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EXAMPLE: SELECT A PLACE FOR PHD STUDY
Choose between the following places:

• TU Berlin (B),
• MIT (M),
• Oxford University (O),
• Tsinghua University (T),
• ETH Zurich (Z).

Selection based on various criteria, leading to different rankings:

Criterion Ranking

Parameterized Complexity B � O � M � T � Z
Salary Z � O � M � T � B
Practicing English M � O � B � Z � T
Cultural activities B � T � Z � M � O

Goal: Aggregate the given rankings (that is, permutations) into a
median ranking.
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PAIRWISE COMPARISONS AND VOTING
Criterion Ranking

Parameterized Complexity B � O � M � T � Z
Salary Z � O � M � T � B
Practicing English M � O � B � Z � T
Cultural activities B � T � Z � M � O

Condorcet and Kemeny:

• Condorcet Winner: A candidate who wins against all other
candidates in pairwise comparisons. A Condorcet winner does
not always exist, but is unique if it exists!

• Kemeny: Determine consensus ranking that minimizes the total
sum of the number of “inversions” to the given rankings...

Always yields a Condorcet winner if it exists.
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ON CONDORCET WINNER DETERMINATION
Criterion Ranking
Parameterized Complexity B � O � M � T � Z
Salary Z � O � M � T � B
Practicing English M � O � B � Z � T
Cultural activities B � T � Z � M � O

Pairs of candidates # votes: x � y # votes: y � x
(x ,y) = (B, O) 2 2
(x ,y) = (B, M) 2 2
(x ,y) = (B, T) 3 1
(x ,y) = (B, Z) 3 1
(x ,y) = (O, M) 2 2
(x ,y) = (O, T) 3 1
(x ,y) = (O, Z) 2 2
(x ,y) = (M, T) 3 1
(x ,y) = (M, Z) 2 2
(x ,y) = (T, Z) 2 2

Marie Jean Antoine

Nicolas Caritat,

Marquis de

Condorcet 1743-1794

No Condorcet winner!
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WINNER DETERMINATION IN KEMENY VOTING
Criterion Ranking
Parameterized Complexity B � O � M � T � Z
Salary Z � O � M � T � B
Practicing English M � O � B � Z � T
Cultural activities B � T � Z � M � O

Determine consensus ranking that minimizes
the total sum of the number of inversions to the
given rankings...

 Two (out of 18) optimal consensus ranking
with “score” 16:

• B �O �M � Z � T
• O �M � B � T � Z

John George

Kemeny, 1926-1992.
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KEMENY SCORE: KT-DISTANCE

Kendall Tau distance (between two votes v and w)

KT-dist(v ,w) = ∑
{c,d}⊆C

dv ,w (c,d),

where dv ,w (c,d) =

{
0 if v and w rank c and d in the same order,
1 otherwise.

Example:
v : a > b > c
w : b > c > a

KT-dist(v ,w) = dv ,w (a,b) + dv ,w (a,c) + dv ,w (b,c)
= 1 + 1 + 0
= 2
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CENTRAL PROBLEM: RANK AGGREGATION

Kemeny Score (Rank Aggregation):

Input: An set of rankings over the same candidate set and a positive
integer k .
Question: Is there a ranking r with Kemeny score at most k , that is,
the sum of KT-distances of r to all input rankings is at most k?

Applications:

• Ranking of web sites (using meta search engines)
• Sport competitions
• Databases
• Bioinformatics
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SOME RESULTS FOR KEMENY SCORE

Complexity:
• NP-complete (even for four votes)

Bartholdi, Tovey and Tick, Social Choice and Welfare 1989,

Dwork, Kumar, Naor, and Sivakumar, WWW 2001

Algorithms:
• factor 8/5-approximation, randomized: factor 11/7

van Zuylen and Williamson, WAOA 2007,

Ailon, Charikar, and Newman, JACM 2008

• PTAS
Kenyon-Mathieu and Schudy, STOC 2007

• exact algorithms, heuristics, branch and bound, and experiments
Davenport and Kalagnanam, AAAI 2004,

Conitzer, Davenport, and Kalagnanam, AAAI 2006,

Schalekamp and van Zuylen, ALENEX 2009,

Ali and Meilă, Mathematical Social Sciences, 2012
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THE LEITMOTIF OF PARAMETERIZED ALGORITHMICS
Formally: “Two-dimensional analysis of complexity”:

NP-hard problem X : Input size n and problem parameter k .

If there is an algorithm solving X in time

f (k) ·nO(1),

then X is called fixed-parameter tractable (FPT):

n
k

instead of
k

n

Rolf Niedermeier, TU Berlin () Rank Aggregation and Kemeny Voting 10/27



THE LEITMOTIF OF PARAMETERIZED ALGORITHMICS
Formally: “Two-dimensional analysis of complexity”:

NP-hard problem X : Input size n and problem parameter k .

If there is an algorithm solving X in time

f (k) ·nO(1),

then X is called fixed-parameter tractable (FPT):

n
k

instead of
k

n

Rolf Niedermeier, TU Berlin () Rank Aggregation and Kemeny Voting 10/27



PARAMETERIZED COMPLEXITY HIERARCHY

Completeness program developed by Downey and Fellows (1999).

FPT ⊆

Presumably fixed-parameter intractable︷ ︸︸ ︷
W[1] ⊆ W[2] ⊆ . . . ⊆ W[P] ⊆ XP

“Function battle” concerning allowed running time:

FPT: f (k) ·nO(1) vs XP: f (k) ·ng(k)

Assumption: FPT 6= W[1]

For instance, if W[1]=FPT then 3-SAT for a Boolean formula F with
n variables can be solved in 2o(n) · |F |O(1) time.
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PARAMETERIZED COMPLEXITY OF KEMENY SCORE

parameter compl. comment
number of votes n NP-c 1for n = 4
number of candidates m FPT 2O∗(2m)

Kemeny score k FPT 3O∗(2O(
√

k))
max. range of cand. pos. rm FPT 2O∗(32rm )
avg. range of cand. pos. ra NP-c 2for ra ≥ 2
avg. KT-distance da FPT 4O∗(5.823da ), 3O∗(2O(

√
da )

partial kernel: 5 16
3 ·da candidates

max. KT-distance dm FPT 4O∗(4.829dm ), 3O∗(2O(
√

dm )

1 Dwork, Kumar, Naor, Sivakumar, WWW 2001
2 Betzler, Fellows, Guo, N., and Rosamond, TCS 2009
3 Karpinski and Schudy, ISAAC 2010
4 Simjour, IWPEC 2009
5 Betzler, Guo, Komusiewicz, and N., JCSS 2011;
Betzler, Bredereck, and N., Manuscript of long version of IPEC 2010

Rolf Niedermeier, TU Berlin () Rank Aggregation and Kemeny Voting 12/27



PARTIAL KERNELIZATION

View Kemeny Score as a two-dimensional problem with dimensions
“number n of votes” and “number m of candidates.

Basic idea:
Shrink instance into an equivalent smaller instance

• by polynomial-time executable data reduction rules such that
• the size of one “problem dimension” (that is, the number m of

candidates here) only depends on the parameter.

Recall:
• Kemeny Score is NP-hard for n = 4 and
• Kemeny Score is fixed-parameter tractable with respect to m.

(O∗(2m) dynamic programming algorithm.)
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PARTIAL KERNEL FOR KEMENY SCORE
Idea based on 3/4-majority relations:

• Find candidate pairs that are in the same relative order in at
least 3/4 of the votes.

• Their relative order in every Kemeny consensus is then fixed
analogously.

Definition
A candidate c is non-dirty if for every other candidate c′ either
c′ ≥3/4 c or c ≥3/4 c′. Otherwise c is dirty.

Lemma
For a non-dirty candidate c and candidate c′ ∈ C \{c}:
If c ≥3/4 c′, then c > c′ in every Kemeny consensus.
If c′ ≥3/4 c, then c′ > c in every Kemeny consensus.

Data Reduction Rule
If there is a non-dirty candidate c, then delete c and partition the
instance into two subinstances accordingly.

Rolf Niedermeier, TU Berlin () Rank Aggregation and Kemeny Voting 14/27



PARTIAL KERNEL FOR KEMENY SCORE
Idea based on 3/4-majority relations:

• Find candidate pairs that are in the same relative order in at
least 3/4 of the votes.

• Their relative order in every Kemeny consensus is then fixed
analogously.

Definition
A candidate c is non-dirty if for every other candidate c′ either
c′ ≥3/4 c or c ≥3/4 c′. Otherwise c is dirty.

Lemma
For a non-dirty candidate c and candidate c′ ∈ C \{c}:
If c ≥3/4 c′, then c > c′ in every Kemeny consensus.
If c′ ≥3/4 c, then c′ > c in every Kemeny consensus.

Data Reduction Rule
If there is a non-dirty candidate c, then delete c and partition the
instance into two subinstances accordingly.

Rolf Niedermeier, TU Berlin () Rank Aggregation and Kemeny Voting 14/27



PARTIAL KERNEL FOR KEMENY SCORE
Idea based on 3/4-majority relations:

• Find candidate pairs that are in the same relative order in at
least 3/4 of the votes.

• Their relative order in every Kemeny consensus is then fixed
analogously.

Definition
A candidate c is non-dirty if for every other candidate c′ either
c′ ≥3/4 c or c ≥3/4 c′. Otherwise c is dirty.

Lemma
For a non-dirty candidate c and candidate c′ ∈ C \{c}:
If c ≥3/4 c′, then c > c′ in every Kemeny consensus.
If c′ ≥3/4 c, then c′ > c in every Kemeny consensus.

Data Reduction Rule
If there is a non-dirty candidate c, then delete c and partition the
instance into two subinstances accordingly.

Rolf Niedermeier, TU Berlin () Rank Aggregation and Kemeny Voting 14/27



PARTIAL KERNEL FOR KEMENY SCORE
Idea based on 3/4-majority relations:

• Find candidate pairs that are in the same relative order in at
least 3/4 of the votes.

• Their relative order in every Kemeny consensus is then fixed
analogously.

Definition
A candidate c is non-dirty if for every other candidate c′ either
c′ ≥3/4 c or c ≥3/4 c′. Otherwise c is dirty.

Lemma
For a non-dirty candidate c and candidate c′ ∈ C \{c}:
If c ≥3/4 c′, then c > c′ in every Kemeny consensus.
If c′ ≥3/4 c, then c′ > c in every Kemeny consensus.

Data Reduction Rule
If there is a non-dirty candidate c, then delete c and partition the
instance into two subinstances accordingly.

Rolf Niedermeier, TU Berlin () Rank Aggregation and Kemeny Voting 14/27



REDUCTION RULES USING “MAJORITY RELATIONS”

a1 > a2 > a3 > c > b1 > b2 ai ≥3/4 c and c ≥3/4 bi

a3 > a2 > c > a1 > b2 > b1 ⇒
a1 > c > a2 > b2 > b1 > a3 in every Kemeny consensus:

a2 > a3 > a1 > b1 > b2 > c {a1,a2,a3} > c > {b1,b2}

a1 > a2 > a3 c b1 > b2

a3 > a2 > a1 c b2 > b1

a1 > a2 > a3 c b2 > b1

a2 > a3 > a1 c b1 > b2

Further (extended) rule:
Data reduction based on non-dirty sets of candidates. . .
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REDUCTION RULES USING “MAJORITY RELATIONS”

a1 > a2 > a3 > c1 > c2 > b1 > b2

a3 > a2 > c2 > c1 > a1 > b2 > b1 ai ≥3/4 cj and cj ≥3/4 bi

a1 > c1 > c2 > a2 > b2 > b1 > a3 ⇒
a2 > a3 > a1 > b1 > b2 > c2 > c1 in every Kemeny consensus:

{a1,a2,a3} > {c1,c2} > {b1,b2}

Three subinstances (one for the non-dirty set):
a1 > a2 > a3 c1 > c2 b1 > b2

a3 > a2 > a1 c2 > c1 b2 > b1

a1 > a2 > a3 c1 > c2 b2 > b1

a2 > a3 > a1 c2 > c1 b1 > b2

Such sets can be found in polynomial time.
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AVERAGE KT-DISTANCE AS PARAMETER FOR
KEMENY SCORE

Parameter: average KT-distance between the input votes

da :=
2

n(n−1)
· ∑
{u,v}⊆V

KT-dist(u,v).

Theorem
A Kemeny Score instance with average KT-distance da can be
reduced in polynomial time to an equivalent instance with less
than 16

3 ·da candidates.

In parameterized terms: Kemeny Score yields a partial kernel with
16
3 ·da candidates.
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WHAT ABOUT OTHER MAJORITIES, WHY 3/4?

Lemma
For a non-dirty candidate c and candidate c′ ∈ C \{c}:
If c ≥3/4 c′, then c > c′ in every Kemeny consensus.
If c′ ≥3/4 c, then c′ > c in every Kemeny consensus.

Observation
Lemma does not hold when we replace 3/4 by any smaller value. We
can construct counterexamples where lemma does not hold.

As to >2/3-majorities...:
• Kemeny Score is polynomial-time solvable if there are no dirty

candidates;
• quadratic partial kernel with respect to the number of dirty

candidates;
• open: is there a partial linear kernel with respect to the number

of dirty candidates?

Rolf Niedermeier, TU Berlin () Rank Aggregation and Kemeny Voting 18/27



WHAT ABOUT OTHER MAJORITIES, WHY 3/4?

Lemma
For a non-dirty candidate c and candidate c′ ∈ C \{c}:
If c ≥3/4 c′, then c > c′ in every Kemeny consensus.
If c′ ≥3/4 c, then c′ > c in every Kemeny consensus.

Observation
Lemma does not hold when we replace 3/4 by any smaller value. We
can construct counterexamples where lemma does not hold.

As to >2/3-majorities...:
• Kemeny Score is polynomial-time solvable if there are no dirty

candidates;

• quadratic partial kernel with respect to the number of dirty
candidates;

• open: is there a partial linear kernel with respect to the number
of dirty candidates?

Rolf Niedermeier, TU Berlin () Rank Aggregation and Kemeny Voting 18/27



WHAT ABOUT OTHER MAJORITIES, WHY 3/4?

Lemma
For a non-dirty candidate c and candidate c′ ∈ C \{c}:
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COUNTEREXAMPLE AGAINST USING 5/7-MAJORITIES

2 votes: x > y > a > b > c > d > e > f

3 votes: a > b > c > d > e > f > x > y

2 votes: y > a > b > c > d > e > f > x

• x is non-dirty according to the ≥5/7-majority, since “ x > y ” in
five out of seven votes and “{a,b,c,d,e,f}> x ” in five out of seven
votes

• Although x ≥5/7 y , the only ranking with minimum Kemeny

score is: y > a > b > c > d > e > f > x

Remarks:
• Similar (a little more technical) counterexamples can be found for

every majority ratio in ]2/3,3/4[.
• For majority ratios s ≤ 2/3, the ≥s-majority relation is not

necessarily transitive...
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DATA REDUCTION BASED ON CONDORCET

Definition
A candidate c beating every other candidate in at least half of the
votes, that is, c ≥1/2 c′ for every candidate c′ 6= c, is called weak
Condorcet winner.

A weak Condorcet winner takes the first position in at least one
Kemeny consensus (Condorcet property).

Reduction Rule
If there is a weak Condorcet winner in an election provided by a
Kemeny Score instance, then delete this candidate.
A Condorcet loser is defined analogously. Again, this rule can be
extended to a rule searching for “Condorcet winner/loser sets”...
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EFFECTIVENESS OF CONDORCET RULES

Example:
a1 > a2 > a3 > c1 > c2 > b1 > b2

a3 > a2 > c2 > c1 > a1 > b2 > b1 ai ≥3/4 cj and cj ≥3/4 bi

a1 > c1 > c2 > a2 > b2 > b1 > a3 ⇒
a2 > a3 > a1 > b1 > b2 > c2 > c1

{a1,a2,a3} is a Condorcet winner set, and

{b1,b2} is a Condorcet loser set.

Fact:
The rule searching for Condorcet sets are at least as effective as the
majority-based rules.
Such sets can be found in polynomial time.
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DATA REDUCTION RULES APPLIED

Running time comparison for four data reduction rules:
non-dirty candidates <1 Condorcet candidates <2 non-dirty sets <1

Condorcet sets

Heuristic combination of the data reduction rules

1 If exists, eliminate a non-dirty candidate.
2 Otherwise, if exists, eliminate a Condorcet candidate.
3 Otherwise, if exists, eliminate a non-dirty set.
4 Otherwise, if exists, eliminate a Condorcet set.

instance Condorcet set alone heuristic combination above
blues 0.84 sec 0.10 sec
gardening 0.95 sec 0.11 sec
classical guitar 1.89 sec 0.18 sec

1empirical, 2provable
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REDUCTION OF METASEARCH ENGINE DATA
Four votes: Google, Lycos, MSN Live Search, and Yahoo!
top 1000 hits each, candidates that appear in all four rankings

search term cand. sec. red. inst. solved/unsol.
aff. action 127 0.41 [27] > 41 > [59]
alcoholism 115 0.21 [115]
architecture 122 0.47 [36] > 12 > [30] > 17 > [27]
blues 112 0.16 [74] > 9 > [29]
cheese 142 0.39 [94] > 6 > [42]
class. guitar 115 1.12 [6] > 7 > [50] > 35 > [17]
Death Valley 110 0.25 [15] > 7 > [30] > 8 > [50]
field hockey 102 0.21 [37] > 26 > [20] > 4 > [15]
gardening 106 0.19 [54] > 20 > [2] > 9 > [8] > 4 > [9]
HIV 115 0.26 [62] > 5 > [7] > 20 > [21]
lyme disease 153 2.61 [25] > 97 > [31]
mutual funds 128 3.33 [9] > 45 > [9] > 5 > [1] > 49 > [10]
rock climbing 102 0.12 [102]
Shakespeare 163 0.68 [100] > 10 > [25] > 6 > [22]
telecomm. 131 2.28 [9] > 109 > [13]
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EXACT SOLUTIONS USING DATA REDUCTION & ILPS
Strongest (fastest) empirical results with combination of our data
reduction rules and an ILP formulation...

ILP formulation of Kemeny Score1 using
• C for the set of candidates;
• coefficients #a>b for the number of rankings having “a > b”;
• binary variables xa>b if “a > b” in a Kemeny consensus.

minimize Σ{a,b}⊆C #a>b ·xa>b + #b>a ·xb>a

subject to
for all {a,b} ⊆ C: xa>b + xb>a = 1
for all {a,b,c} ⊆ C: xa>b + xb>c + xc>a ≥ 1

• First conditions are to ensure that either “a > b” or “b > a” (for
fixed a and b);

• second conditions are to ensure transitivity.
1 [CONITZER, DAVENPORT, KALAGNANAM, AAAI 2006]
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EXACTLY SOLVING REAL-WORLD INSTANCES

Observations:

• In our experiments, no combinatorial (fixed-parameter) algorithm
for exactly solving Kemeny Score could compete with the
ILP-based solver (gurobi).

• Instances with hundreds of candidates can be solved within few
seconds.

• Data reduction used as preprocessing led to siginificant
speedups when compared to using the ILP alone.
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SPEEDUP OF ILP THROUGH DATA REDUCTION
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CONCLUDING REMARKS

• Key feature of our data reduction:
Break instances into smaller, independent parts.

• Execution order of data reduction rule execution has significant
impact on efficiency.

• “Cascading effects” of data redution rules not well understood.

Some Challenges:
• Improved analysis using Condorcet rules?
• Linear partial kernel for “s-majorities” with s < 3/4?
• Our data redcution rules do not apply to “constraint rankings”

where the input also contains some canadiate pairs whose
relative ordering in the consensus ranking is already fixed...

Merci!
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