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1 Introduction
Understanding the emergence of complexity out of simple basic elements is a fundamental issue in various
scientific fields: cellular biology, cognitive science, fluid mechanics, chemical turbulences, crystal forma-
tion, social dynamics, computer networks. . . These problems, abstracted from their particular modeled
systems, were joined into what is now called the theory of complex systems.

They led John von Neumann, motivated by the autoreproducibility question and inspired by Stanisław
Ulam, to define the first cellular automaton in the late forties. Merely formalized as a discrete space
divided into cells whose states evolve in a discrete time according to their closest neighbors, it exhibits
strange evolutions, such as patterns reproducing themselves indefinitely. This duality was popularized
in the seventies by John Conway’s game of life. The emergence of computers would soon allow anyone
to program it, and nevertheless admit that the overall behavior could turn out to be very complex,
motivating Stephen Wolfram’s classification of the visual aspects of cellular automata in the eighties.

But what does one exactly mean by complexity? This notion was the subject of many formalization
attempts. First, the computing power, already suggested by von Neumann, was formalized in terms of
Turing-equivalence, for instance for the game of life [BCG82], and gave rise to some algorithmic issues
[Fis65], for language recognition [SI72], or for very peculiar problems [Moo64], which give evidence on
what kind of processes could be performed with the model.

Moreover, the computing power has also been studied for cellular automata with respect to each other.
This approach has led to the notions of “cellular” simulations and “intrinsic” universality, whose premises
could be seen in [Ban70, AČI87], before formalizations in [MI94] and mostly [Rap97, Oll02, The05]. The
orders induced by the different kinds of simulations are still not very well understood.

On the other hand, cellular automata have been studied in terms of predictability with respect to other
computing models – Turing machines. Most of their long-term properties have been proved undecidable
since the works of Jarkko Kari in the nineties [Kar90].

On top of that, cellular automata have joined the theory of dynamical systems thanks to the 1969
characterization by Hedlund, Curtis and Lyndon [Hed69] as continuous maps over configurations that
commute with the translations of cells, the configuration space being endowed with the Cantor topology
that makes it perfect, compact and totally disconnected. This branch of the study has resulted in many
contributions, involving equicontinuity [Gil87], attractors [Hur90], measure [Ish92]. . . .

In 1997, Petr Kůrka proposes the modifications of two topological classifications in [Ků97], and
compares them both with a third one, based on the sequences of states that are successively taken by
some single cell – or some finite group of cell – during the evolution of the cellular automaton. The
principle of studying such “traces” of dynamical systems through a given partition of the space probably
sprang from the study of geodesic streams by Hadamard at the end of the nineteenth century, and was
given its name of “symbolic dynamics” by the eponymous book by Morse and Hedlund [MH38]. In the
dawn of the Internet era, a reference book by Douglas Lind and Brian Marcus [LM95] stressed that
symbolic dynamics find its most promising applications in code theory.

If one sees the cellular automaton as modeling some physical phenomenon, then the letter sequences
it produces may represent the measure of the phenomenon through some device with some precision.
Hence, it seems relevant to study the behavior of these trace systems according to that of the global
one. Topologically speaking, they are linked by a factorization, i.e. reading a letter of the infinite word
corresponds to applying one step of the cellular automaton. To each trace can be associated the language
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of its finite patterns. It was noted in [Gil88] that these languages were always context-sensitive; their
complexity led to the Kůrka classification, that can be applied to any system on Cantor sets. Nevertheless,
the restriction to one-dimensional cellular automata presents an important advantage, stressed in [dL06a]:
studying the trace with respect to neighbors of the center cell gives significant information about the
cellular automaton itself. In particular, the regularity of the language associated allows to decide many
long-term properties [dL06b].

Our thesis is in line with the above-mentioned works on the link between cellular automata and
symbolic dynamics. We try to inspect which properties of cellular automata are transmitted to simu-
lated cellular automata, to traces, and conversely. We also try to see if one single trace, for instance
corresponding to neighbors of the central cell, is enough to deduce the corresponding property, in the
general case, or in some subcases from the symbolic classification. In a second part, we investigate suf-
ficient conditions for some set of infinite letters to be the trace of some cellular automaton. Physically
speaking, we try to find back whether some phenomenon can correspond to some observation we made
in the model. Finally, a third part is dedicated to decidability issues; in particular, it is shown that,
being given a cellular automaton, nothing can be said about the long-term aspect of its trace.

2 Dynamical systems and cellular automata
A dynamical system (DS) is a couple (X,F ) where X is a compact metric space and F : X → X
a continuous function. A symbolic system (SS) is a dynamical system on some totally disconnected
space, i.e. some space that admits arbitrarily thin clopen partitions.

Configurations space. If X = AM, where A is a finite alphabet and M = Z or M = N, one can
endow X with the product of the discrete topology on A, which corresponds to the distance:

d :
AM ×AM → R+

(x, y) 7→ 2−minxi 6=yi
|i| .

Note 〈k〉 = { i| |i| ≤ k} and, for x ∈ AM and k, l ∈ M with k ≤ l, xJk,lJ = xk . . . xl−1. Cylinders
[u] =

{
x
∣∣x〈k〉 = u

}
, where u ∈ A〈k〉 and k ∈ N, form a base of clopens.

Shifts. The shift is a DS defined for x ∈ AM and i ∈ AM by σ(x)i = xi+1. A onesided (resp.
twosided) subshift is a closed σ-invariant (resp. strongly) subset of AN (resp. AZ). A subshift Σ is
sofic if its language

{
u ∈ A+

∣∣∃x ∈ Σ, i ∈M, xJi,i+|u|J = u
}
is regular. It is of finite type (SFT) if it

admits some finite forbidden language F ⊂ A+ such that Σ =
{
z ∈ AM

∣∣∀i ∈M, u ∈ F, xJi,i+|u|J 6= u
}
.

It is of order k ∈ N∗ if F ⊂ Ak.

Morphisms. A morphism between two DS (X,F ) and (Y,G) is a function Φ : X → Y such that
ΦF = GΦ. If surjective, it is a factorization and (Y,G) is a factor of (X,F ); if bijective, it is a
conjugacy and (X,F ) and (Y,G) are conjugate. A cellular morphism between two CA restrictions
(Λ,F ) and (Σ,G) is a morphism which is simultaneously a morphism between subshifts iterates (Λ, σn)
and (Σ, σn′) for some n, n′ ∈ N∗. Similarly, we will speak of cellular factorizations, conjugacies,
factors, conjugates.

Cellular automata. A cellular automaton (CA) is a morphism F of some shift (AM, σ) into itself.
Equivalently, from the Hedlund theorem, there is some radius r ∈ N and some local rule f : A〈r〉 → A
such that for all configurations x ∈ AM and all cells i ∈ M, F (x)i = f(xi+〈r〉); d = |〈r〉| will be called
the diameter.

Simulations. A simulation between two DS (X,F ) and (Y,G) is a factorization between the sub-
system (X ′, Fm) and the iterate (Y,Gm′

) for some invariant X ′ ⊂ X and some m,m′ ∈ N∗. It is called
direct if m = 1, total if m′ = 1, complete if X ′ = X, exact if it is injective. A cellular simulation
between two CA (X,F ) and (Y,G) is a simulation which is simultaneously a simulation between the
iterates of subshifts (Λ, σn) and (Σ, σn′) for some n, n′ ∈ N∗. It is block if its image is a full shift,
context-free if its radius is 0.
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Universality. A DS is universal with respect to some family of DS if it simulates any system of that
family. This definition led to the study of intrinsically universal CA in [Oll02, The05]. In the context of
sofic subshifts, we can prove that universality with respect to all subshifts is equivalent to uncountability,
to nonzero entropy, and to existence of some infinite transitive subsystem. This class of subshifts will be
especially prominent in section 5.

3 Traces
If P is a partition of some space X and x ∈ X a point, then we denote P(x) ∈ P the unique subset such
that x ∈ P(x). The trace of some symbolic system (X,F ) with respect to some clopen partition P is
the function:

TPF :
X → PN
x 7→ (P(F j(x)))j∈N .

It is a factorization of the system (X,F ) into the trace subshift (τPF = TPF (X), σ). Conversely, every
factorization of the system into a subshift can be written as a trace application.

Column factors. If X = AM, we can restrict the study of trace subshifts to column factors, i.e.
traces with respect to cylinder partitions, which represent the sequences of states taken by the central
cell of a given configuration:

T
〈k〉
F : AM → (A〈k〉)N

x 7→ (F j(x)〈k〉)j∈N .

Let τ 〈k〉F = T
〈k〉
F (AM), τF denote τ 〈0〉F , and τ∗F be the twosided subshift

{
(xj

0)j∈Z

∣∣∣ ∀j ∈ Z, xj+1 = F (xj)
}
,

called the bitrace. All factor subshifts are factors of some column factor. Moreover, the SS can be
essentially rebuilt from the sequence of its column factors, since it is conjugate to their limit extension,
i.e. the least DS of which they are all factor.

Diametral factor. If F is a CA of radius r ∈ N and k > r, then by shift-invariance, τ 〈k〉F is the
overlap of the diametral factor τ 〈r〉F , i.e. the biggest subshift Σ on A〈k〉 such that each projection
πi+〈r〉(Σ) = τ

〈r〉
F (up to indices change), for |i| ≤ k − r. This idea was first suggested in [dL06a]. This

simple characterization of CA allows to rebuild from the diametral factor each wider trace, hence the
CA itself. It can help to deduce some properties of the CA directly from that of its diametral factor.

Symbolic classification. The complexity of the trace subshifts can be used as a measure of the
complexity of the SS itself. This was the purpose of Kůrka’s classification, presented in [Ků97], and
which can be refined a little by involving systems finite type. This class comprehends a little more that
systems whose trace subshifts are of finite type, since it is invariant by conjugacy and a generalization
of SFT. Its definition requires the following one.

We define a base of factor subshifts of a SS (AM, F ) as a sequence (Σi)i∈N of onesided subshifts
image of a family (Φi : X → Σi)i∈N of factorizations. We have already seen that column factors form
one. Now, we can define the following hierarchy in four classes.

1. Equicontinuous SS: all (or a base of) trace subshifts are finite. For CA, it is even equivalent to
the finiteness of some trace subshift, thus to preperiodicity .

2. SS of finite type: a base of trace subshifts are SFT. This condition implies the shadowing property .
We even suspect an equivalence, like in the case of subshifts. For CA, it is sufficient to have a
diametral factor of finite type, but not necessary.

3. Sofic SS: all (or a base of) trace subshifts are sofic. For CA, it is equivalent to the soficness of the
diametral factor (generalization of a result in [BM96]).

4. All SS: this class could also be refined, for instance according to well-know classifications on
languages – if they appear to be relevant.
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Similarly to the Weiss theorem for subshifts, we prove that any sofic SS is a factor of some SS of
finite type. In the context of CA, as proved by di Lena, any CA restriction which is of finite type is a
cellular factor of some sofic CA restriction. Nevertheless, it seems difficult to adapt the construction to
get a (complete) CA.

4 Topological dynamics and traces
We inspect many behaviors of CA and DS and their consequences on their trace and on their sim-
ulated systems. We are interested in immediate properties (surjectivity, openness, injectivity), sim-
ple properties (nilpotency, periodicity and their non-uniform versions, nilpotency over periodic con-
figurations), transitivity-like properties (mixingnesses, specification, nonwanderingness), chain proper-
ties (chain-transitivity, shadowing property), equicontinuity properties (almost equicontinuity, sensi-
tivity), expansivity (and positive expansivity). We then inspect two characteristic sets: the limit set
ΩF =

⋃
j∈N F

j(X) and the ultimate set ωF =
⋃

x∈X

⋂
J∈N {F j(x)| j > J} of DS (X,F ), from which are

defined Ω-nilpotency, Ω-periodicity, ω-nilpotency and ω-nilpotency according to whether the restriction
of F on each of these subsets is null or periodic, respectively. Note that the trace subshift TF (ΩF ) of the
limit system is the onesided subshift corresponding to the bitrace τ∗F .

The questions we ask are:

• Sim: Is the property preserved by DS simulation; if not is it by some restricted simulation?

• SimC: Is the property preserved by CA cellular simulation?

• → τ : Is the property true for the factor subshifts of some SS if it is true for the SS itself?

• ττ →: Is the property true for some SS if it is true for all of its factor subshifts?

• τ →: Is the property true for some CA if it is true for some particular column factor?

• σ: Is the property preserved by CA composition with the shift?

We chose to separate the study of the two kinds of simulations in order to emphasize which were basic
topological properties and what was the contribution of the cellular environment. It results in a better
understanding of the needs in the restriction on the concept of cellular simulation, to make it the most
relevantly powerful. We note of course that a positive answer to Sim implies one to its subcases SimC and
→ τ , but more can be expressed from the specific actions of CA and from the the particularity of the trace
factorizations, respectively. Concerning question σ, most answers are well-known [Sab06, ADF07], but
recalled here in order to inform, combined with SimC, about directional simulations used in [Oll02, The05],
i.e. cellular simulation up to some shift iterate. The results summarized here correspond in a great part
to paragraphs “. . . et simulation” (Sim) at the end of each concerned section in , “. . . et simulation” (SimC,
σ) and “. . . et trace” (→ τ , ττ →, τ →) at the end of each concerned section in .
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Sim SimC → τ ττ → τ → σ

surjectivity complete block X X X X
injectivity exact context-free ⊥ X 1 X
openness exact context-free ⊥ ⊥ ⊥ X

nilpotency, w.nilpotency X X X ⊥ 1 X
preperiodicity X X X ⊥ 1 ⊥
w.preperiodicity X X X ⊥ ⊥ ⊥
nilpotency/periodic exact X ? X 1 X

nonwanderingness direct complete block X X X X
transitivity, w.mixingness direct complete complete X X ? ⊥
mixingness complete complete X X ? ⊥
s.transitivity direct complete direct complete X ⊥ ⊥ X
specification complete complete X ⊥ ⊥ X

chain-transitivity direct complete complete X X ? ⊥
shadowing exact complete exact complete ⊥ X d ⊥
equicontinuity exact X X X 1 ⊥
almost equicontinuity exact complete context-free complete ⊥ X r ⊥
sensitivity exact complete exact complete ≤ ε ⊥ ⊥ ⊥
pos.expansivity exact exact trivial ⊥ ⊥ ⊥
expansivity exact exact ⊥ ⊥ ⊥ ⊥
Ω-nilpotency X X X ⊥ 1 X
Ω-periodicity X X X ⊥ ⊥ ⊥
ω-nilpotency X X X X 1 X
ω-periodicity X X X ⊥ ⊥ ⊥
finite type exact complete exact complete ⊥ X d ⊥
soficness complete complete X X d ⊥

Keys. X stands for a positive answer, ⊥ for a negative one. In columns Sim and SimC, we indicate
the restrictions needed to get a positive answer, if any. In column τ →, we indicate the least (as far as
we know) width of column factor which would imply that of the CA, r standing for its radius, d for its
diameter, X for some computable number in terms of d and |A|.

ω-nilpotency, which consists in the convergence of all orbits towards the same limit point, appears
to be a very robust notion. Its equivalence, in the context of CA, with nilpotency, weak nilpotency,
Ω-nilpotency, and trace nilpotency was published in [GR08]. They are many other questions rising,
especially about ω-limit sets; for instance, can it be non-full for some surjective CA, or what does
ω-periodicity really represent?

Most open questions in the table above concern implications of the properties of the diametral factor of
CA; we can also mention, in that area, that it is unknown whether the topological entropy of CA is equal
to that of some of their column factor, as it is the case for onesided or expansive CA. Another important
class of issues, partly addressed in [The05], is to obtain minimal restrictions of cellular simulations that
preserve a given property, such as immediate properties, expansivities, transitivities. Finally, we can
notice a last question mark, isolated, in the third column, which can be expressed as follows: can a CA
which is nilpotent over periodic configurations admit some periodic trace word?

5 Traceable subshifts
We have seen how some properties of CA could be transmitted to their trace. An interesting “reverse”
problem would be to find an adequate CA being given a potential trace subshift. We can see that this
is not possible for all subshifts. For instance, a trace subshift always contains some deterministic
subshift, i.e.

{
(ξj(a))j∈N

∣∣ a ∈ A} for some function ξ : A → A. This in not the case for subshifts like
{(001)∞, (010)∞, (100)∞}.

5



In [CFG07], we inspected this traceability property for sofic subshifts, and reached some sufficient
conditions: all DDC SFT and universal DDC sofic subshifts are traceable by some CA, where a DDC
subshift stands for a subshift which contains some deterministic subshift

{
(ξj(a))j∈N

∣∣ a ∈ A} and some
periodic word w∞ such that w ∈ A∗ \ ξ(A)∗. We give here a sketch of proof a little different from
[CFG07], that will allow further results.

Polytraceability.

Any SFT of order 2 is traceable by some onesided CA.

We are interested in the subproblem of polytraceability. The polytrace of some CA F on some
alphabet B ⊂ Ak is the the union

◦
τF =

⋃
0≤l<k πl(τF ), where πl((z

j
i )0≤i<k

j∈N
) = (zj

l )j∈N.

Any SFT is the polytrace of some onesided CA.

To deal with more complex subshifts, we use the characterizations of universality. A subshift is
polyuniversal if any other subshift is factor of some subshift Σ′ ⊂ Σ.

Any universal sofic subshift Σ is polyuniversal.

Any universal sofic subshift is the polytrace of some onesided CA.

Partial traces.

Now it remains to simulate our CA on B ⊂ Ah by some CA on A, transforming the polytrace into a
trace. First we are looking for some CA restriction to some SFT (not over the whole space AZ). This
is possible with a restriction. A subset B ⊂ Ah is called p-freezing if ∀i ∈ J1, pK , AiW ∩WAi = ∅.
If G is a CA on some

⌊
h
2

⌋
-freezing alphabet B ⊂ Ah, then we can build some CA restriction �hG

on some SFT, whose trace τ�hG is the polytrace
◦
τG of G.

But very few alphabets are freezing; we can impose freezingness by juxtaposing a particular subset,
called a border. A border for the subset B ⊂ Ah is some finite DS (Υ ⊂ Al, δΥ), where Υ is

⌊
k+l

2

⌋
-

freezing.

If G is a CA on some alphabet B ⊂ Ak and (Υ ⊂ Al, δΥ) a border for B, then we can build some
CA restriction F on some SFT, whose trace τF is

◦
τG ∪

{
(δj

Υ(b))j∈N

∣∣∣ b ∈ Υ
}
.

A first example of border are 10k.

If G is a CA on some alphabet B ⊂ Ak such that 0∞, 1∞ ∈ ◦τG and (Υ ⊂ Al, δΥ) a border for B,
then we can build some CA restriction F on some SFT, whose trace τF is

◦
τG.

A second example of border is
{
ak+|u|uua|u|

∣∣ a ∈ A, u 6= a|u|
}
.

If G is a CA on some alphabet B ⊂ Ak such that u∞ ∈ ◦τG, u being nonuniform, and (Υ ⊂ Al, δΥ)
a border for B, then we can build some CA restriction F on some SFT, whose trace τF is

◦
τG.

All sofic subshifts contain either 0∞ and 1∞, or u∞ for some nonuniform u, except weakly nilpotent
ones. Nilpotent ones can easily be seen as traces of CA restrictions, whereas other weakly nilpotent
are not traceable.

As a result, all sofic polytraces, especially SFT and universal sofic subshifts, are the traces of some
CA restrictions to some SFT.
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Traces.

We now want to be able to extend our CA to the whole space AZ without creating invalid trace
words. We need a border which cannot appear from scratch; it can be adapted from the previous
one as soon as we add the DDC condition.

If G is a onesided CA on alphabet B ⊂ Ak, ξ : A → A and (Υ, δΥ) a border for B such
that Υ ⊂ ξ(A)k(ξ(A)k)C , then we can build some CA F : AZ → AZ whose trace τF is
◦
τG ∪

{
(δj

Υ(b))j∈N

∣∣∣ b ∈ Υ
}
∪
{

(ξj(a))j∈N
∣∣ a ∈ A}.

As a result, all DDC subshifts which are the polytrace of some onesided CA are traceable.

We get our result: all DDC SFT and all DDC universal sofic subshifts are traceable.
Because of the equivalence between ω-nilpotency and nilpotency, non-nilpotent trace subshifts of CA

cannot be ω-nilpotent, i.e. with a finite number of nonzero letters. There is still a gap between simple
trace subshifts (SFT) and complex ones (universal), that is not very well understood. The main open
question in this area is to complete the characterization of traceable sofic subshifts. Subsequently, one
shall try to understand the non-sofic case, which seems to need a very different approach than the one
we used, based on some finite automaton simulation. We can add a subsidiary question: which subshifts
are bitraces (or limit traces) of CA?

Bitraces.

When considering the limit trace, we can perform a finite number of invalid steps and then follow
the given trace. In particular we can erase invalid words in the first application of the CA. Hence,
if we consider the polytrace of some CA on some alphabet B ⊂ Ak, it has the same limit than the
polytrace of some CA on alphabet Ak, by applying a previous “erasing” step.

The previous point makes it impossible for borders to juxtapose an invalid zone of configura-
tion; hence we do not have to destroy borders any more. We can use the more general border{
abk+1

∣∣∀j ∈ N, ξj(a) 6= ξj(b)
}
, if ξ : A→ A.

If G is a onesided CA on alphabet Ak, ξ : A→ A and (Υ ⊂ Al, ξ(l)) a border for Ak, then we can
build a CA F : AZ → AZ whose trace τF is

◦
τG ∪

{
(ξj(a))j∈N

∣∣ a ∈ A}.
If G is a onesided CA on alphabet B ⊂ Ak whose bitrace

◦
τ
∗
G is sofic and contains a deterministic

subshift, then there is a CA F on alphabet A whose bitrace τ∗F is
◦
τ
∗
G.

As a consequence, all SFT and all universal sofic subshifts are the bitrace of some CA as soon as
they contain some deterministic subshift.

6 Decidability
Lots of problems on the long-term behavior of CA have been shown undecidable, such as nilpotency
[Kar92], quasiequicontinuity [DFV03], or any nontrivial property (Rice-like theorem) of the limit set
[Kar94]. More recently, properties on the complexity of the canonical factors were proved undecid-
able [dL06b]; hence, both the equicontinuity and the language classifications presented in [Ků97] are
undecidable – except, perhaps, the mysterious property of positive expansivity.

The techniques developed in the previous section are based on the construction of borders to simulate
CA on some alphabet B ⊂ Ak by CA on alphabet A. Hence, they shall help to adapt some undecidability
proofs on CA in the general case to undecidability proofs with a given alphabet. This kind of results are
often much more difficult; for instance it is still an open question whether the Rice-like theorem on limit
sets can be adapted somehow to the case of fixed alphabet, sidestepping the decidability of surjectivity.

Our constructions can, for instance, help to regain the undecidability of nilpotency of CA on alphabet
{0, 1}, proved in [DFV03]. Above all, it allows to prove a Rice-like theorem on bitrace subshifts of CA
on alphabet {0, 1}. Indeed, we can reduce the nilpotency problem of spreading CA, i.e. that admit a
state 0 which spreads in the configuration as soon as it appears. The idea is to build a double product of
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some CA which has a given trace subshift, a shift CA and some CA of which we wonder if it is nilpotent.
When the last one gets to 0, it erases the shift, so that the trace subshift is –nearly – that of the first one;
otherwise the trace subshift is a full shift. This gave rise to the article [CG07], since which the rather
unclear erasing condition has been formalized.

This result can be expressed in terms of tilings – of which CA space-time diagrams are a particular
case: for instance, being given local constraints on tiles, it is not decidable whether we can extend any
line of tiles into a valid tiling of the plane.

An interesting question would be to get a similar result on diametral factor, or being given CA of
bounded radius. This would require a completely different construction than ours, which took advantage
of an unbounded neighborhood to store the encoding. Nevertheless, it seems hopeless to have such as
strong statement on diametral factors: the existence of a uniform word in the diametral factor can clearly
be read directly from the local rule.

7 Generalizations. . . and restrictions
We have restricted our study to one dimension; one can wonder what happens when studying two-
dimensional CA, i.e. continuous self-maps of AM

2
that commute with both the vertical and the horizon-

tal shifts. Actually, most topological results prevail, except those that involve a juxtaposition of words,
such as the equivalence between non-sensitivity and quasiequicontinuity. Another great difference lies
in decidability questions: the undecidability of the domino problem [Ber66] implies that of the simplest
properties in two-dimensional CA, such as injectivity or surjectivity. An approach towards better under-
standing of this dimension-dependence would be to study restrictions of two-dimensional CA on some
subshifts, such as sand automata, which were defined in that context in [DGM08b, DGM08a].

Another important perspective lies in the directional classifications, as presented in [Sab08, ADF07,
DdLFM08]. The idea is to avoid the chaotic impact of the shift in the Cantor topology by studying
dynamics of CA up to some shift composition. Especially, the symbolic classifications of directional
classes is not yet well understood. This issue consists in the study of the action of some subnetwork of the
continuous action N×M over the configuration space corresponding to simultaneous applications of the
CA and shifts. Playing upon the structure of the monoidM itself seems another possible generalization,
but with very different perspectives; recall that the case of N is far from being fully understood.
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