A branch and bound method

to compute a median permutation

Irène Charon, Olivier Hudry

Télécom ParisTech
olivier.hudry@telecom-paristech.fr

Algorithms \& Permutations

A permutation problem in voting theory

- Given a profile $\Pi=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right)$ of m permutations
(i.e. linear orders) $\sigma_{i}(1 \leq i \leq m)$ on a set X of $n=|X|$ elements, how to aggregate them into a unique permutation which summarizes Π as accurately as possible?
- In voting theory (Condorcet, 1784): we want to rank n candidates from the rankings provided by m voters.

Example

$$
X=\{a, b, c, d, e, f\}, m=5
$$

$$
\text { voter 1: } \sigma_{1}=a>b>c>f>d>e
$$

$$
\text { voter 2: } \sigma_{2}=a>c>f>b>d>e
$$

$$
\text { voter 3: } \sigma_{3}=e>d>a>f>b>c
$$

voter 4: $\sigma_{4}=b>c>d>e>f>a$
voter 5: $\sigma_{5}=c>f>b>e>a>d$.

A combinatorial optimization problem

- Symmetric difference distance d between R and R^{\prime} : $d\left(R, R^{\prime}\right)=\mid\left\{(x, y) \notin X^{2}\right.$ with $\left[x R y\right.$ and not $\left.x R^{\prime} y\right]$ or $\left[\operatorname{not} x R y\right.$ and $\left.\left.x R^{\prime} y\right]\right\} \mid$.
- Let Σ be the set of all the permutations defined on X.

Then, for $\Pi=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right)$:
Minimize $\rho_{\Pi}(\sigma)=\sum_{i=1}^{m} d\left(\sigma, \sigma_{i}\right)$ for $\sigma \in E$
(cf. J.-P. Barthélemy, B. Monjardet, 1981)

- $d\left(R, R^{\prime}\right)$ measures the number of disagreements between R and R^{\prime}.
- $\rho_{\Pi}(\sigma)(=$ remoteness of σ from Π) measures the total number of disagreements between σ and Π.
- σ^{*} minimizing ρ_{Π} over Σ is called a median permutation (or a median linear order) of Π.
- Theorem (J.J. Bartholdi III et alii, 1989;
O. Hudry, 1989; C. Dwork et alii, 2001): The computation of σ^{*} is NP-hard.

A 0-1 linear programming problem

- $\sigma=\left(\sigma_{x y}\right)_{(x, y) \in \mathbb{X} \overrightarrow{2}}$ with $\sigma_{x y}=1$ if σ ranks x better than $y\left(x>_{\sigma} y\right)$ and $\sigma_{x y}=0$ otherwise.
- $m_{x y}=m-2 \mid\left\{i: 1 \leq i \leq m\right.$ and $\left.x>_{\sigma_{i}} y\right\} \mid=-m_{y x}$
- Then: $\rho_{\Pi}(\sigma)=C+\sum m_{x y} \sigma x y$
with :

$$
(x, y) \in X^{2}
$$

$$
\begin{array}{ll}
\forall x \in X, \sigma_{x x}=1 & \text { (reflexivity) } \\
\forall(x, y) \in X^{2}, x \neq y, \sigma_{x y}+\sigma_{y x}=1 & \text { (antisymmetry) } \\
\forall(x, y, z) \in \mathbb{K}^{3}, \sigma_{x y}+\sigma_{y z}-\sigma_{x z} \leq 1 & \text { (transitivity) } \\
\forall(x, y) \in X^{2}, \sigma_{x y} \in\{0,1\} & \text { (binarity) }
\end{array}
$$

Lagrangean relaxation

- Relaxation of the transitivity constraints:

$$
\forall(x, y, z) \in X^{3}, \sigma_{x y}+\sigma_{y z}-\sigma_{x z} \leq 1
$$

- Lagrangean function L for $\sigma=\left(\sigma_{x y}\right)_{(x, y) \in X^{2}}$ with $\sigma_{x y} \in\{0,1\}, \sigma_{x x}$

$$
=1, \sigma_{x y}+\sigma_{y x}=1, \text { and } \Lambda=\left(\lambda_{x y z}\right)_{(x, y, z) \in X^{3}} \text { with } \lambda_{x y z} \geq 0:
$$

$$
L(\sigma, \Lambda)=\rho_{\Pi}(\sigma)+\sum_{(x, y, z) \in X^{3}} \lambda_{x y z}\left(\sigma_{x y}+\sigma_{y z}-\sigma_{x z}-1\right)
$$

with

$$
a_{x y}(\Lambda)=m_{x y}+\sum_{z \in X}\left(\lambda_{x y z}+\lambda_{z x y}-\lambda_{x z y}\right)
$$

Lagrangean relaxation (end)

- Dual function for $\Lambda=\left(\lambda_{x y z}\right)_{(x, y, z) \in X^{3}}$ with $\lambda_{x y z} \geq 0$:

$$
D(\Lambda)=\min \{L(\sigma, \Lambda) \text { with } \sigma \in \mathbb{A}\}
$$

with $\mathbf{A}=\{$ reflexive and antisymmetric relations defined on $X\}$.

- Dual problem: maximize $D(\Lambda)$ for $\Lambda \geq 0$.
- The maximum of D gives a lower bound of the minimum of ρ_{Π}.
- Computation of $D(\Lambda)$ for a given Λ :

$$
\text { if } a_{x y} \geq 0 \text {, set } \sigma_{x y}=0 \text {, and } \sigma_{x y}=1 \text { otherwise. }
$$

- Resolution of the dual problem by subgradient methods.

The components of the BB algorithm

- Initial bound: found by a metaheuristic (a self-tuned noising method; I.

Charon and O. Hudry, 1993, 2009)

- Evaluation function: provided by the Lagrangean relaxation.
- Branching rule (J.-P. Barthélemy, A. Guénoche, O. Hudry, 1989;
I. Charon, A. Guénoche, O. Hudry, F. Woirgard, 1996):

The root of the BB-tree contains all the permutations defined on X.
A node of the BB-tree contains the permutations sharing a given beginning section S (i.e. a permutation of a subset of X):

$$
S\left(x_{j 1}, x_{j 2}, \ldots, x_{j p}\right)=x_{j 1}>_{\sigma} x_{j 2}>_{\sigma} \ldots>_{\sigma} x_{j p}
$$

The branching principle consists in expanding this beginning section:

$$
S\left(x_{j 1}, x_{j 2}, \ldots, x_{j p}, x\right)=x_{j 1}>_{\sigma} x_{j 2}>_{\sigma} \ldots x_{j p}>_{\sigma} x
$$

with $x \notin\left\{x_{j 1}, x_{j 2}, \ldots, x_{j p}\right\}$.

Shape of the BB-tree

Other components to prune the BB-tree

Hamiltonian permutations.

* We may summarize a profile Π of permutations by a tournament T (weighted by $-m_{x y}>0$): there is an $\operatorname{arc}(x, y)$ if a majority of voters prefer x to y (we assume that there is no tie).
* We say that a permutation σ is Hamiltonian if it induces a Hamiltonian path in T.
* Theorem (R. Remage and W.A. Thompson, 1966): a median permutation is Hamiltonian.
$\rightarrow x_{j 1}>_{\sigma} x_{j 2}>_{\sigma} \ldots>_{\sigma} x_{j p}$ is expanded into $x_{j 1}>_{\sigma} \ldots>_{\sigma} x_{j p}>_{\sigma} x$ only if a majority of voters prefer $x_{j p}$ to x.

Example

$$
\quad X=\{a, b, c, d, e, f\}
$$

$$
\begin{aligned}
& \sigma_{1}=a>b>c>f>d>e \\
& \sigma_{2}=a>c>f>b>d>e \\
& \sigma_{3}=e>d>a>f>b>c \\
& \sigma_{4}=b>c>d>e>f>a \\
& \sigma_{5}=c>f>b>e>a>d
\end{aligned}
$$

Here, $a>c>f>b>d>e$
 is a median permutation and induces a Hamiltonian path.

ParisTech

Other components to prune the BB -tree

We compute the variation of ρ_{Π} when, from a permutation σ beginning with $S=x_{j 1}>_{\sigma} x_{j 2}>_{\sigma} \ldots>_{\sigma} x_{j p}$, we take an interval $x_{j h}>_{\sigma} \ldots>_{\sigma} x_{j p}(1 \leq h \leq p)$ and we shift it at the end of σ, after the elements of $X-S(=O S=$ « out of section »):

$$
\sigma=x_{j 1}>_{\sigma} x_{j 2}>_{\sigma} \ldots x_{j h-1}>_{\sigma} x_{j h}>_{\sigma} \ldots>_{\sigma} x_{j p}>_{\sigma}(O S)
$$

becomes

$$
\sigma^{\prime}=x_{j 1}>_{\sigma^{\prime}} x_{j 2}>_{\sigma^{\prime}} \ldots x_{j h-1}>_{\sigma^{\prime}}(O S)>_{\sigma^{\prime}} x_{j h}>_{\sigma^{\prime}} \ldots>_{\sigma^{\prime}} x_{j p} .
$$

If ρ_{Π} decreases, we do not keep the node associated with S.
OSmoves will count this kind of cuts.

Other components to prune the BB-tree (end)

When we deal with a new beginning section

$$
S=x_{j 1}>_{\sigma} x_{j 2}>_{\sigma} \ldots x_{j h-1}>_{\sigma} x_{j h}>_{\sigma} \ldots>_{\sigma} x_{j p}>_{\sigma} x
$$

we consider the beginning sections that we can get by moving, inside S, an "interval" of S including x, i.e., the beginning sections with the following shape:

$$
x_{j h}>_{\sigma^{\prime}} \ldots>_{\sigma^{\prime}} x_{j p}>_{\sigma^{\prime}} x>_{\sigma^{\prime}} x_{j 1}>_{\sigma^{\prime}} x_{j 2}>_{\sigma^{\prime}} \ldots x_{j h-1}
$$

If $\rho_{п}$ decreases, we do not keep the node associated with S.
Smoves will count this kind of cuts.

An experimental result on the efficiency of the branch and bound components

- Numbers of cuts for an instance on 39 candidates

Paristech

CPU times for $m \in\{3,4,100,101\}$

- CPU times in seconds (Rk: order $=n$).

Number of median permutations

versus number of Hamiltonian permutations

- Let $M(n)$ and $H(n)$ denote respectively the maximum number of median permutations or of Hamiltonian permutations for instances on n candidates.
- If n is even with $n \geq 2: M(n)=n$!
- If n is odd: $M(n) \leq H(n)$.
- Theorem (N. Alon, 1990): $H(n) \leq\left(c \times n^{1.5} \times n!\right) / 2^{n}$ where c is a constant.
- Theorem (I. Charon, O. Hudry, 2000): for $n=3^{k}$,

$$
3^{0.75(n-1)} / n^{2} \leq M(n) .
$$

Thank you for your attention!

 ©