A branch and bound method to compute a median permutation

Irène Charon, Olivier Hudry

Télécom ParisTech

olivier.hudry@telecom-paristech.fr

Algorithms & 2012
Permutations

A permutation problem in voting theory

- Given a profile $\Pi = (\sigma_1, \sigma_2, ..., \sigma_m)$ of m permutations (i.e. linear orders) σ_i $(1 \le i \le m)$ on a set X of n = |X| elements, how to aggregate them into a unique permutation which summarizes Π as accurately as possible?
- In voting theory (Condorcet, 1784): we want to rank *n* candidates from the rankings provided by *m* voters.

Example

•
$$X = \{a, b, c, d, e, f\}, m = 5$$

voter 1:
$$\sigma_1 = a > b > c > f > d > e$$

voter 2:
$$\sigma_2 = a > c > f > b > d > e$$

voter 3:
$$\sigma_3 = e > d > a > f > b > c$$

voter 4:
$$\sigma_4 = b > c > d > e > f > a$$

voter 5:
$$\sigma_5 = c > f > b > e > a > d$$
.

A combinatorial optimization problem

- Symmetric difference distance d between R and R': $d(R, R') = |\{(x, y) \times X^2 \text{ with } [xRy \text{ and not } xR'y] \}|$ or $[\text{not } xRy \text{ and } xR'y]\}|$.
- Let Σ be the set of all the permutations defined on X. Then, for $\Pi = (\sigma_1, \sigma_2, ..., \sigma_m)$:

Minimize
$$\rho_{\Pi}(\sigma) = \sum_{i=1}^{m} d(\sigma, \sigma_i)$$
 for $\sigma \in \Sigma$

(cf. J.-P. Barthélemy, B. Monjardet, 1981)

- d(R, R') measures the number of disagreements between R and R'.
- $\rho_{\Pi}(\sigma)$ (= remoteness of σ from Π) measures the total number of disagreements between σ and Π .
- σ^* minimizing ρ_{Π} over Σ is called a *median permutation* (or a *median linear order*) of Π .
- Theorem (J.J. Bartholdi III *et alii*, 1989;
 O. Hudry, 1989; C. Dwork *et alii*, 2001):
 The computation of σ* is NP-hard.

A 0-1 linear programming problem

- $\sigma = (\sigma_{xy})_{(x, y) \in \mathbb{R}^2}$ with $\sigma_{xy} = 1$ if σ ranks x better than y ($x >_{\sigma} y$) and $\sigma_{xy} = 0$ otherwise.
- $m_{xy} = m 2|\{i: 1 \le i \le m \text{ and } x >_{\sigma_i} y\}| = -m_{yx}$
- Then: $\rho_{\Pi}(\sigma) = C + \sum_{i=1}^{\infty} m_{xy} \sigma_{xy}$

with:

$$\forall x \in X, \sigma_{xx} = 1$$
 (reflexivity)

$$\forall (x, y) \in \mathbb{Z}^2, x \neq y, \sigma_{xy} + \sigma_{yx} = 1$$
 (antisymmetry)

$$\forall (x, y, z) \in \mathcal{X}^3, \sigma_{xy} + \sigma_{yz} - \sigma_{xz} \leq 1 \text{ (transitivity)}$$

$$\forall (x, y) \in X^2, \sigma_{xy} \in \{0, 1\}$$
 (binarity)

Lagrangean relaxation

Relaxation of the transitivity constraints:

$$\forall (x, y, z) \in X^3, \sigma_{xy} + \sigma_{yz} - \sigma_{xz} \leq 1$$

Lagrangean function L for $\sigma = (\sigma_{xy})_{(x, y) \in X^2}$ with $\sigma_{xy} \in \{0, 1\}$, $\sigma_{xx} = 1$, $\sigma_{xy} + \sigma_{yx} = 1$, and $\Lambda = (\lambda_{xyz})_{(x, y, z) \in X^3}$ with $\lambda_{xyz} \ge 0$: $L(\sigma, \Lambda) = \rho_{\Pi}(\sigma) + \sum_{(x, y, z) \in X^3} \lambda_{xyz} (\sigma_{xy} + \sigma_{yz} - \sigma_{xz} - 1)$

$$\sum_{x,y} a_{xy}(\Lambda) \circ x_{y} - \sum_{x,y} \lambda_{xyz}$$

$$= C + \chi_{x,y} \circ X^{2} \qquad (x,y,z) \in X^{3}$$

with

$$a_{xy}(\Lambda) = m_{xy} + \sum_{z \in X} (\lambda_{xyz} + \lambda_{zxy} - \lambda_{xzy})$$

Lagrangean relaxation (end)

• Dual function for $\Lambda = (\lambda_{xyz})_{(x, y, z) \in X^3}$ with $\lambda_{xyz} \ge 0$:

$$D(\Lambda) = \min\{L(\sigma, \Lambda) \text{ with } \sigma \in A\}$$

with $A = \{ \text{reflexive and antisymmetric relations defined on } X \}.$

- Dual problem: maximize $D(\Lambda)$ for $\Lambda \ge 0$.
- The maximum of D gives a lower bound of the minimum of ρ_{Π} .
- Computation of $D(\Lambda)$ for a given Λ :

if
$$a_{xy} \ge 0$$
, set $\sigma_{xy} = 0$, and $\sigma_{xy} = 1$ otherwise.

Resolution of the dual problem by subgradient methods.

The components of the BB algorithm

- Initial bound: found by a metaheuristic (a self-tuned noising method; I. Charon and O. Hudry, 1993, 2009)
- Evaluation function: provided by the Lagrangean relaxation.
- Branching rule (J.-P. Barthélemy, A. Guénoche, O. Hudry, 1989;
 I. Charon, A. Guénoche, O. Hudry, F. Woirgard, 1996):

The root of the BB-tree contains all the permutations defined on X.

A node of the BB-tree contains the permutations sharing a given beginning section S (i.e. a permutation of a subset of X):

$$S(x_{j1}, x_{j2}, ..., x_{jp}) = x_{j1} >_{\sigma} x_{j2} >_{\sigma} ... >_{\sigma} x_{jp}.$$

The branching principle consists in expanding this beginning section:

$$S(x_{j1}, x_{j2}, ..., x_{jp}, x) = x_{j1} >_{\sigma} x_{j2} >_{\sigma} ... x_{jp} >_{\sigma} x$$

with $x \notin \{x_{j1}, x_{j2}, ..., x_{jp}\}$.

Shape of the BB-tree

Other components to prune the BB-tree

- Hamiltonian permutations.
- * We may summarize a profile Π of permutations by a tournament T (weighted by $-m_{xy} > 0$): there is an arc (x, y) if a majority of voters prefer x to y (we assume that there is no tie).
- * We say that a *permutation* σ *is Hamiltonian* if it induces a Hamiltonian path in T.
- * Theorem (R. Remage and W.A. Thompson, 1966): a median permutation is Hamiltonian.
- $\rightarrow x_{j1} >_{\sigma} x_{j2} >_{\sigma} \dots >_{\sigma} x_{jp}$ is expanded into $x_{j1} >_{\sigma} \dots >_{\sigma} x_{jp} >_{\sigma} x$ only if a majority of voters prefer x_{jp} to x.

Example

•
$$X = \{a, b, c, d, e, f\}$$

$$\sigma_1 = a > b > c > f > d > e$$
 $\sigma_2 = a > c > f > b > d > e$
 $\sigma_3 = e > d > a > f > b > c$
 $\sigma_4 = b > c > d > e > f > a$
 $\sigma_5 = c > f > b > e > a > d$

Here, a > c > f > b > d > eis a median permutation and induces a Hamiltonian path.

Other components to prune the BB-tree

• We compute the variation of ρ_{Π} when, from a permutation σ beginning with $S = x_{j1} >_{\sigma} x_{j2} >_{\sigma} \dots >_{\sigma} x_{jp}$, we take an interval $x_{jh} >_{\sigma} \dots >_{\sigma} x_{jp}$ ($1 \le h \le p$) and we shift it at the end of σ , after the elements of X - S (= OS = « out of section »):

$$\sigma = x_{j1} >_{\sigma} x_{j2} >_{\sigma} \dots x_{jh-1} >_{\sigma} x_{jh} >_{\sigma} \dots >_{\sigma} x_{jp} >_{\sigma} (OS)$$

becomes

$$\mathbf{\sigma'} = x_{j1} >_{\mathbf{\sigma'}} x_{j2} >_{\mathbf{\sigma'}} \dots x_{jh-1} >_{\mathbf{\sigma'}} (OS) >_{\mathbf{\sigma'}} x_{jh} >_{\mathbf{\sigma'}} \dots >_{\mathbf{\sigma'}} x_{jp}.$$

If ρ_{Π} decreases, we do not keep the node associated with S.

OSmoves will count this kind of cuts.

Other components to prune the BB-tree (end)

When we deal with a new beginning section

$$S = \chi_{j1} >_{\sigma} \chi_{j2} >_{\sigma} \dots \chi_{jh-1} >_{\sigma} \chi_{jh} >_{\sigma} \dots >_{\sigma} \chi_{jp} >_{\sigma} \chi_{jp}$$

we consider the beginning sections that we can get by moving, inside S, an "interval" of S including x, i.e., the beginning sections with the following shape:

$$\chi_{jh} >_{\sigma'} \ldots >_{\sigma'} \chi_{jp} >_{\sigma'} \chi >_{\sigma'} \chi_{j1} >_{\sigma'} \chi_{j2} >_{\sigma'} \ldots \chi_{jh-1}.$$

If ρ_{Π} decreases, we do not keep the node associated with S.

Smoves will count this kind of cuts.

An experimental result on the efficiency of the branch and bound components

Numbers of cuts for an instance on 39 candidates

CPU times for $m \in \{3, 4, 100, 101\}$

• CPU times in seconds (Rk: order = n).

Number of median permutations versus number of Hamiltonian permutations

- Let M(n) and H(n) denote respectively the maximum number of median permutations or of Hamiltonian permutations for instances on n candidates.
- If *n* is even with $n \ge 2$: M(n) = n!
- If *n* is odd: $M(n) \le H(n)$.
- Theorem (N. Alon, 1990): $H(n) \le (c \times n^{1.5} \times n!)/2^n$ where c is a constant.
- Theorem (I. Charon, O. Hudry, 2000): for $n = 3^k$,

$$3^{0.75(n-1)}/n^2 \le M(n)$$
.

Thank you for your attention!

