is called an
interval. Likewise a set S is a common interval of several
permutations 01,07 ... if it is an interval for every o;.

Obs.: common intervals of o1, o2 are not modules of G(o1,02)
Strong (common) interval doesn't overlap other common intervals

Lemma [de Montgolfier] A set S is a strong interval of o1 and o2
iff it is a strong module of the permutation graph G(o1,032)



Common intervals (2)

The family of common intervals is weakly partitive:

if 1 and I, are two common intervals then
» /1 Ul is a common interval
» /1N is a common interval

» /1 \ b and I\ l; are common intervals
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The family of common intervals is weakly partitive:
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if 1 and I, are two common intervals then
» /1 Ul is a common interval
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» /1 \ b and I\ l; are common intervals

Let Z be a partition of [1...n] into common intervals of the

permutation o, then we denote by 0,7 the quotient permutation
defined on [1...|Z]]



Common intervals (2)

The family of common intervals is weakly partitive:

4 1 3 2 5

if 1 and I, are two common intervals then
» /1 Ul is a common interval
» /1N is a common interval

» /1 \ b and I\ l; are common intervals

Let Z be a partition of [1...n] into common intervals of the

permutation o, then we denote by 0,7 the quotient permutation
defined on [1...|Z]]



Common intervals (3)
Theorem Let o be a permutation on [1,...n] and Z be the
partition into maximal common intervals of o, then either
1. 07 = 1j7 - the identity on [1...|Z]]
2. 07 = Ti7| - the reverse identity on [1...|Z]]
3. 07 is prime - or simple (does not have non-trivial common
interval)



Common intervals (3)

Theorem Let o be a permutation on [1,...n] and Z be the
partition into maximal common intervals of o, then either

1. o)1= 11|I| - the identity on [1 R |I|]
2. 07 = Ti7| - the reverse identity on [1...|Z]]

3. o)z is prime - or simple (does not have non-trivial common
interval)

Theorem (see e.g. [Bergeron et al.’08])
The common interval tree can be computed in O(n) time.

[m] = =
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A permutation o is separable if it does not contains the pattern
3142
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Common intervals (4)

A permutation o is separable if it does not contains the pattern
3142
» 3 14 2 corresponds to the Py PN
» a permutation is separable iff
its common interval tree does not contains prime nodes
» a permutation is separable iff
the permutation graph G(o, 1) is a cograph (Ps-free graph)
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Modular decomposition of tournaments

A module in a tournament is a set S such that for every x ¢ S

> eitherVy € S, x — y or VyeS, y—x



Modular decomposition of tournaments

A tournament is transitive if there exists a permutation o of V/(T)
with no backward arcs

Theorem: Let T be a tournament and M(T) be the modular
partition into maximal strong modules, then

1. either T, (7) is transitive - contains no backward arc
2. or T /pq(T) is prime
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A tournament is transitive if there exists a permutation o of V/(T)
with no backward arcs

Theorem: Let T be a tournament and M(T) be the modular
partition into maximal strong modules, then

1. either T, (7) is transitive - contains no backward arc
2. or T /pq(T) is prime
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Modular decomposition algorithm for tournaments

A factoring permutation of a tournament T (or a graph) is a
permutation o of its vertices such that
every (strong) module of T is an interval of o

» Factoring permutation via a partition refinement algorithm in
linear time [de Mongolfier'03]

» Modular decomposition tree from a factoring permutation in
linear time [Capelle’'97]
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FAST: Feedback Arc Set in Tournament

» A tournament T and an integer k

» Find a set of at most k arcs whose reversal transform T into a
transitive tournament



FAST: Feedback Arc Set in Tournament

» A tournament T and an integer k

» Find a permutation o of the vertices with at most k backward
edges
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FAST: Feedback Arc Set in Tournament

» A tournament T and an integer k

» Find a permutation o of the vertices with at most k backward
edges

N @

» NP-Complete [Alon'06] [Charbit et al.’07]
» FTP [Raman, Saurabh’06] [Alon et al.’09]
» (1 + €)-approximation scheme [Kenyon-Mathieu, Schudy'07]
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Rule 1 [irrelevant vertex| If a vertex v is not contained in any

triangle, then delete v
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belonging to more that k distinct triangles,
then reverse it and decrease k by 1



FAST (2)

Obs.: A tournament is transitive iff there is no (directed) triangle

Rule 1 [irrelevant vertex| If a vertex v is not contained in any

triangle, then delete v

’A reduced tournament contains no source nor sink

Rule 2 [sunflower] If there is an arc
belonging to more that k distinct triangles,
then reverse it and decrease k by 1

The span s(uv) of a backward arc of a reduced tournament is < 2k + 2

(o o o) & v (o) ¥ (e o o)
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Rule 3 [acyclic module] Let M be a maximal acyclic module.
If there are at most p = |M| arcs from N (M) to N~ (M),
then reverse all these arcs and decrease k by p.
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FAST (3)

Rule 3 [acyclic module] Let M be a maximal acyclic module.
If there are at most p = |M| arcs from N (M) to N~ (M),
then reverse all these arcs and decrease k by p.

sunflower Rule =

S22 < Ss(w) < k(2k+2)

Theorem [Bessy et al.’09]: Every instance (T, k) of k-FAST can
be reduced in polynomial time to an equivalent instance (T, k')
such that

|T| <2k + 3 t; = O(kVk) and k' < k



Kernelization algorithm

poly time
=

IG"=f(k)

Given a parameterized instance (Z, k) of a problem, a kernelization
algorithm computes in polytime an equivalent instance (Z', k') st.

k' = f(k) and 17| < g(k)



Kernelization algorithm

poly time
=

IG"i=f(k)
Given a parameterized instance (Z, k) of a problem, a kernelization
algorithm computes in polytime an equivalent instance (Z', k') st.
k' = f(k) and 17| < g(k)

» we described a O(kv/'k)-vertex kernel for FAST based on
modular decomposition

> best known result: O(k)-vertex kernel ([Bessy et al.’09], [P.,
Perez, Thomassé'11])



Kernelization algorithm

poly time
=

IG"=f(k)

Given a parameterized instance (Z, k) of a problem, a kernelization
algorithm computes in polytime an equivalent instance (Z', k') st.

k' = f(k) and 17| < g(k)

Other modular decomposition kernelizations:
» O(k?)-vertex kernel for CLUSTER EDITING
» O(k3)-vertex kernel for COGRAPH EDITING
» also for MIN FLIP CONSENSUS TREE, CLOSEST 3-LEAF
POWER. . .
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Some conclusions

» Modular decomposition plays an important role in the context
of many graph classes
» permutation graphs, interval graphs, comparability graphs . ..
» even perfect graph)

» Many examples of partitive (weakly partitive) families are
known in various contexts
» modules in undirected graphs, digraphs, hypergraphs
» common interval of permutations

» Various generalizations
» bimodular decomposition (module adapted to bipartite graphs)
> bipartitive families : eg. split decomposition of graphs -
O(n + a(n, m).m) circle graph recognition
» crossing families, union-difference families of sets. ..
» clique-width (cographs are clique-widht 2 graphs), rankwidth
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To learn / read more

» Habib and P. " A survey of the algorithmic aspects of modular
decomposition” in Computer Science Review 4:41-59, 2010

» F. de Montgolfier, " Décomposition modulaire de graphes,
théorie, extensions et algorithmes”, Phd Thesis (in French),
2003

» B.M. Bui Xuan, " Tree-representation of set families in graph
decompositions and efficient algorithms”, Phd Thesis, 2008

» C. Crespelle, " Représentations dynamiques de graphes”, PhD
Thesis (in French), 2007 attend I. Todinca’s talk !l!

» Common intervals and sorting by reversal:
attend M. Bouvel's talk!!!
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