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Abstract. In this paper, we study different notions of stability of sand
automata, dynamical systems inspired by sandpile models and cellular
automata. First, we study the topological stability properties of equicon-
tinuity and ultimate periodicity, proving that they are equivalent. Then,
we deal with nilpotency. The classical definition for cellular automata
being meaningless in that setting, we define a more suitable one. Finally,
we prove that this simple dynamical behavior is undecidable.

1 Introduction

Self-organized criticality (SOC [2]) is a common phenomenon observed in a huge
variety of processes in physics, biology and computer science. A SOC system
evolves to a “critical state” after some finite transient. Examples of SOC systems
are: sandpiles, snow avalanches, star clusters in the outer space, earthquakes,
forest fires, load balance in operating systems [1]. Among them, sandpile models
are a paradigmatic formal model for SOC systems [10].

In [3], the authors introduced sand automata as a generalization of sandpile
models and transposed them in the setting of discrete dynamical systems. A
key-point of [3] was to introduce a (locally compact) metric topology to study
the dynamical behavior of sand automata. A first and important result was
a fundamental representation theorem similar to the well-known theorem of
Hedlund for cellular automata [11, 3]. In [4, 5], the authors investigate sand
automata by dealing with some basic set properties and decidability issues.
Then, in [8], a new compact topology is introduced, inspired by the strong
relation between sand automata and cellular automata. It is proved that with
? This work has been supported by the Interlink/MIUR project “Cellular Automata:
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Blanc “Projet Sycomore” and by the PRIN/MIUR project “Formal Languages and
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this new topology, the representation theorem still holds, while the compactness
provides new opportunities for further topological studies of the model.

In this paper we continue the study of sand automata dynamics of [4, 5],
using the topological framework from [8]. More precisely, we study different
types of stability. Indeed, stability over time is a major issue for isolating the
realistic sandpile models satisfying the SOC principles. First, we deal with the
dynamical stability, i.e., the equicontinuity and ultimate periodicity properties.
We prove that they are equivalent. Then, the insignificance of expansivity, a
form of strong instability, suggests that the topological classification for cellular
automata from [13] cannot be easily generalized to sand automata.

Finally, we study nilpotency, a very strong form of dynamical stability. The
classical definition of nilpotency for cellular automata [7, 12] is no more mean-
ingful here, since it would prevent any sand automaton from being nilpotent.
Therefore, we introduce a new definition which captures the intuitive idea that
a nilpotent automaton destroys all configurations: a sand automaton is nilpo-
tent if all configurations get closer and closer to a uniform configuration, not
necessarily reaching it. Finally, we prove that this behavior is undecidable, using
the undecidability of the nilpotency of spreading cellular automata.

The paper is structured as follows. In Section 2, we recall basic definitions
and results on cellular automata and sand automata. Then, in Section 3, results
on the topological stability of sand automata are proved and discussed. Nilpo-
tency of sand automata is then defined and proved undecidable in Section 4.

2 Definitions

For all a, b ∈ Z with a ≤ b, let [a, b] = {a, a+ 1, . . . , b} and ˜[a, b] = [a, b] ∪
{+∞,−∞}. Let N+ be the set of positive integers.

For a vector i ∈ Zd, denote by |i| the infinite norm of i. Let A a (possibly
infinite) alphabet, and r, d ∈ N∗. Denote byMd

r the set of all the d-dimensional
vectors of the hyper-rectangle [−r, r]d, with values in A.

2.1 Cellular Automata

Let A be a finite alphabet. A CA configuration of dimension d is a function from
Zd to A. The set AZd

of all the CA configurations is called the CA configuration
space. This space is usually equipped with the Tychonoff metric dT defined by

∀x, y ∈ AZd

, dT (x, y) = 2−k where k = min
{
|j| : j ∈ Zd, xj 6= yj

}
.

The topology induced by dT coincides with the product topology induced by the
discrete topology on A. It makes the CA configuration space is a Cantor space:
it is compact, perfect (i.e., it has no isolated points) and totally disconnected.

A cellular automaton (CA) is a quadruple 〈A, d, r, g〉, where A is the alpha-
bet, also called the state set, d ∈ N is the dimension, r ∈ N is the radius and
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g :Md
r → A is the local rule of the automaton. The local rule g induces a global

rule G : AZd → AZd

defined as follows,

∀x ∈ AZd

, ∀i ∈ Zd, G(x)i = g
(
M i

r(x)
)
,

where M i
r(x) ∈ Md

r is the finite portion of x of reference position i ∈ Zd and
radius r defined by ∀k ∈ [−r, r]d, M i

r(x)k = xi+k.
For any k ∈ Zd the shift map σk : AZd → AZd

is defined by ∀x ∈ AZd

,∀i ∈
Zd, σk(x)i = xi+k. A function F : AZd → AZd

is said to be shift-commuting
if ∀k ∈ Zd, F ◦ σk = σk ◦ F . Note that CA are exactly the class of all shift-
commuting functions which are (uniformly) continuous with respect to the Ty-
chonoff metric (Hedlund’s theorem from [11]). For the sake of simplicity, we will
make no distinction between a CA and its global rule G.

For a given CA, a state s ∈ A is quiescent (resp., spreading) if for all matrices
U ∈ Md

r such that ∀k ∈ [−r, r]d, (resp., ∃k ∈ [−r, r]d) Uk = s, it holds that
g(U) = s. Remark that a spreading state is also quiescent. A CA is said to be
spreading if it has a spreading state. In the sequel, the spreading state of any
spreading CA will be denoted 0 ∈ A.

2.2 SA Configurations

A configuration is a set of sand grains organized in piles and distributed all over
the d-dimensional lattice Zd. A pile is an element of Z̃ = Z∪{−∞,+∞} which
represents a number of grains. One pile is positioned in each point of the lattice
Zd. Formally, a configuration x is a function from Zd to Z̃ which associates any
vector i = (i1, . . . , id) ∈ Zd with the number xi ∈ Z̃ of grains in the pile of
position i. When the dimension d id known without ambiguity, we note 0 the
null vector of Zd. Denote by C = Z̃Zd

the set of all configurations.
A configuration x ∈ C is said to be constant if there is an integer c ∈ Z such

that for any vector i ∈ Zd, xi = c. In that case we write x = c. A configuration
x ∈ C is said to be bounded if there exist two integers m1,m2 ∈ Z such that
for all vectors i ∈ Zd, m1 ≤ xi ≤ m2. Denote by B the set of all bounded
configurations.

A measuring device βm
r of precision r ∈ N and reference height m ∈ Z is a

function from Z̃ to [̃−r, r] defined as follows

∀n ∈ Z̃, βm
r (n) =

+∞ if n > m+ r ,
−∞ if n < m− r ,
n−m otherwise.

A measuring device is used to evaluate the relative height of two piles, with
a bounded precision. This is the technical basis of the definition of cylinders,
distance and ranges which are used all along this article.

In [8], a topology, inspired by the topology on CA configurations, is defined
as follows.
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Definition 1 (cylinder). For any configuration x ∈ C, for any r ∈ N, and for
any i ∈ Zd, the cylinder of x centered on i and of radius r is the d-dimensional
matrix Ci

r(x) ∈Md
r defined on the finite alphabet [̃−r, r] by

∀k ∈ [−r, r]d ,
(
Ci

r(x)
)
k

= β0
r (xi+k) .

Definition 2. For any pair of configurations x, y ∈ C, we define

d(x, y) = 2−k where k = min
{
r ∈ N : C0

r (x) 6= C0
r (y)

}
.

As a consequence, two configurations x, y are compared by putting boxes
(the cylinders) at height 0 around the corresponding piles indexed by 0. The
integer k is the size of the smallest cylinders in which a difference appears
between x and y.

That topology makes the SA configuration space perfect, totally discon-
nected, and, unlike the original topology used in [11, 3], compact (see [8]).

2.3 Sand Automata

For any integer r ∈ N, for any configuration x ∈ C and any index i ∈ Zd

with xi 6= ±∞, the range of center i and radius r is the d-dimensional matrix
Ri

r(x) ∈Md
r on the finite alphabet A = [̃−r, r] ∪ ⊥ such that

∀k ∈ [−r, r]d ,
(
Ri

r(x)
)
k

=
{
⊥ if k = 0 ,
βxi

r (xi+k) otherwise.

The range is used to define a sand automaton. It is a kind of cylinder, where
the observer is always located on the top of the pile xi (called the reference).
It represents what the automaton is able to see at position i. Sometimes the
central ⊥ symbol may be omitted for simplicity sake. The set of all possible
ranges of radius r, in dimension d, is denoted by Rd

r .
A sand automaton (SA) is a deterministic finite automaton working on

configurations. Each pile is updated synchronously, according to a local rule
which computes the variation of the pile by means of the range. Formally, a SA
is a triple 〈d, r, f〉, where d is the dimension, r is the radius and f : Rd

r → [−r, r]
is the local rule of the automaton. The global rule F : C → C is defined by

∀x ∈ C, ∀i ∈ Zd, F (x)i =
{
xi if xi = ±∞ ,
xi + f(Ri

r(x)) otherwise.

The following example illustrates a sand automaton whose behavior will be
studied in Section 4. For more examples, we refer to [5].

Example 1 (the automaton N ). This automaton destroys a configuration by
collapsing all piles towards the lowest one. It decreases a pile when there is a
lower pile in the neighborhood. Let N = 〈1, 1, fN 〉 of global rule FN where

∀a, b ∈ [̃−1, 1], fN (a, b) =
{
−1 if a < 0 or b < 0 ,

0 otherwise.
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Fig. 1. Illustration of the behavior of N .

When no misunderstanding is possible, we identify a SA with its global rule
F . For any k ∈ Zd, we extend the definition of the shift map to C, σk : C → C
is defined by ∀x ∈ C,∀i ∈ Zd, σk(x)i = xi+k. The raising map ρ : C → C is
defined by ∀x ∈ C,∀i ∈ Zd, ρ(x)i = xi + 1. A function F : C → C is said to be
vertical-commuting if F ◦ ρ = ρ ◦F . A function F : C → C is infinity-preserving
if for any configuration x ∈ C and any vector i ∈ Zd, F (x)i = +∞ if and only
if xi = +∞ and F (x)i = −∞ if and only if xi = −∞.

With the topology from [8], the Hedlund-like representation theorem for SA
from [3] remains valid.

Theorem 1 ([8]). A mapping F : C → C is a SA if and only if F is (uniformly)
continuous, shift-commuting, vertical-commuting and infinity-preserving.

3 Some Dynamical Behaviors

The concepts that first come to mind to formalize the notion of stability are
inspired by the topological classifications given in [9, 13] for CA. In [13], CA are
classified into four classes, from the most stable to the most unstable behavior:
equicontinuous CA, non-equicontinuous CA admitting an equicontinuity config-
uration, sensitive but not positively expansive CA, positively expansive CA. In
this section we consider these classes from the SA point of view, and we intro-
duce the notion of ultimate periodicity, useful for the characterization of SOC
systems. We prove that there exist no positively expansive SA and characterize
equicontinuous SA as the ultimately periodic SA.

First, recall basic definitions. Let (X,m) a metric space and let H : X → X
be a continuous application. An element x ∈ X is an equicontinuity point for H
if for any ε > 0, there exists δ > 0 such that for all y ∈ X, m(x, y) < δ implies
that ∀n ∈ N, m(Hn(x), Hn(y)) < ε. The map H is equicontinuous if for any
ε > 0, there exists δ > 0 such that for all x, y ∈ X, m(x, y) < δ implies that
∀n ∈ N, m(Hn(x), Hn(y)) < ε. An element x ∈ X is ultimately periodic for H if
there exist two integers n ≥ 0 (the preperiod) and p > 0 (the period) such that
Hn+p(x) = Hn(x). H is ultimately periodic if there exist n ≥ 0 and p > 0 such
that Hn+p = Hn. If X is compact, H is equicontinuous (resp. ultimately peri-
odic) iff all elements of X are equicontinuity points (resp. ultimately periodic).
H is sensitive (to the initial conditions) if there is a constant ε > 0 such that
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for all points x ∈ X and all δ > 0, there is a point y ∈ X and an integer n ∈ N
such that m(x, y) < δ but m(Fn(x), Fn(y)) > ε. H is positively expansive if
there is a constant ε > 0 such that for all distinct points x, y ∈ X, there exists
n ∈ N such that m(Hn(x), Hn(y)) > ε.

One-dimensional SA are very interesting models, which complexity lies
somewhere between one-dimensional and two-dimensional CA. Indeed we have
seen in the previous section that the latter can simulate SA, and it was shown in
[5] that SA could simulate the former. A classification of one-dimensional cellu-
lar automata in terms of their dynamical behavior was given in [13]. Things are
very different as soon as we get into the second dimension, as noted in [15, 14].
The question is now whether the complexity of the SA model is closer to that
of the lower or the higher-dimensional CA.

The classification from [13] is no more relevant in the context of SA since
the class of positively expansive SA is empty. This result can be related to the
absence of positively expansive two-dimensional CA (see [15]), though the proof
is much different.

Proposition 1. There are no positively expansive SA.

Proof. Let F a SA and δ = 2−k > 0. Take two distinct configurations x, y ∈ C
such that ∀i ∈ [−k, k], xi = yi = +∞. By infinity-preservingness, we get ∀n ∈
N,∀i ∈ [−k, k], Fn(x)i = Fn(y)i = +∞, hence d(Fn(x), Fn(y)) < δ. ut

In a similar way as Theorem 4 of [13], the two different notions of stability,
equicontinuity and ultimate periodicity, are proved to be equivalent. The proof
uses the following lemma, which allows a better understanding of equicontinuity
for SA.

Lemma 1. If F is an equicontinuous SA, then the variation of a pile is bounded
by the differences in an initial neighborhood, i.e., there is some integer l such
that all configurations x ∈ C with x0 = 0 satisfy

∀n ∈ N, |Fn(x)0| ≤ max
|i|≤l
|xi|<∞

|xi| .

Proof. If F is equicontinuous, in particular, for ε = 20, there exists δ = 2−l such
that for all x, y ∈ C, if C0

l (x) = C0
l (y), then ∀n ∈ N, C0

0 (Fn(x)) = C0
0 (Fn(y)).

First, consider a configuration y that has infinite l-neighborhood, i.e., ∀i ∈
[−l, l] , yi /∈ [−l, l]. Let z defined by zi = +∞ if yi ≥ 0 and zi = −∞ if yi < 0, in
such way that C0

l (y) = C0
l (z). Then ∀n ∈ N, C0

0 (Fn(y)) = C0
0 (Fn(z)) = C0

0 (z),
i.e., Fn(y)0 < −l⇔ y0 < −l and Fn(y)0 > l⇔ y0 > l.

Now, let x a configuration such that x0 = 0 and m = max |i|≤l
|xi|<∞

|xi|. Notice

that ρl+m+1(x) has infinite l-neighborhood, since xi ≤ m or xi = +∞ for
|i| ≤ l. Hence, as seen before, ∀n ∈ N, Fn(x)0 ≤ m. A symmetrical reasoning
on ρ−l−m−1(x) gives ∀n ∈ N, |Fn(x)0| ≤ m. ut
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Proposition 2. If F is a SA, then the following statements are equivalent:

1. F is equicontinuous.
2. F is ultimately periodic.

Proof. 2⇒1: Let F be such that with Fn+p = Fn for some n ≥ 0, p > 0. Since
F, F 2, . . . , Fn+p−1 are uniformly continuous maps, for any ε > 0 there exists
δ > 0 such that for all x, y ∈ C with d(x, y) < δ, it holds that ∀q ∈ N, q < n+p,
d(F q(x), F q(y)) < ε. Since for any t ∈ N, F t is equal to some F q with q < n+p,
the map F is equicontinuous.
1⇒2: Let F an equicontinuous SA and l, as in Lemma 1, such that for all
x, y ∈ C, if C0

l (x) = C0
l (y), then ∀n ∈ N, C0

0 (Fn(x)) = C0
0 (Fn(y)). Let x

a configuration such that x0 is finite. Should we vertically shift it, we can
assume that x0 = 0. Let y the configuration defined by yi = max(min(xi, l +
1),−l − 1) if −l ≤ i ≤ l and yi = +∞ otherwise, in such way that C0

l (x) =
C0

l (y). Lemma 1 gives ∀i ∈ [−l, l] ,∀n ∈ N, |Fn(y)i| ≤ 2l + 2. We can thus
find some preperiod qy and some period py such that ∀i ∈ [−l, l] , F py+qy (y)i =
F qy (y)i. The other piles being infinite, hence invariant, we get F py+qy (y) =
F qy (y). As a consequence, C0

0 (F py+qy (x)) = C0
0 (F qy (x)). Define p (resp., q)

as the least common multiple (resp., maximum) of all py (resp., qy) for y a
configuration such that |yi| ≤ l+ 1 if |i| ≤ l and yi = +∞ otherwise. Then, for
every configuration x, C0

0 (F p+q(x)) = C0
0 (F q(x)); in particular for vertical and

horizontal shifts of x, which give F p+q(x) = F q(x). ut

An important open question in the dynamical behavior of SA is the existence
of non-sensitive SA without any equicontinuity configuration. An example for
two-dimensional CA is given in [14], but their method can hardly be adapted
for SA. However, we conjecture that such SA exist, which would lead to a clas-
sification of SA into four classes: equicontinuous, admitting an equicontinuity
configuration (but not equicontinuous), non-sensitive without equicontinuity
configurations, sensitive.

Another issue is the decidability of these classes. In [4], the undecidability
of SA ultimate periodicity was proved on the particular subsets of finite and
periodic configurations. It follows directly that equicontinuity on these subsets
is undecidable. The question is still open for the whole configuration space C.

4 Nilpotency

In this section we give a definition of nilpotency, the most stable dynamics of a
dynamical system, adapted to SA. Then, we prove that this nilpotency behavior
is undecidable (Theorem 3).

4.1 Nilpotency of CA

Here we recall the basic definitions and properties of nilpotent CA. Nilpotency
is among the simplest dynamical behavior that an automaton may exhibit.
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Intuitively, a system is nilpotent if it destroys every piece of information in any
initial configuration, reaching a common constant configuration after a while.
For CA, this is formalized as follows.

Definition 3 (CA nilpotency [7, 12]). A CA G is nilpotent if

∃c ∈ A, ∃N ∈ N ∀x ∈ AZd

, ∀n ≥ N, Gn(x) = c .

Remark that, because of the compactness of the CA configuration space, a
CA is nilpotent if and only if it is nilpotent for all initial configurations (i.e.,
all configurations eventually reach the same configuration).

Spreading CA have the following stronger characterization.

Proposition 3 ([6]). A CA of global rule G, with spreading state 0, is nilpotent
if and only if for all configurations x ∈ AZd

, limn→∞ dT (Gn(x), 0) = 0.

This equivalence is very useful since the CA nilpotency has been proved
undecidable in [12], even for the restricted class of spreading CA.

Theorem 2 ([12]). For a given state s, it is undecidable to know whether a
cellular automaton with spreading state s is nilpotent.

4.2 Nilpotency of SA

A direct adaptation of Definition 3 to SA is vain. Indeed, assume F is a SA of
radius r. For any k ∈ Zd, consider the configuration xk ∈ B defined by xk

0 = k
and xk

i = 0 for any i ∈ Zd\{0}. Since the pile of height k may decrease at most
by r during one step of evolution of the SA, and the other piles may increase at
most by r, xk requires at least dk/2re steps to reach a constant configuration.
Thus, there exists no common integer n such that all configurations xk reach
a constant configuration in time n. This is a major difference with CA, which
is essentially due to the unbounded set of states and to the infinity-preserving
property.

Thus, we propose to label as nilpotent the SA which make every pile ap-
proach a constant value, but not necessarily reaching it ultimately. This nilpo-
tency notion, inspired by Proposition 3, is formalized as follows for a SA F :

∃c ∈ Z, ∀x ∈ C, lim
n→∞

d(Fn(x), c) = 0 .

Remark that c shall not be taken in the full state set Z̃, because allowing in-
finite values for c would not correspond to the intuitive idea that a nilpotent
SA “destroys” a configuration (otherwise, the raising map would be nilpotent).
Anyway, this definition is not satisfying because of the vertical commutativity:
two configurations which differ by a vertical shift reach two different configura-
tions, and then no nilpotent SA may exist. A possible way to work around this
issue is to make the limit configuration depend on the initial one:
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∀x ∈ C, ∃c ∈ Z, lim
n→∞

d(Fn(x), c) = 0 .

Again, since SA are infinity-preserving, an infinite pile cannot be destroyed (nor,
for the same reason, can an infinite pile be built from a finite one). Therefore
nilpotency has to involve the configurations of ZZd

, i.e., the ones without infinite
piles. Moreover, every configuration x ∈ ZZd

made of regular steps (i.e., in
dimension 1, for all i ∈ Z, xi − xi−1 = xi+1 − xi) is invariant by the SA rule
(possibly composing it with the vertical shift). So it cannot reach nor approach
a constant configuration. Thus, the larger reasonable set on which nilpotency
might be defined is the set of bounded configurations B. This leads to the
following formal definition of nilpotency for SA.

Definition 4 (SA nilpotency).

∀x ∈ B, ∃c ∈ Z, lim
n→∞

d(Fn(x), c) = 0 .

The following proposition shows that the class of nilpotent SA is nonempty.
Remark that similar nilpotent SA can be constructed with any radius and in
any dimension.

Proposition 4. The SA N from Example 1 is nilpotent.

Proof. Let x ∈ B, let i ∈ Z such that for all j ∈ Z, xj ≥ xi. Clearly, after
xi+1 − xi steps, F

xi+1−xi

N (x)i+1 = F
xi+1−xi

N (x)i = xi. By immediate induction,
we obtain that for all j ∈ Z there exists nj ∈ N such that Fnj

N (x)j = xi, hence
limn→∞ d(Fn

N (x), xi) = 0. ut

4.3 Undecidability

The main result of this section is that SA nilpotency is undecidable (Theorem 3),
by reducing to it the nilpotency of spreading CA. This emphasizes the fact that
the dynamical behavior of SA is very difficult to predict. We think that this
result might be used as the reference undecidable problem for further questions
on SA.

Problem Nil
instance: a SA A = 〈d, r, λ〉;
question: is A nilpotent?

Theorem 3. The problem Nil is undecidable.

Proof. This is proved by reducing Nil to the nilpotency of spreading cellular
automata. Remark that it is sufficient to show the result in dimension 1. Let S
be a spreading cellular automaton S = 〈A, 1, s, g〉 of global rule G, with finite
set of integer states A ⊂ N containing the spreading state 0. We simulate S with
the sand automaton A = 〈1, r = max(2s,maxA), f〉 of global rule F using the
following technique, also developed in [5]. Let ξ : AZ → B be a function which
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inserts markers every two cells in the CA configuration to obtain a bounded
SA configuration. These markers allow the local rule of the SA to know the
absolute state of each pile and behave as the local rule of the CA. To simplify
the proof, the markers are put at height 0 (see Figure 2):

∀y ∈ AZ,∀i ∈ Z, ξ(y)i =
{

0 (marker) if i is odd ,
yi/2 otherwise.

This can lead to an ambiguity when all the states in the neighborhood of size
4s + 1 are at state 0, as shown in the picture. But as in this special case the
state 0 is quiescent for g, this is not a problem: the state 0 is preserved, and
markers are preserved.

Fig. 2. Illustration of the function ξ used in the simulation of the spreading CA S by
A. The thick segments are the markers used to distinguish the states of the CA, put
at height 0. There is an ambiguity for the two piles indicated by the arrows: with a
radius 2, the neighborhoods are the same, although one of the piles is a marker and
the other the state 0.

The local rule f is defined as follows, for all ranges R ∈ R1
r,

f(R) =

0 if R−2s+1, R−2s+3, . . . , R−1, R1, . . . , R2s−1 ∈ A ,
g(R−2s + a,R−2s+2 + a, . . . , R−2 + a, a,R2 + a, . . . , R2s + a)− a

if R−2s+1 = R−2s+3 = · · · = R2s−1 = a < 0 and −a ∈ A .
(1)

The first case is for the markers (and state 0) which remain unchanged, the
second case is the simulation of g in the even piles. As proved in [5], for any
y ∈ AZ it holds that ξ(G(y)) = F (ξ(y)). The images by f of the remaining
ranges will be defined later on, first a few new notions need to be introduced.

A sequence of consecutive piles (xi, . . . , xj) from a configuration x ∈ B is
said to be valid if it is part of an encoding of a CA configuration, i.e., xi =
xi+2 = · · · = xj (these piles are markers) and for all k ∈ N such that 0 ≤ k <
(j − i)/2, xi+2k+1 − xi ∈ A (this is a valid state). We extend this definition to
configurations, when i = −∞ and j = +∞, i.e., x ∈ ρc ◦ξ(AZ) for a given c ∈ Z
(x ∈ B is valid if it is the raised image of a CA configuration). A sequence (or
a configuration) in invalid if it is not valid.

First we show that starting from a valid configuration, the SA A is nilpotent
if and only if S is nilpotent. This is due to the fact that we chose to put the
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markers at height 0, hence for any valid encoding of the CA x = ρc ◦ ξ(y), with
y ∈ AZ and c ∈ Z,

lim
n→∞

dT (Gn(y), 0) = 0 if and only if lim
n→∞

d(Fn(x), c) = 0 .

It remains to prove that for any invalid configuration, A is also nilpotent. In
order to have this behavior, we add to the local rule f the rules of the nilpotent
automaton N for every invalid neighborhood of width 4s + 1. For all ranges
R ∈ R1

r not considered in Equation (1),

f(R) =
{
−1 if R−r < 0 or R−r+1 < 0 or · · · or Rr < 0 ,

0 otherwise. (2)

Let x ∈ B be an invalid configuration. Let k ∈ Z be any index such that
∀l ∈ Z, xl ≥ xk. Let i, j ∈ Z be respectively the lowest and greatest indices
such that i ≤ k ≤ j and (xi, . . . , xj) is valid (i may equal j). Remark that
for all n ∈ N, (Fn(x)i, . . . , F

n(x)j) remains valid. Indeed, the markers are by
construction the lowest piles and Equations (1) and (2) do not modify them.
The piles coding for non-zero states can change their state by Equation (1),
or decrease it by 1 by Equation (2), which in both cases is a valid encoding.
Moreover, the piles xi−1 and xj+1 will reach a valid value after a finite number
of steps: as long as they are invalid, they decrease by 1 until they reach a value
which codes for a valid state. Hence, by induction, for any indices a, b ∈ Z,
there exists Na,b such that for all n ≥ Na,b the sequence (Fn(x)a, . . . , F

n(x)b)
is valid.

In particular, after N−2Nr−1,2Nr+1 step, there is a valid sequence of length
4Nr+ 3 centered on the origin (here, N is the number of steps needed by S to
reach the configuration 0, given by Definition 3). Hence, after N−2Nr,2Nr +N
steps, the local rule of the CA S applied on this valid sequence leads to 3
consecutive zeros at positions −1, 0, 1. All these steps are illustrated on Figure 3.

In a similar way, we prove that for all n ≥ N−2Nr−k,2Nr+k +N , the sequence
(Fn(x)−k, . . . , F

n(x)k) is constant and does not evolve as n grows. Therefore,
there exists c ∈ Z such that limn→∞ d(Fn(x), c) = 0. We just proved that A
is nilpotent, i.e., limn→∞ d(Fn(x), c) = 0 for all x ∈ B, if and only if S is
nilpotent (because of the equivalence of definitions given by Proposition 3), so
Nil is undecidable (Theorem 2). ut

5 Conclusion

In this article we have continued the study of sand automata, using the compact
topology on the SA configuration space introduced in [8]. This topology, inspired
by the topology on CA, may facilitate studies about dynamical and topological
properties of SA, as for the proof of the equivalence between equicontinuity and
ultimate periodicity (Proposition 2).
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0

N−2Nr+1,2Nr+1

N−2Nr+1,2Nr+1 + N

0

time

i j

Fig. 3. Destruction of the invalid parts. The lowest valid sequence (in gray) extends
until it is large enough. Then after N other steps the 3 central piles (hatched) are
destroyed because the rule of the CA is applied correctly.

Then, we have given a definition of nilpotency. Although it differs from the
standard one for CA, it captures the intuitive idea that a nilpotent automaton
“destroys” configurations. Finally, we have proved that SA nilpotency is unde-
cidable (Theorem 3). This fact enhances the idea that the behavior of a SA is
hard to predict. We also think that this result might be used as a fundamental
undecidability result, which could be reduced to other SA properties.

Besides, in the context of CA, nilpotency clearly implies ultimate periodic-
ity. It appears that with our definitions, nilpotency of SA is not necessarily a
particular case of ultimate periodicity (N is not ultimately periodic). However,
it would be interesting to see if it could be linked to other weaker stability
notions.

Moreover, the study of global properties such as injectivity and surjectiv-
ity and their corresponding dimension-dependent decidability problems could
help to understand if d-dimensional SA look more like d-dimensional or d+ 1-
dimensional CA. Unfortunately, deciding these dynamical properties remains
a major problem. Similarly, it would be interesting to solve the open question
of the dichotomy between sensitive SA and those with equicontinuous config-
urations. A potential counter-example would give a more precise idea of the
dynamical behaviors represented by SA.
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