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A permutation problem in voting theory

 Given a profile Π = (σ1, σ2, …, σm) of m permutations 

(i.e. linear orders) σi (1 ≤ i ≤ m) on a set X of n = |X| 

elements, how to aggregate them into a unique 
permutation which summarizes Π as accurately as 
possible?

 In voting theory (Condorcet, 1784): we want to rank n 
candidates from the rankings provided by m voters.

 

 



Example

 X = {a, b, c, d, e, f}, m = 5

voter 1: σ1 = a > b > c > f > d > e

voter 2: σ2 = a > c > f > b > d > e

voter 3: σ3 = e > d > a > f > b > c

voter 4: σ4 = b > c > d > e > f > a

voter 5: σ5 = c > f > b > e > a > d.



A combinatorial optimization problem 

 Symmetric difference distance d between R and R′ : 
d(R, R′ ) = |{(x, y) �∈ X2 with [xRy and not xR′ y] 

or [not xRy and xR′ y]}|.

 Let Σ be the set of all the permutations defined on X. 
Then, for Π = (σ1, σ2, …, σm):

Minimize ρΠ(σ) =         for σ �∈ Σ

(cf. J.-P. Barthélemy, B. Monjardet, 1981)

 

 

∑
=

σσ
m

i
id

1
),(



 d(R, R′ ) measures the number of disagreements 
between R and R′.

 ρΠ(σ) (= remoteness of σ from Π) measures the total 
number of disagreements between σ and Π.

 σ* minimizing ρΠ over Σ is called a median 
permutation (or a median linear order) of Π.

 Theorem (J.J. Bartholdi III et alii, 1989; 
O. Hudry, 1989; C. Dwork et alii, 2001): 

The computation of σ* is NP-hard. 

 

 



 σ  = (σxy)(x, y)∈�X2  with σxy  = 1 if σ  ranks x better than  y  (x  >σ  y) 
and σxy = 0 otherwise.

 mxy = m – 2|{i: 1 ≤ i ≤ m and x >σi y}| = –myx

 Then: ρΠ(σ) = C + 

with :

∀ x �∈ X, σxx = 1 (reflexivity)

∀ (x, y) �∈ X2, x ≠ y, σxy + σyx = 1 (antisymmetry)

∀ (x, y, z) ∈ �X3, σxy + σyz – σxz ≤ 1 (transitivity)

∀ (x, y) �∈ X2, σxy �∈ {0, 1} (binarity)

 

 A 0-1 linear programming problem 
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Lagrangean relaxation  

 Relaxation of the transitivity constraints:

∀ (x, y, z) �∈ X3, σxy + σyz  – σxz  ≤  1

 Lagrangean function L for σ = (σxy)(x, y)∈X2 with σxy ∈ {0, 1}, σxx 
= 1, σxy + σyx = 1, and Λ = (λxyz)(x, y, z)∈X3 with λxyz ≥ 0:

L(σ, Λ) = ρΠ(σ) + 
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Lagrangean relaxation (end)

 Dual function for Λ = (λxyz)(x, y, z)∈X3 with λxyz ≥ 0:

D(Λ) = min{L(σ, Λ) with σ ∈ A}

with A = {reflexive and antisymmetric relations defined on X}.

 Dual problem: maximize D(Λ) for Λ ≥ 0.

 The maximum of D gives a lower bound of the minimum of ρΠ.

 Computation of D(Λ) for a given Λ:

if axy ≥ 0, set σxy = 0, and σxy = 1 otherwise.

 Resolution of the dual problem by subgradient methods.



The components of the BB algorithm 

 Initial bound: found by a metaheuristic (a self-tuned noising method; I. 
Charon and O. Hudry, 1993, 2009)  

 Evaluation function: provided by the Lagrangean relaxation.

 Branching rule (J.-P. Barthélemy, A. Guénoche, O. Hudry, 1989; 
I. Charon, A. Guénoche, O. Hudry, F. Woirgard, 1996):

The root of the BB-tree contains all the permutations defined on X.
A node of the BB-tree contains the permutations sharing a given beginning 

section S (i.e. a permutation of a subset of X): 
S(xj1, xj2, …, xjp) = xj1 >σ xj2 >σ … >σ xjp.

The branching principle consists in expanding this beginning section:
S(xj1, xj2, …, xjp, x) = xj1 >σ xj2 >σ … xjp >σ x 

with x ∉{xj1, xj2, …, xjp}.



Shape of the BB-tree
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Other components to prune the BB-tree

 Hamiltonian permutations.

* We may summarize a profile Π of permutations by a tournament 
T (weighted by –mxy > 0): there is an arc (x, y) if a majority of 
voters prefer x to y (we assume that there is no tie).

* We say that a permutation σ is Hamiltonian if it induces a 
Hamiltonian path in T.

* Theorem (R. Remage and W.A. Thompson, 1966): a median 
permutation is Hamiltonian. 

→   xj1 >σ xj2 >σ … >σ xjp is expanded into xj1 >σ … >σ xjp >σ x only 
if a majority of voters prefer xjp to x.



Example
 X = {a, b, c, d, e, f}

σ1 = a > b > c > f > d > e
σ2 = a > c > f > b > d > e
σ3 = e > d > a > f > b > c
σ4 = b > c > d > e > f > a
σ5 = c > f > b > e > a > d.

Here, a > c > f > b > d > e
is a median permutation and 
induces a Hamiltonian path.
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 We compute the variation of ρΠ when, from a permutation σ 
beginning with S = xj1 >σ xj2 >σ … >σ xjp, we take an interval 
xjh >σ … >σ xjp (1 ≤ h ≤ p) and we shift it at the end of σ, 
after the elements of X – S (= OS = « out of section »): 

σ = xj1 >σ xj2 >σ … xjh–1 >σ xjh >σ … >σ xjp >σ (OS)

becomes

σ′ = xj1 >σ′ xj2 >σ′ … xjh–1 >σ′ (OS) >σ′ xjh >σ′ … >σ′ xjp.

If ρΠ decreases, we do not keep the node associated with S.

OSmoves will count this kind of cuts.   

Other components to prune the BB-tree



 When we deal with a new beginning section 

S = xj1 >σ xj2 >σ … xjh–1 >σ xjh >σ … >σ xjp >σ x,

we consider the beginning sections that we can get by moving, 
inside S, an “interval” of S including x, i.e., the beginning 
sections with the following shape: 

xjh >σ′ … >σ′ xjp >σ′ x >σ′ xj1 >σ′ xj2 >σ′ … xjh–1.

If ρΠ decreases, we do not keep the node associated with S.

Smoves will count this kind of cuts.   

Other components to prune the BB-tree (end)



An experimental result on the efficiency of 
the branch and bound components

 Numbers of cuts for an instance on 39 candidates
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CPU times for m ∈ {3, 4, 100, 101}

 CPU times in seconds (Rk: order = n).
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Number of median permutations 
versus number of Hamiltonian permutations

 Let M(n) and H(n) denote respectively the maximum number of 
median permutations or of Hamiltonian permutations for 
instances on n candidates.

 If n is even with n ≥ 2: M(n) = n!

 If n is odd: M(n) ≤ H(n). 

 Theorem (N. Alon, 1990): H(n) ≤ (c × n1.5 × n!)/2n where c is a 
constant.

 Theorem (I. Charon, O. Hudry, 2000): for n = 3k, 

30.75(n – 1)/n2 ≤ M(n).



Thank you for your attention!
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