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Abstract. In this paper, we exhibit a strong relation between the sand automata con-
�guration space and the cellular automata con�guration space. This relation induces a
compact topology for sand automata, and a new context in which sand automata are home-
omorphic to cellular automata acting on a speci�c subshift. We show that the existing
topological results for sand automata, including the Hedlund-like representation theorem,
still hold. In this context, we give a characterization of the cellular automata which are
sand automata.

1. Introduction

Self-organized criticality (SOC) is a common phenomenon observed in a huge variety
of processes in physics, biology and computer science. A SOC system evolves to a �critical
state� after some �nite transient. Any perturbation, no matter how small, of the critical
state generates a deep reorganization of the whole system. Then, after some other �nite
transient, the system reaches a new critical state and so on. Examples of SOC systems are:
sandpiles, snow avalanches, star clusters in the outer space, earthquakes, forest �res, load
balance in operating systems [2, 3, 16]. Among them, sandpiles models are a paradigmatic
formal model for SOC systems [8, 9].

In [4], the authors introduced sand automata as a generalization of sandpiles models
and transposed them in the setting of discrete dynamical systems. A key-point of [4] was
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to introduce a (locally compact) metric topology to study the dynamical behavior of sand
automata. A �rst and important result was a fundamental representation theorem similar
to the well-known theorem for cellular automata from Hedlund [10, 4]. In [5, 6], the authors
investigate sand automata by dealing with some basic set properties and decidability issues.

In this paper we continue the study of sand automata. First of all, we introduce a
di�erent metric on con�gurations (i.e., spatial distributions of sand grains). This metric is
de�ned by means of the relation between sand automata and cellular automata [6]. With
the induced topology, the con�guration set turns out to be a compact (and not only locally
compact), perfect and totally disconnected space. The �strict� compactness gives a better
topological background to study the behavior of sand automata (and in general of discrete
dynamical systems) [1, 11]. We show that all the topological results from [4], in particular the
Hedlund-like representation theorem, remain valid with the compact topology. Moreover,
with this topology, any sand automaton is homeomorphic to a cellular automaton de�ned on
a subset of its usual domain. We prove that it is possible to decide whether a given cellular
automaton represents, through that homeomorphism, a sand automaton.

The paper is structured as follows. In Section 2, we recall basic de�nitions and results
about cellular automata and sand automata. Then, in Section 3, we de�ne the topology and
prove topological results, in particular the representation theorem.

2. De�nitions

For all a, b ∈ Z with a ≤ b, let [a, b] = {a, a+ 1, . . . , b} and ˜[a, b] = [a, b] ∪ {+∞,−∞}.
For a ∈ Z, let [a,+∞) = {a, a+ 1, . . .} \ {+∞}. Let N+ be the set of positive integers.

Let A a (possibly in�nite) alphabet and d ∈ N∗. Denote by Md the set of all the d-
dimensional matrices with values in A. We assume that the entries of any matrix U ∈Md are
all the integer vectors of a suitable d-dimensional hyper-rectangle [1, h1]×· · ·× [1, hd] ⊂ Nd

+.

For any h = (h1, . . . , hd) ∈ Nd
+, let Md

h ⊂ Md be the set of all the matrices with entries
in [1, h1]× · · · × [1, hd]. In the sequel, the vector h will be called the order of the matrices

belonging toMd
h. For a given element x ∈ AZd

, the �nite portion of x of reference position

i ∈ Zd and order h ∈ Nd
+ is the matrix M i

h(x) ∈ Md
h de�ned as ∀k ∈ [1, h1] × · · · × [1, hd],

M i
h(x)k = xi+k−1. For any r ∈ N, let rd (or simply r if the dimension is not ambiguous) be

the vector (r, . . . , r).

2.1. Cellular automata and subshifts

Let A be a �nite alphabet. A CA con�guration of dimension d is a function from Zd
to A. The set AZd

of all the CA con�gurations is called the CA con�guration space. This
space is usually equipped with the Tychono� metric dT de�ned by

∀x, y ∈ AZd
, dT (x, y) = 2−k where k = min

{
|j| : j ∈ Zd, xj 6= yj

}
.

The topology induced by dT coincides with the product topology induced by the discrete
topology on A. With this topology, the CA con�guration space is a Cantor space: it is
compact, perfect (i.e., it has no isolated points) and totally disconnected.

For any k ∈ Zd the shift map σk : AZd → AZd
is de�ned by ∀x ∈ AZd

,∀i ∈ Zd,
σk(x)i = xi+k. A function F : AZd → AZd

is said to be shift-commuting if ∀k ∈ Zd,
F ◦ σk = σk ◦ F .
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A d-dimensional subshift S is a closed subset of the CA con�guration space AZd
which

is shift-invariant, i.e., for any k ∈ Zd, σk(S) ⊂ S. Let F ⊆Md and let SF be the set of con-

�gurations x ∈ AZd
such that all possible �nite portions of x do not belong to F , i.e., for any

i, h ∈ Zd, M i
h(x) /∈ F . The set SF is a subshift, and F is called its set of forbidden patterns.

Note that for any subshift S, it is possible to �nd a set of forbidden patterns F such that
S = SF . A subshift S is said to be a subshift of �nite type (SFT) if S = SF for some �nite set
F . The language of a subshift S is L(S) =

{
U ∈Md : ∃i ∈ Zd, h ∈ Nd

+, x ∈ S,M i
h(x) = U

}
(for more on subshifts, see [13] for instance).

A cellular automaton is a quadruple 〈A, d, r, g〉, where A is the alphabet also called the
state set, d is the dimension, r ∈ N is the radius and g :Md

2r+1 → A is the local rule of the

automaton. The local rule g induces a global rule G : AZd → AZd
de�ned as follows,

∀x ∈ AZd
, ∀i ∈ Zd, G(x)i = g

(
M i−r

2r+1(x)
)
.

Note that CA are exactly the class of all shift-commuting functions which are (uniformly)
continuous with respect to the Tychono� metric (Hedlund's theorem from [10]). For the
sake of simplicity, we will make no distinction between a CA and its global rule G.

The local rule g can be extended naturally to all �nite matrices in the following way.
With a little abuse of notation, for any h ∈ [2r+ 1,+∞)d and any U ∈Md

h, de�ne g(U) as
the matrix obtained by the simultaneous application of g to all theMd

2r+1 submatrices of

U . Formally, g(U) = Mr
h−2r(G(x)), where x is any con�guration such that M0

h(x) = U .

2.2. SA Con�gurations

A SA con�guration (or simply con�guration) is a set of sand grains organized in piles
and distributed all over the d-dimensional lattice Zd. A pile is represented either by an
integer from Z (number of grains), or by the value +∞ (source of grains), or by the value

−∞ (sink of grains), i.e., it is an element of Z̃ = Z ∪ {−∞,+∞}. One pile is positioned in

each point of the lattice Zd. Formally, a con�guration x is a function from Zd to Z̃ which

associates any vector i = (i1, . . . , id) ∈ Zd with the number xi ∈ Z̃ of grains in the pile of

position i. Denote by C = Z̃Zd
the set of all con�gurations.

When the dimension d is known without ambiguity we note 0 the null vector of Zd and
|i| the in�nite norm of a vector i ∈ Zd. A measuring device βmr of precision r ∈ N and

reference height m ∈ Z is a function from Z̃ to [̃−r, r] de�ned as follows

∀n ∈ Z̃, βmr (n) =

 +∞ if n > m+ r ,
−∞ if n < m− r ,
n−m otherwise.

A measuring device is used to evaluate the relative height of two piles, with a bounded
precision. This is the technical basis of the de�nition of cylinders, distances and ranges
which are used all along this article.

In [4], the authors equipped C with a metric in such a way that two con�gurations are
at small distance if they have the same number of grains in a �nite neighborhood of the
pile indexed by the null vector. The neighborhood is individuated by putting the measuring
device at the top of the pile, if this latter contains a �nite number of grains. Otherwise
the measuring device is put at height 0. In order to formalize this distance, the authors
introduced the notion of cylinder, that we rename top cylinder. For any con�guration x ∈ C,
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for any r ∈ N, and for any i ∈ Zd, the top cylinder of x centered in i and of radius r is the

d-dimensional matrix C ′ir(x) ∈Md
2r+1 de�ned on the in�nite alphabet A = Z̃ by

∀k ∈ [1, 2r + 1]d ,
(
C ′

i
r(x)

)
k

=

 xi if k = r + 1 ,
βxi
r (xi+k−r−1) if k 6= r + 1 and xi 6= ±∞ ,
β0
r (xi+k−r−1) otherwise.

In dimension 1 and for a con�guration x ∈ C, we have

C ′
i
r(x) = (βxi

r (xi−r), . . . , βxi
r (xi−1), xi, βxi

r (xi+1), . . . , βxi
r (xi+r))

if xi 6= ±∞, while

C ′
i
r(x) =

(
β0
r (xi−r), . . . , β0

r (xi−1), xi, β0
r (xi+1), . . . , β0

r (xi+r)
)

if xi = ±∞.
By means of top cylinders, the distance d′ : C ×C → R+ has been introduced as follows:

∀x, y ∈ C, d′(x, y) = 2−k where k = min
{
r ∈ N : C ′0r(x) 6= C ′

0
r(y)

}
.

Proposition 2.1 ([4, 6]). With the topology induced by d′, the con�guration space is locally
compact, perfect and totally disconnected.

2.3. Sand automata

For any integer r ∈ N, for any con�guration x ∈ C and any index i ∈ Zd with xi 6= ±∞,
the range of center i and radius r is the d-dimensional matrix Rir(x) ∈Md

2r+1 on the �nite

alphabet A = [̃−r, r] ∪ ⊥ such that

∀k ∈ [1, 2r + 1]d ,
(
Rir(x)

)
k

=
{
⊥ if k = r + 1 ,
βxi
r (xi+k−r−1) otherwise.

The range is used to de�ne a sand automaton. It is a kind of top cylinder, where the
observer is always located on the top of the pile xi (called the reference). It represents what
the automaton is able to see at position i. Sometimes the central ⊥ symbol may be omitted
for simplicity sake. The set of all possible ranges of radius r, in dimension d, is denoted by
Rdr .

A sand automaton (SA) is a deterministic �nite automaton working on con�gurations.
Each pile is updated synchronously, according to a local rule which computes the variation of
the pile by means of the range. Formally, a SA is a triple 〈d, r, f〉, where d is the dimension,
r is the radius and f : Rdr → [−r, r] is the local rule of the automaton. By means of the
local rule, one can de�ne the global rule F : C → C as follows

∀x ∈ C, ∀i ∈ Zd, F (x)i =
{
xi if xi = ±∞ ,
xi + f(Rir(x)) otherwise.

Remark that the radius r of the automaton has three di�erent meanings: it represents at
the same time the number of measuring devices in every dimension of the range (number
of piles in the neighborhood), the precision of the measuring devices in the range, and the
highest return value of the local rule (variation of a pile). It guarantees that there are only
a �nite number of ranges and return values, so that the local rule has �nite description.

The following example illustrates a very simple sand automaton. For more examples,
we refer to [6].
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Example 2.2 (the automatonN ). This automaton destroys a con�guration by collapsing all
piles towards the lowest one. It decreases a pile when there is a lower pile in the neighborhood
(see Figure 1). Let N = 〈1, 1, fN 〉 of global rule FN where

∀a, b ∈ [̃−1, 1], fN (a, b) =
{
−1 if a < 0 or b < 0 ,

0 otherwise.

When no misunderstanding is possible, we identify a SA with its global rule F . For
any k ∈ Zd, we extend the de�nition of the shift map to C, σk : C → C is de�ned by
∀x ∈ C,∀i ∈ Zd, σk(x)i = xi+k. The raising map ρ : C → C is de�ned by ∀x ∈ C, ∀i ∈ Zd,
ρ(x)i = xi + 1. A function F : C → C is said to be vertical-commuting if F ◦ ρ = ρ ◦ F .
A function F : C → C is in�nity-preserving if for any con�guration x ∈ C and any vector
i ∈ Zd, F (x)i = +∞ if and only if xi = +∞ and F (x)i = −∞ if and only if xi = −∞.

Theorem 2.3 ([4, 6]). The class of SA is exactly the class of shift and vertical-commuting,
in�nity-preserving functions F : C → C which are continuous w.r.t. the metric d′.

3. Topology and dynamics

In this section we introduce a compact topology on the SA con�guration space by means
of a relation between SA and CA. With this topology, a Hedlund-like theorem still holds
and each SA turns out to be homeomorphic to a CA acting on a speci�c subshift. We
also characterize CA whose action on this subshift represents a SA. Finally, we study some
topological properties of SA in this new setting.

3.1. A compact topology for SA con�gurations

From [6], we know that any SA of dimension d can be simulated by a suitable CA of
dimension d+ 1 (and also any CA can be simulated by a SA). In particular, a d-dimensional
SA con�guration can be seen as a (d + 1)-dimensional CA con�guration on the alphabet

A = {0, 1}. More precisely, consider the function ζ : C → {0, 1}Z
d+1

de�ned as follows

∀x ∈ C, ∀i ∈ Zd,∀k ∈ Z, ζ(x)(i,k) =
{

1 if xi ≥ k ,
0 otherwise.

A SA con�guration x ∈ C is coded by the CA con�guration ζ(x) ∈ {0, 1}Z
d+1

. Remark that
ζ is an injective function.

Consider the (d + 1)-dimensional matrix K ∈ Md+1
( 1, . . . , 1, 2) such that K1,...,1,2 = 1

and K1,...,1,1 = 0. With a little abuse of notation, denote SK = S{K} the subshift of
con�gurations that do not contain the pattern K.

Proposition 3.1. The set ζ(C) is the subshift SK .

Proof. Each d-dimensional SA con�guration x ∈ C is coded by the (d + 1)-dimensional
CA con�guration ζ(x) such that for any i, h ∈ Zd+1,M i

h(ζ(x)) 6= K, then ζ(C) ⊆ SK .

Conversely, we can de�ne a preimage by ζ for any y ∈ SK , by ∀i ∈ Zd, xi = sup{k : y(i,k) =
1}. Hence ζ(C) = SK .
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Figure 2 illustrates the mapping ζ and the matrix K =
(

1
0

)
for dimension d = 1.

The set of SA con�gurations C = Z̃Z can be seen as the subshift SK = ζ(C) of the CA

con�gurations set {0, 1}Z
2

.

De�nition 3.2. The distance d : C × C → R+ is de�ned as follows:

∀x, y ∈ C, d(x, y) = dT (ζ(x), ζ(y)) .

In other words, the (well de�ned) distance d between two con�gurations x, y ∈ C is
nothing but the Tychono� distance between the con�gurations ζ(x), ζ(y) in the subshift

SK . The corresponding metric topology is the {0, 1}Zd+1
product topology induced on SK .

Remark 3.3. Note that this topology does not coincide with the topology obtained as

countable product of the discrete topology on Z̃. Nevertheless, if you consider the topology

T on Z̃ based on singletons {a} where a ∈ Z and in�nite intervals [a,∞] or [−∞, a], where
a ∈ Z, then d corresponds to its product topology. In other words, for any i ∈ Zd, the ith
projection πi : C → Z̃ de�ned by πi(x) = xi is continuous for T .

By de�nition of this topology, if one considers ζ as a map from C onto SK , ζ turns out
to be an isometric homeomorphism between the metric spaces C (endowed with d) and SK
(endowed with dT ). As an immediate consequence, the following results hold.

Proposition 3.4. The set C is a compact and totally disconnected space where the open
balls are clopen (i.e., closed and open) sets.

Proposition 3.5. The space C is perfect.

Proof. Choose an arbitrary con�guration x ∈ C. For any n ∈ N, let l ∈ Zd such that |l| = n.
We build a con�guration y ∈ C, equal to x except at site l, de�ned as follows

∀j ∈ Zd \ {l} , yj = xj and yl =
{

1 if xl = 0 ,
0 otherwise.

By De�nition 3.2, d(y, x) = 2−n.

Consider now the following notion.

De�nition 3.6 (ground cylinder). For any con�guration x ∈ C, for any r ∈ N, and for any
i ∈ Zd, the ground cylinder of x centered on i and of radius r is the d-dimensional matrix
Cir(x) ∈Md

2r+1 de�ned by

∀k ∈ [1, 2r + 1]d ,
(
Cir(x)

)
k

= β0
r (xi+k−r−1) .

For example in dimension 1,

Cir(x) =
(
β0
r (xi−r), . . . , β0

r (xi), . . . , β0
r (xi+r)

)
.

Figure 3 illustrates top cylinders and ground cylinders in dimension 1. Remark that the
contents of the two kinds of cylinders is totally di�erent.

From De�nition 3.2, we obtain the following expression of distance d by means of ground
cylinders.

Remark 3.7. For any pair of con�gurations x, y ∈ C, we have
d(x, y) = 2−k where k = min

{
r ∈ N : C0

r (x) 6= C0
r (y)

}
.
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As a consequence, two con�gurations x, y are compared by putting boxes (the ground
cylinders) at height 0 around the corresponding piles indexed by 0. The integer k is the
size of the smallest cylinders in which a di�erence appears between x and y. This way of
calculating the distance d is similar to the one used for the distance d′, with the di�erence
that the measuring devices and the cylinders are now located at height 0. This is slightly
less intuitive than the distance d′, since it does not correspond to the de�nition of the local
rule. However, this fact is not an issue all the more since the con�guration space is compact
and the representation theorem still holds with the new topology (Theorem 3.11).

Finally, for a cylinder U , denote by [U ]r =
{
x ∈ C, C0

r (x) = U
}
the open ball of radius

2−r centered on U . We may write [U ] when the radius of the ball can be omitted.

3.2. SA as CA on a subshift

Let (X,m1) and (Y,m2) be two metric spaces. Two functions H1 : X → X, H2 : Y →
Y are (topologically) conjugated if there exists a homeomorphism η : X → Y such that
H2 ◦ η = η ◦H1.

We are going to show that any SA is conjugated to some restriction of a CA. Let F
a d-dimensional SA of radius r and local rule f . Let us de�ne the (d + 1)-dimensional
CA G on the alphabet {0, 1}, with radius 2r and local rule g de�ned as follows (see [6]

for more details). Let M ∈ Md+1
4r+1 be a matrix on the �nite alphabet {0, 1} which does

not contain the pattern K. If there is a j ∈ [r + 1, 3r] such that M(2r+1,...,2r+1,j) = 1 and

M(2r+1,...,2r+1,j+1) = 0, then let R ∈ Rdr be the range taken from M of radius r centered on
(2r+1, . . . , 2r+1, j). See �gure 4 for an illustration of this construction in dimension d = 1.

The new central value depends on the height j of the central column plus its variation.
Therefore, de�ne g(M) = 1 if j + f(R) ≥ 0, g(M) = 0 if j + f(R) < 0, or g(M) = M2r+1

(central value unchanged) if there is no such j.
The following diagram commutes:

C F−−−−→ C

ζ

y yζ
SK −−−−→

G
SK

, (3.1)

i.e., G ◦ ζ = ζ ◦ F . As an immediate consequence, we have the following result.

Proposition 3.8. Any d-dimensional SA F is topologically conjugated to a suitable (d+1)-
dimensional CA G acting on SK .

Being a dynamical submodel, SA share properties with CA, some of which are proved
below. However, many results which are true for CA are no longer true for SA; for instance,
injectivity and bijectivity are no more equivalent, as proved in [5]. Thus, SA deserve to be
considered as a new model.

Corollary 3.9. The global rule F : C → C of a SA is uniformly continuous w.r.t distance d.

Proof. Let G be the global rule of the CA which simulates the given SA. Since the dia-
gram (3.1) commutes and ζ is a homeomorphism, F = ζ−1 ◦G◦ζ. The map G is continuous
and, by Proposition 3.4, C is compact, which proves the corollary.
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For every a ∈ Z, let Ca = π−1
0 ({a}) be the clopen (and compact) set of all con�gurations

x ∈ C such that x0 = a.

Lemma 3.10. Let F : C → C be a continuous and in�nity-preserving map. There exists an
integer l ∈ N such that for any con�guration x ∈ C0 we have |F (x)0| ≤ l.

Proof. Since F is continuous and in�nity-preserving, the set F (C0) is compact and included
in π−1

0 (Z). From Remark 3.3, π0 is continuous on the set π−1
0 (Z) and in particular it is

continuous on the compact F (C0). Hence π0(F (C0)) is a compact subset of Z̃ containing no
in�nity, and therefore it is included in some interval [−l, l], where l ∈ N.

Theorem 3.11. A mapping F : C → C is the global transition rule of a sand automaton if
and only if all the following statements hold

(i) F is (uniformly) continuous w.r.t the distance d;
(ii) F is shift-commuting;

(iii) F is vertical-commuting;
(iv) F is in�nity-preserving.

Proof. Let F be the global rule of a SA. By de�nition of SA, F is shift-commuting, vertical-
commuting and in�nity-preserving. From Corollary 3.9, F is also uniformly continuous.

Conversely, let F be a continuous map which is shift-commuting, vertical-commuting,
and in�nity-preserving. By compactness of the space C, F is also uniformly continuous. Let
l ∈ N be the integer given by Lemma 3.10. Since F is uniformly continuous, there exists an
integer r ∈ N such that

∀x, y ∈ C C0
r (x) = C0

r (y)⇒ C0
l (F (x)) = C0

l (F (y)) .

We now construct the local rule f : Rdr → [−r, r] of the automaton. For any input range
R ∈ Rdr , set f(R) = F (x)0, where x is an arbitrary con�guration of C0 such that ∀k ∈
[1, 2r + 1], k 6= r + 1, β0

r (xk−r−1) = Rk. Note that the value of f(R) does not depend on
the particular choice of the con�guration x ∈ C0 such that ∀k 6= r + 1, β0

r (xk−r−1) = Rk.
Indeed, Lemma 3.10 and uniform continuity together ensure that for any other con�guration
y ∈ C0 such that ∀k 6= r + 1, β0

r (yk−r−1) = Rk, we have F (y)0 = F (x)0, since β0
l (F (x)0) =

β0
l (F (y)0) and |F (y)0| ≤ l. Thus the rule f is well de�ned.

We now show that F is the global mapping of the sand automaton of radius r and local
rule f . Thanks to (iv), it is su�cient to prove that for any x ∈ C and for any i ∈ Zd with
|xi| 6= ∞, we have F (x)i = xi + f

(
Rir(x)

)
. By (ii) and (iii), for any i ∈ Zd such that

|xi| 6=∞, it holds that

F (x)i =
[
ρxi ◦ σ−i

(
F (σi ◦ ρ−xi(x))

)]
i

= xi +
[
σ−i

(
F (σi ◦ ρ−xi(x))

)]
i

= xi +
[
F (σi ◦ ρ−xi(x))

]
0
.

Since σi ◦ ρ−xi(x) ∈ C0, we have by de�nition of f

F (x)i = xi + f
(
R0
r(σ

i ◦ ρ−xi(x))
)
.

Moreover, by de�nition of the range, for all k ∈ [1, 2r + 1]d,

R0
r(σ

i ◦ ρ−xi(x))k = β[σi◦ρ−xi (x)]0
r (σi ◦ ρ−xi(x)k) = β0

r (xi+k − xi) = βxi
r (xi+k) ,

hence R0
r(σ

i ◦ ρ−xi(x)) = Rir(x), which leads to F (x)i = xi + f
(
Rir(x)

)
.
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We now deal with the following question: given a (d + 1)-dimensional CA, does it
represent a d-dimensional SA, in the sense of the conjugacy expressed by diagram 3.1? In
order to answer to this question we start to express the condition under which the action of
a CA G can be restricted to a subshift SF , i.e., G(SF ) ⊆ SF (if this fact holds, the subshift
SF is said to be G-invariant).

Lemma 3.12. Let G and SF be a CA and a subshift of �nite type, respectively. The
condition G(SF ) ⊆ SF is satis�ed i� for any U ∈ L(SF ) and any H ∈ F of the same order
than g(U), it holds that g(U) 6= H.

Proof. Suppose that G(SF ) ⊆ SF . Choose arbitrarily H ∈ F and U ∈ L(SF ), with g(U)
and H of the same order. Let x ∈ SF containing the matrix U . Since G(x) ∈ SF , then
g(U) ∈ L(SF ), and so g(U) 6= H. Conversely, if x ∈ SF and G(x) /∈ SF , then there exist
U ∈ L(SF ) and H ∈ F with g(U) = H.

The following proposition gives a su�cient and necessary condition under which the
action of a CA G on con�gurations of the G-invariant subshift SK = C preserves any
column whose cells have the same value.

Lemma 3.13. Let G be a (d+1)-dimensional CA with state set {0, 1} and SK be the subshift
representing SA con�gurations. The following two statements are equivalent:

(i) for any x ∈ SK with x(0,...,0,i) = 1 (resp., x(0,...,0,i) = 0) for all i ∈ Z, it holds that
G(x)(0,...,0,i) = 1 (resp., G(x)(0,...,0,i) = 0) for all i ∈ Z.

(ii) for any U ∈ Md
2r+1 ∩ L(SK) with U(r+1,...,r+1,k) = 1 (resp., U(r+1,...,r+1,k) = 0) and

any k ∈ [1, 2r + 1], it holds that g(U) = 1 (resp., g(U) = 0).

Proof. Suppose that (1) is true. Let U ∈Md
2r+1∩L(SK) be a matrix with U(r+1,...,r+1,k) = 1

and let x ∈ SK be a con�guration such that x(0,...,0,i) = 1 for all i ∈ Z and M−r
2r+1(x) = U .

Since G(x)(0,...,0,i) = 1 for all i ∈ Z, and M0
2r+1(x) = U , then g(U) = 1. Conversely, let

x ∈ SK with x(0,...,0,i) = 1 for all i ∈ Z. By shift-invariance, we obtain G(x)(0,...,0,i) = 1 for
all i ∈ Z.

Lemmas 3.12 and 3.13 immediately lead to the following conclusion.

Proposition 3.14. It is decidable to check whether a given (d+ 1)-dimensional CA corre-
sponds to a d-dimensional SA.

3.3. Some dynamical behaviors

SA are very interesting models, whose complexity lies between that of d-dimensional
and d+ 1-dimensional CA. Indeed, we have seen in the previous section that the latter can
simulate SA, and it was shown in [6] that SA could simulate the former. A classi�cation of
one-dimensional cellular automata in terms of their dynamical behavior was given in [12].
Things appear to be very di�erent as soon as we get into the second dimension, as noted in
[15, 14]. This classi�cation is based on the following notions.

Let (X,m) be a metric space and let H : X → X be a continuous application. An
element x ∈ X is an equicontinuity point for H if for any ε > 0, there exists δ > 0 such
that for all y ∈ X, m(x, y) < δ implies that ∀n ∈ N, m(Hn(x), Hn(y)) < ε. The map H is
equicontinuous if for any ε > 0, there exists δ > 0 such that for all x, y ∈ X, m(x, y) < δ
implies that ∀n ∈ N, m(Hn(x), Hn(y)) < ε. An element x ∈ X is ultimately periodic
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for H if there exist two integers n ≥ 0 (the preperiod) and p > 0 (the period) such that
Hn+p(x) = Hn(x). H is ultimately periodic if there exist n ≥ 0 and p > 0 such that
Hn+p = Hn. H is sensitive (to the initial conditions) if there is a constant ε > 0 such that
for all points x ∈ X and all δ > 0, there is a point y ∈ X and an integer n ∈ N such that
m(x, y) < δ but m(Fn(x), Fn(y)) > ε. H is positively expansive if there is a constant ε > 0
such that for all distinct points x, y ∈ X, there exists n ∈ N such thatm(Hn(x), Hn(y)) > ε.

We consider these notions in the setting of sand automata with the metric topology
induced by d. First we complete the de�nitions of equicontinuity and ultimate periodicity.

Proposition 3.15. A SA F is equicontinuous if and only if all con�gurations of C are
equicontinuity points.

Proof. Suppose that all con�gurations are equicontinuity points. Let ε > 0. For all x ∈ C,
there is some δx such that for every con�guration y such that d(x, y) < δx, we have ∀n ∈
N, d(Fn(x), Fn(y)) < ε

2 . From the open covering C =
⋃
x∈C

{
y|d(x, y) < δx

2

}
, we can extract

a �nite covering C =
⋃
x∈D

{
y|d(x, y) < δx

2

}
, where D ⊂ C is �nite. Let δ = minx∈D δx

2 . Then

for every x, y ∈ C, such that d(x, y) < δ, there is some z ∈ D such that d(x, z) < δz
2 . We

also have d(y, z) < δ+ δz
2 ≤ δz. Hence, for any n ∈ N, d(Fn(x), Fn(y)) < d(Fn(x), Fn(z)) +

d(Fn(y), Fn(z)) < ε. Since this is true for any ε > 0, F is equicontinuous. The converse is
trivial.

We introduce a helpful lemma, used to re�ne the notion of ultimate periodicity.

Lemma 3.16. Any covering C =
⋃
k∈N Σk by closed shift-invariant subsets Σk contains

C = Σk for some k ∈ N.

Proof. If C =
⋃
k∈N Σk where the Σk are closed, then by the Baire Theorem, some Σk has

nonempty interior. Hence, it contains some ball [U ] where U is a cylinder. If it is shift-

invariant, then it contains
⋃
k∈Zd σk([U ]), which is the complete space.

Proposition 3.17. A SA F is ultimately periodic if and only if all con�gurations of C are
ultimately periodic points for F .

Proof. Let F be a SA such that all con�gurations x ∈ C are ultimately periodic for F . For
any n ≥ 0 and p > 0, let Dn,p the closed shift-invariant subset {x : Fn+p(x) = Fn(x)}. Since
C =

⋃
n,p∈NDn,p, by Lemma 3.16, C = Dn,p for some n ≥ 0 and some p > 0. The converse

is obvious.

Using the new compact topological framework, it is possible to prove that equicontinuity
and ultimate periodicity are equivalent (proof in [7]).

Proposition 3.18 ([7]). A SA is equicontinuous if and only if it is ultimately periodic.

Despite these classical results, it appears that the classi�cation from [12] into four classes
(equicontinuous CA, non equicontinuous CA admitting an equicontinuity con�guration, sen-
sitive but not positively expansive CA, positively expansive CA) becomes irrelevant for
one-dimensional SA. In particular, none of them satisfy the last topological concept of the
classi�cation (positive expansivity).

Proposition 3.19 ([7]). There are no positively expansive SA.
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It also seems that the trichotomy between the other classes might be false. We conjecture
that there exist non-sensitive SA without equicontinuity points, which would lead to another
classi�cation into four classes: equicontinuous, admitting an equicontinuity con�guration
(but not equicontinuous), non-sensitive without equicontinuity con�gurations, sensitive.

4. Conclusion

In this article we have continued the study of sand automata, by introducing a compact
topology on the SA con�gurations set. In this new context of study, the characterization
of SA functions of [4, 6] still holds. Moreover, a topological conjugacy of any SA with a
suitable CA acting on a particular subshift might facilitate future studies about dynamical
and topological properties of SA.

In particular, injectivity and surjectivity and their corresponding dimension-dependent
decidability problems could help to understand if SA look more like CA of the same dimen-
sion or of the following one. Still in that idea is the open problem of the dichotomy between
sensitive SA and those with equicontinuous con�gurations. A potential counter-example
would give a more precise idea of the speci�cities of the dynamical behaviors represented by
SA.

References

[1] E. Akin. The General Topology of Dynamical Systems, volume 1 of Graduate Studies in Mathematics.
AMS, 1993.

[2] P. Bak. How Nature Works - The Science of SOC. Oxford University Press, 1997.
[3] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. Physical Review A, 38(1):364�374, 1988.
[4] J. Cervelle and E. Formenti. On sand automata. In 20th Symposium on Theoretical Aspects of Computer

Science (STACS'03), volume 2607 of Lecture Notes in Computer Science, pages 642�653. Springer, 2003.
[5] J. Cervelle, E. Formenti, and B. Masson. Basic properties for sand automata. In 30th International

Symposium on Mathematical Foundations of Computer Science (MFCS'05), volume 3618 of Lecture
Notes in Computer Science, pages 192�211. Springer, 2005.

[6] J. Cervelle, E. Formenti, and B. Masson. From sandpiles to sand automata. Theoretical Computer
Science, 381:1�28, 2007.

[7] A. Dennunzio, P. Guillon, and B. Masson. Topological properties of sand automata as cellular automata.
In 1st Symposium on Cellular Automata (JAC'08), pages 216�227, 2008.

[8] E. Goles and M. A. Kiwi. Games on line graphs and sandpile automata. Theoretical Computer Science,
115:321�349, 1993.

[9] E. Goles, M. Morvan, and H. D. Phan. The structure of linear chip �ring game and related models.
Theoretical Computer Science, 270:827�841, 2002.

[10] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system. Mathematical Sys-
tems Theory, 3:320�375, 1969.

[11] P. K·rka. Topological and Symbolic Dynamics, volume 11 of Cours spécialisés. Société Mathématique
de France, Paris, 2003.

[12] P. K·rka. Languages, equicontinuity and attractors in cellular automata. Ergodic Theory & Dynamical
Systems, 17:417�433, 1997.

[13] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University
Press, 1995.

[14] M. Sablik and G. Theyssier. Topological dynamics of 2D cellular automata. In 4th Conference on
Computability in Europe (CiE'08), volume 5028 of Lecture Notes in Computer Science, pages 523�532.
Springer, 2008.

[15] M. A. Shereshevsky. Expansiveness, entropy and polynomial growth for groups acting on subshifts by
automorphisms. Indagationes Mathematicæ, 4(2):203�210, 1993.



12 A. DENNUNZIO, P. GUILLON, AND B. MASSON

[16] R. Subramanian and I. Scherson. An analysis of di�usive load-balancing. In ACM Symposium on Parallel
Algorithms and Architecture (SPAA'94), pages 220�225, 1994.



SAND AUTOMATA AS CELLULAR AUTOMATA 13

Figure 1: Illustration of the behavior of N .
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(a) Valid con�guration.

(b) Invalid con�guration.

Figure 2: The con�guration from Figure 2(a) is valid, while the con�guration from Fig-
ure 2(b) contains the forbidden matrix K: there is a �hole�.
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(a) Top cylinder centered on xi = 4:C′ir(x) = (+1,−∞,−3,4,−2,−2, +1). (b) Ground cylinder, at height 0:Ci
r(x) = (+∞,−2, +1, +∞, +2, +2, +∞).

Figure 3: Illustration of the two notions of cylinders on the same con�guration, with radius 3.
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Figure 4: Construction of the local rule g of the CA from the local rule f of the SA, in
dimension 1. A range R of radius r is associated to the matrixM of order 4r + 1.


