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1

Introduction

String-matching is a very important subject in the wider domain of
text processing. String-matching algorithms are basic components used
in implementations of practical softwares existing under most operating
systems. Moreover, they emphasize programming methods that serve as
paradigmsin other fields of computer science (system or software design).
Finally, they also play an important role in theoretical computer science
by providing challenging problems.

Although data are memorized in various ways, text remains the main
form to exchange information. This is particularly evident in literature
or linguistics where data are composed of huge corpus and dictionaries.
This apply as well to computer science where a large amount of data are
stored in linear files. And this is also the case, for instance, in molec-
ular biology because biological molecules can often be approximated as
sequences of nucleotides or amino acids. Furthermore, the quantity of
available data in these fields tend to double every eighteen months. This
is the reason why algorithms should be efficient even if the speed and
capacity of storage of computers increase regularly.

String-matching consists in finding one, or more generally, all the oc-
currences of a string (more generally called a pattern) in a text. All
the algorithms in this book output all occurrences of the pattern in the
text. The pattern is denoted by z = z[0..m — 1]; its length is equal
to m. The text is denoted by y = y[0..n — 1]; its length is equal to n.
Both strings are build over a finite set of character called an alphabet
denoted by Y. with size is equal to o.

Applications require two kinds of solution depending on which string,
the pattern or the text, is given first. Algorithms based on the use of
automata or combinatorial properties of strings are commonly imple-
mented to preprocess the pattern and solve the first kind of problem.
The notion of indexes realized by trees or automata is used in the sec-
ond kind of solutions. This book will only investigate algorithms of the
first kind.

String-matching algorithms of the present book work as follows. They
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scan the text with the help of a window which size is generally equal
to m. They first align the left ends of the window and the text, then
compare the characters of the window with the characters of the pattern
— this specific work is called an attempt — and after a whole match
of the pattern or after a mismatch they shift the window to the right.
They repeat the same procedure again until the right end of the window
goes beyond the right end of the text. This mechanism is usually called
the sliding window mechanism. We associate each attempt with the
position j in the text when the window is positioned on y[j ..j +m—1].

The brute force algorithm locates all occurrences of z in y in time
O(m x n). The many improvements of the brute force method can be
classified depending on the order they performed the comparisons be-
tween pattern characters and text characters et each attempt. Four cat-
egories arise: the most natural way to perform the comparisons is from
left to right, which is the reading direction; performing the comparisons
from right to left generally leads to the best algorithms in practice; the
best theoretical bounds are reached when comparisons are done in a
specific order; finally there exist some algorithms for which the order in
which the comparisons are done is not relevant (such is the brute force
algorithm).

1.1

From left to right

Hashing provides a simple method that avoids the quadratic number
of character comparisons in most practical situations, and that runs
in linear time under reasonable probabilistic assumptions. It has been
introduced by Harrison and later fully analyzed by Karp and Rabin.

Assuming that the pattern length is no longer than the memory-word
size of the machine, the Shift-Or algorithm is an efficient algorithm to
solve the exact string-matching problem and it adapts easily to a wide
range of approximate string-matching problems.

The first linear-time string-matching algorithm is from Morris and
Pratt. It has been improved by Knuth, Morris, and Pratt. The search
behaves like a recognition process by automaton, and a character of the
text is compared to a character of the pattern no more than logg (m+1)
(® is the golden ratio (14 +/5)/2). Hancart proved that this delay of a
related algorithm discovered by Simon makes no more than 1+ log, m
comparisons per text character. Those three algorithms perform at most
2n — 1 text character comparisons in the worst case.

The search with a Deterministic Finite Automaton performs exactly n
text character inspections but it requires an extra space in O(mxo). The
Forward Dawg Matching algorithm performs exactly the same number
of text character inspections using the suffix automaton of the pattern.

The Apostolico-Crochemore algorithm is a simple algorithm which
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performs %n text character comparisons in the worst case.

The Not So Naive algorithm is a very simple algorithm with a qua/-
dra/-tic worst case time complexity but it requires a preprocessing phase
in constant time and space and is slightly sub-linear in the average case.

1.2

From right to left

The Boyer-Moore algorithm is considered as the most efficient string-
matching algorithm in usual applications. A simplified version of it (or
the entire algorithm) is often implemented in text editors for the “search”
and “substitute” commands. Cole proved that the maximum number of
character comparisons is tightly bounded by 3n after the preprocessing
for non-periodic patterns. It has a quadratic worst case time for periodic
patterns.

Several variants of the Boyer-Moore algorithm avoid its quadratic be-
haviour. The most efficient solutions in term of number of character com-
parisons have been designed by Apostolico and Giancarlo, Crochemore et
alii (Turbo-BM), and Colussi (Reverse Colussi). Empirical results show
that variations of the Boyer-Moore algorithm and algorithms based on
the suffix automaton by Crochemore et alii (Reverse Factor and Turbo
Reverse Factor) or the suffix oracle by Crochemore et alii (Backward
Oracle Matching) are the most efficient in practice.

The Zhu-Takaoka and Berry-Ravindran algorithms are variants of the
Boyer-Moore algorithm which require an extra space in O(o?).

1.3

In a specific order

The two first linear optimal space string-matching algorithms are due to
Galil-Seiferas and Crochemore-Perrin (Two Way). They partition the
pattern in two parts, they first search for the right part of the pattern
from left to right and then if no mismatch occurs they search for the left
part.

The algorithms of Colussi and Galil-Giancarlo partition the set of
pattern positions into two subsets. They first search for the pattern
characters which positions are in the first subset from left to right and
then if no mismatch occurs they search for the remaining characters
from left to right. The Colussi algorithm is an improvement over the
Knuth-Morris-Pratt algorithm and performs at most %n text character
comparisons in the worst case. The Galil-Giancarlo algorithm improves
the Colussi algorithm in one special case which enables it to perform at
most %n text character comparisons in the worst case.

Sunday’s Optimal Mismatch and Maximal Shift algorithms sort the

pattern positions according their character frequency and their leading
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shift respectively.
Skip Search, KmPSkip Search and Alpha Skip Search algorithms by

Charras et aliz use buckets to determine starting positions on the pattern
in the text.

1.4 In any order
The Horspool algorithm is a variant of the Boyer-Moore algorithm, it
uses only one of its shift functions and the order in which the text char-
acter comparisons are performed is irrelevant. This is also true for other
variants such as the Quick Search algorithm of Sunday, Tuned Boyer-
Moore of Hume and Sunday, the Smith algorithm and the Raita algo-
rithm.

1.5 Conventions

We will consider practical searches. We will assume that the alphabet is
the set of ASCII codes or any subset of it. The algorithms are presented
in C programming language, thus a word w of length £ can be written
w[0..£ —1]; the characters are w[0], ..., w[f — 1] and w[f] contained the
special end character (null character) that cannot occur anywhere within
any word but in the end. Both words the pattern and the text reside in
main memory.
Let us introduce some definitions.

Definitions

A word u is a prefix of a word w is there exists a word v (possibly
empty) such that w = uv.

A word v is a suffix of a word w is there exists a word u (possibly empty)
such that w = wuv.

A word z is a substring or a subword or a factor of a word w is there
exist two words u and v (possibly empty) such that w = uzv.

A integer pis a period of a word w if for i, 0 < i < m—p, w[i] = w[i+p].
The smallest period of w is called the period of w, it is denoted by
per(w).

A word w of length £ is periodic if the length of its smallest period is
smaller or equal to £/2, otherwise it is non-periodic.

A word w is basic if it cannot be written as a power of another word:
there exist no word z and no integer k such that w = 2*.

A word z is a border of a word w if there exist two words u and v such
that w = uz = zv, z is both a prefix and a suffix of w. Note that in this
case |u| = |v| is a period of w.
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The reverse of a word w of length ¢ denoted by w® is the mirror image
of w: w? = w[l — 1w[¢ —2]...w[1]w[0].

A Deterministic Finite Automaton (DFA) A is a quadruple (@, ¢0, T, E)
where:

¢ () is a finite set of states;

¢ go € @ is the initial state;

o T C (@ is the set of terminal states;

¢ EC(QxXxQ)is the set of transitions.

The language £(A) defined by A is the following set:

{w € ¥ Elqu ceesqn, M= |w|¢Qn € TaVO S 1< n, (qlaw[l]:qH-l) € E}

For each exact string-matching algorithm presented in the present
book we first give its main features, then we explained how it works
before giving its C code. After that we show its behaviour on a typical
example where ¥ = GCAGAGAG and y = GCATCGCAGAGAGTATACAGTACG. Fi-
nally we give a list of references where the reader will find more detailed
presentations and proofs of the algorithm. At each attempt, matches are
materialized in light gray while mismatches are shown in dark gray. A
number indicates the order in which the character comparisons are done
except for the algorithms using automata where the number represents
the state reached after the character inspection.

Implementations

In this book, we will use classical tools. One of them is a linked list of
integer. It will be defined in C as follows:

struct _cell {
int element;
struct _cell *next;

s
typedef struct _cell *List;

Another important structures are tries and automata, specifically suf-
fix automata (see chapter 25). Basically automata are directed graphs.
We will use the following interface to manipulate automata (assuming
that vertices will be associated with positive integers):

/* returns a new data structure for
a graph with v vertices and e edges */
Graph newGraph(int v, int e);

/* returns a new data structure for
a automaton with v vertices and e edges */
Graph newAutomaton(int v, int e);
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/* returns a new data structure for
a suffix automaton with v vertices and e edges */
Graph newSuffixAutomaton(int v, int e);

/* returns a new data structure for
a trie with v vertices and e edges */
Graph newTrie(int v, int e);

/* returns a new vertex for graph g */
int newVertex(Graph g);

/* returns the initial vertex of graph g */
int getInitial(Graph g);

/* returns true if vertex v is terminal in graph g */
boolean isTerminal(Graph g, int v);

/* set vertex v to be terminal in graph g */
void setTerminal(Graph g, int v);

/* returns the target of edge from vertex v
labelled by character c in graph g */
int getTarget(Graph g, int v, unsigned char c);

/* add the edge from vertex v to vertex t
labelled by character ¢ in graph g */
void setTarget(Graph g, int v, unsigned char c, int t);

/* returns the suffix link of vertex v in graph g */
int getSuffixLink(Graph g, int v);

/* set the suffix link of vertex v
to vertex s in graph g */
void setSuffixLink(Graph g, int v, int s);

/* returns the length of vertex v in graph g */
int getLength(Graph g, int v);

/* set the length of vertex v to integer ell in graph g */
void setLength(Graph g, int v, int ell);

/* returns the position of vertex v in graph g */
int getPosition(Graph g, int v);
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/* set the length of vertex v to integer ell in graph g */
void setPosition(Graph g, int v, int p);

/* returns the shift of the edge from vertex v
labelled by character ¢ in graph g */
int getShift(Graph g, int v, unsigned char c);

/* set the shift of the edge from vertex v
labelled by character c to integer s in graph g */
void setShift(Graph g, int v, unsigned char c, int s);

/* copies all the characteristics of vertex source
to vertex target in graph g */
void copyVertex(Graph g, int target, int source);

A possible implementation is given in appendix A.

~






2 Brute force algorithm

2.1 Main features

*  no preprocessing phase;

¢ constant extra space needed;

¢ always shifts the window by exactly 1 position to the right;
¢ comparisons can be done in any order;

o searching phase in O(m x n) time complexity;

¢ 2n expected text character comparisons.

2.2 Description

The brute force algorithm consists in checking, at all positions in the
text between 0 and n — m, whether an occurrence of the pattern starts
there or not. Then, after each attempt, it shifts the pattern by exactly
one position to the right.

The brute force algorithm requires no preprocessing phase, and a con-
stant extra space in addition to the pattern and the text. During the
searching phase the text character comparisons can be done in any or-
der. The time complexity of this searching phase is O(m x n) (when
searching for a”~!b in a” for instance). The expected number of text
character comparisons is 2n.
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2.3 The C code

void BF(char #*x, int m, char #y, int n) {
int i, j;

/* Searching */
for (j = 0; j <=n - m; ++j) {
for (i = 0; i < m && x[i] == y[i + j1; ++1i);
if (i >= m)
OUTPUT(3);

This algorithm can be rewriting to give a more efficient algorithm in
practice as follows:

#define EOS ’\O’

void BF(char #x, int m, char #y, int n) {
char *yb;

/* Searching */
for (yb = y; *y !'= EO0S; ++y)
if (memcmp(x, y, m) == 0)
OUTPUT(y - yb);

However code optimization is beyond the scope of this book.

2.4 The example

Searching phase

First attempt:

y [(CATCGCAGAGAGTATACAGTACG

1234
x\GCAGAGAG]

Shift by 1
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Second attempt:

y [GIEATCG

GAGAGTA

1

leCAGA

]

Shift by 1

Third attempt:

y [GCIATCaG

GAGAGTA

1

leCAG

A G|

Shift by 1

Fourth attempt:

y [GCA[LCG

GAGAGTA

G

1

leCA

Shift by 1

Fifth attempt:

y [GCATIEG

GAGAGTA

1

mIGC

Shift by 1

Sixth attempt:

y[GCATCG

GAGAG|T A

12

z [GCA

Shift by 1

Seventh attempt:

y [ECATCG|CA

GAGAGT[A

leC

Shift by 1

=
[<p]
=

GAG]

21
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Eighth attempt:

ylGCATCGCEGAGAGT

ATACAGT

1

x [G@CAGAGAG]

Shift by 1
Ninth attempt:

y [GCATCGCA[GAGAGTATACAGT G

— |
z [GEAGAGAG|

Shift by 1
Tenth attempt:

y [§CATCGCAGRGAGTATA|CAGT G

; |
z [CAGAGAG]|

Shift by 1
Eleventh attempt:

y [GCATCGCAGA[GAGTATAC|AGT G

— |
z [G[CAGAGAG]|

Shift by 1
Twelfth attempt:

y [§CATCGCAGAGRGTATACAGT G

; |
z [GCAGAGAG]|

Shift by 1
Thirteenth attempt:

y [GCATCGCAGAGA|GTATACAG|T G

— |
z [G[CAGAGAG]|

Shift by 1
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Fourteenth attempt:

y [GCATCGCAGAGAGTATACAGT|ACG G|

1
leCAGAGAG‘

Shift by 1

Fifteenth attempt:

y [GCATCGCAGAGAGTNTACAGT A|C G|

1
x|GCAGAGAG|

Shift by 1

Sixteenth attempt:

y [GCATCGCAGAGAGTA[TACAGTAC|G]

1
x|Gc

=
[<p]
=
[<p]
=
[<p]

Shift by 1

Seventeenth attempt:

y [GCATCGCAGAGAGTATACAGTACGG|

1
:CIGC

=
[<p]
=

GAG‘

Shift by 1

The brute force algorithm performs 30 text character comparisons on
the example.
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Search with an automaton

3.1 Main features
¢ builds the minimal Deterministic Finite Automaton recognizing the
language X% z;
o extra space in O(m x o) if the automaton is stored in a direct access
table;
o preprocessing phase in O(m X o) time complexity;
o searching phase in O(n) time complexity if the automaton is stored
in a direct access table, O(n x log o) otherwise.
3.2 Description

Searching a word z with an automaton consists first in building the
minimal Deterministic Finite Automaton (DFA) A(z) recognizing the
language X" z.

The DFA A(z) = (@, q0, T, E) recognizing the language X*z is defined

as follows:

(@ is the set of all the prefixes of z:

Q = {e,2[0],2[0..1],...,2[0..m — 2], 2} |

qo=¢ ,

T=A{x},

for ¢ € Q (¢ is a prefix of ) and @ € X, (¢,a,qa) € E if and only
if ga is also a prefix of , otherwise (q,a,p) € E such that p is the
longest suffix of ga which is a prefix of z.

The DFA A(z) can be constructed in O(m + o) time and O(m x o)

space.

Once the DFA A(z) is build, searching for a word  in a text y consists

in parsing the text y with the DFA A(x) beginning with the initial state
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¢o. Each time the terminal state is encountered an occurrence of x is
reported.

The searching phase can be performed in O(n) time if the automaton
is stored in a direct access table, in O(n x log o) otherwise.

3.3

The C code

void preAut(char *x, int m, Graph aut) {
int i, state, target, oldTarget;

for (state = getInitial(aut), i = 0; i < m; ++i) {
oldTarget = getTarget(aut, state, x[il);
target = newVertex(aut);
setTarget (aut, state, x[i], target);
copyVertex(aut, target, oldTarget);
state = target;

}

setTerminal (aut, state);

void AUT(char *x, int m, char *y, int n) {
int j, state;
Graph aut;

/* Preprocessing */
aut = newAutomaton(m + 1, (m + 1)*ASIZE);
preAut(x, m, aut);

/* Searching */
for (state = getInitial(aut), j = 0; j < n; ++j) {
state = getTarget(aut, state, y[jl);
if (isTerminal(aut, state))
OUTPUT(j - m + 1);
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3.4

The example

¥ ={4,C,GT}

Q = {e,G,GC,GCA, GCAG, GCAGA, GCAGAG, GCAGAGA, GCAGAGAG)
qo =¢

T = {GCAGAGAG}

The states are labelled by the length of the prefix they are associated
with. Missing transitions are leading to the initial state 0.

Searching phase

The initial state is 0.

ylCATCGCAGAGAGTATACAGTACG

1
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—

ylGATCGCAGAGAGTATACAGTACG
2

—

ylGCTCGCAGAGAGTATACAGTACG

—

3

—

ylGCACGCAGAGAGTATACAGTACG

—

0

—

17 GCATGCAGAGAGTATACAGTACG

—

0

—

17 GCATCCAGAGAGTATACAGTACG

—

1

Yy GCATCGAGAGAGTATACAGTACG

2

17 GCATCGCGAGAGTATACAGTACG
3

—

17 GCATCGCAAGAGTATACAGTACG

—

4

—

Yy GCATCGCAGGAGTATACAGTACG

—

5

17 GCATCGCAGAAGTATACAGTACG

6
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—

17 GCATCGCAGAGGTATACAGTACG

—

7

17 GCATCGCAGAGATATACAGTACG

8

17 GCATCGCAGAGAGATACAGTACG

0

—

17 GCATCGCAGAGAGTTACAGTACG

—

0

17 GCATCGCAGAGAGTAACAGTACG

0

y GCATCGCAGAGAGTATCAGTACG

0

17 GCATCGCAGAGAGTATAAGTACG
0

—

17 GCATCGCAGAGAGTATACGTACG

—

0

—

y GCATCGCAGAGAGTATACATACG

—

1

17 GCATCGCAGAGAGTATACAGACG‘

0

29
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17 GCATCGCAGAGAGTATACAGT@CG‘

0

—

y GCATCGCAGAGAGTATACAGTAG‘

—

0

17 GCATCGCAGAGAGTATACAGTAC‘

1

The search by automaton performs exactly 24 text character inspec-
tions on the example.

3.5
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4.1 Main features

¢ uses an hashing function;
o preprocessing phase in O(m) time complexity and constant space;
o searching phase in O(m x n) time complexity;

o+ O(m+n) expected running time.

4.2 Description

Hashing provides a simple method to avoid a quadratic number of char-
acter comparisons in most practical situations. Instead of checking at
each position of the text if the pattern occurs, it seems to be more effi-
cient to check only if the contents of the window “looks like” the pattern.
In order to check the resemblance between these two words an hashing
function is used. To be helpful for the string matching problem an hash-
ing function hash should have the following properties:
o efficiently computable;
o highly discriminating for strings;
o hash(y[j+1..j+m]) must be easily computable from hash(y[j ..j+
m — 1]) and y[j + m]:
hash(y[j +1..j+m]) = rehash(y[j], y[j + m],
hash(y[j..j+m—1])) .
For a word w of length m let hash(w) be defined as follows:

hash(w[0..m —1]) = (w[0] x 2"~ +w[l]x 2m=2 4 ...+
w[m — 1] x 2°) mod ¢

where ¢ is a large number. Then,

rehash(a,b,h) = ((h —a x 2™ ') x 24+ b) mod ¢ .
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The preprocessing phase of the Karp-Rabin algorithm consists in com-
puting hash(z). It can be done in constant space and O(m) time.

During the searching phase, it is enough to compare hash(z) with
hash(y[j..j + m—1]) for 0 < j < n— m. If an equality is found, it is
still necessary to check the equality z = y[j..j + m — 1] character by
character.

The time complexity of the searching phase of the Karp-Rabin al-
gorithm is O(m x n) (when searching for a™ in a” for instance). Its
expected number of text character comparisons is O(m + n).

4.3

The C code

In the following function KR all the multiplications by 2 are implemented
by shifts. Furthermore, the computation of the modulus function is
avoided by using the implicit modular arithmetic given by the hardware
that forgets carries in integer operations. So, ¢ is chosen as the maximum
value for an integer.

#define REHASH(a, b, h) ((((h) - (a)*d) << 1) + (b))

void KR(char #x, int m, char #y, int n) {
int d, hx, hy, i, j;

/* Preprocessing */
/* computes d = 2~ (m-1) with
the left-shift operator */
for (d =1 =1; i < m; ++1i)
d = (d<<1);

0; i <m; ++i) {
x[il);
y[il);

for (hy = hx = i
hx = ((hx<<1)
hy = ((hy<<1)

+

+

}

/* Searching */
j=0;
while (j <= n-m) {
if (hx == hy && memcmp(x, y + j, m) == 0)
OUTPUT(§);
++3;
hy = REHASH(y[jl, y[j + ml, hy);
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4.4

The example

hash(GCAGAGAG) = 17597

Searching phase

First attempt:

y [GCATCGCA[GA

GAGT

G

z |G CAGAGA A G|
hash(y[0..7]) = 17819

Second attempt:

y [GICATCGCAG|A

GAGT

z |G CAGAGA G|
hash(y[l..8]) = 17533

Third attempt:

y [GCATCGCAGA|

GAGT

z |G CAGAGA G|
hash(y[2..9]) = 17979

Fourth attempt:

y [GCA[TCGCAGA

GlAGT

G

leCAGAGA

hash(y[3..10]) = 19389

Fifth attempt:

y [GCAT|CGCAGA

G A[G T

leCAGAG

A G|

hash(y[4..11]) = 17339

Sixth attempt:

y[GCATCGCAGA

G AG[T

12345

6 7 8

z [GCAGA

G A G
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hash(y[5..12]) = 17597 = hash(z) thus 8 character comparisons are
necessary to be sure that an occurrence of the pattern has been found.

Seventh attempt:

y [GCATCGCAGAGAGTATACAGTAG G|

z |G CAGAGA G|
hash(y[6..13]) = 17102

Eighth attempt:

y [GCATCGCAGAGAGTATACAGTACG

z |G CAGAGA G|
hash(y[7..14]) = 17117

Ninth attempt:

y [GCATCGCA[GAGAGTATACAGTACG

z |G CAGAGA G|
hash(y[8..15]) = 17678

Tenth attempt:

y [GCATCGCAGAGAGTATACAGTACG

z |G CAGAGA G|
hash(y[9..16]) = 17245

Eleventh attempt:

y [GCATCGCAGA[GAGTATACAGTACG

z |G CAGAGA A G|
hash(y[10..17]) = 17917

Twelfth attempt:

y [@§CATCGCAGAGRAGTATACAGTACSG

z |G CAGAGA G|
hash(y[11..18]) = 17723
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Thirteenth attempt:

y [GCATCGCAGAGA[GTATACAG|TACG

leCAGAGAG‘

hash(y[12..19]) = 18877

Fourteenth attempt:

y [GCATCGCAGAGAG|TATACAGT|AC G|

leC

=
[<p]
=
[<p]
=
[<p]

hash(y[13..20]) = 19662

Fifteenth attempt:

y [GCATCGCAGAGAGTATACAGT A|C G|

leCAGAGAG‘

hash(y[14..21]) = 17885

Sixteenth attempt:

y [GCATCGCAGAGAGTA[TACAGT A C|G]

x|GCAGAGAG|

hash(y[15..22]) = 19197

Seventeenth attempt:

y [GCATCGCAGAGAGTATMACAGTAGG|

leCAGAGAG‘

hash(y[16..23]) = 16961

The Karp-Rabin algorithm performs 17 comparisons on hashing values
and 8 character comparisons on the example.
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Shift Or algorithm

5.1 Main features
¢ uses bitwise techniques;
o efficient if the pattern length is no longer than the memory-word
size of the machine;
o preprocessing phase in O(m + o) time and space complexity;
o searching phase in O(n) time complexity (independent from the
alphabet size and the pattern length);
¢ adapts easily to approximate string-matching.
5.2 Description

The Shift Or algorithm uses bitwise techniques. Let R be a bit array
of size m. Vector R; is the value of the array R after text character
y[j] has been processed (see figure 5.1). It contains informations about
all matches of prefixes of x that end at position j in the text. For
0<i<m-1:
{0 if 2(0..9] = y[j —i..7]
otherw1se .

The vector R;41 can be computed after R; as follows. For each R;[i] =

0:

Rjpili+ 1] = {(1) ifofi+ 1] =yli+1],

otherwise
and
= {0 Tl =sli+1],
Ry otherw1se .

If Rj41[m — 1] = 0 then a complete match can be reported.
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J
y | [ ]

2[0] [] 1=0 [1]

z0..1] [] i=1 [0]

o [ =2

z l ‘ t=m—1

R]
Figure 5.1 Meaning of vector R; in the Shift-Or algorithm.

The transition from R; to ;41 can be computed very fast as follows.
For each ¢ € X, let S, be a bit array of size m such that:
for 0 <i<m—1,5.[i] = 0if and only if z[i] = ¢ .

The array S, denotes the positions of the character ¢ in the pattern z.
Each S, can be preprocessed before the search. And the computation of
Rj 41 reduces to two operations, shift and or:

R;4+1 = Shift(R;) Or Syli+1] -

Assuming that the pattern length is no longer than the memory-word
size of the machine, the space and time complexity of the preprocessing
phase is O(m + o). The time complexity of the searching phase is O(n),
thus independent from the alphabet size and the pattern length. The
Shift Or algorithm adapts easily to approximate string-matching.

5.3 The C code

int preSo(char #x, int m, unsigned int S[]) {
unsigned int j, lim;
int 1i;

for (i = 0; i < ASIZE; ++i)

S[i] = ~0;

for (1im = 1 = 0, j = 1; i < m; ++i, j <<= 1) {
S[x[il1] &= ~j;
lim |= j;

¥

lim = ~(1lim>>1);

return(lim);
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void SO(char #*x, int m, char #*y, int n) {
unsigned int lim, state;
unsigned int S[ASIZE];
int j;

if (m > WORD)
error("S0: Use pattern size <= word size");

/* Preprocessing */
lim = preSo(x, m, S);

/* Searching */
for (state = “0, j = 0; j < m; ++j) {
state = (state<<1) | s[y[jll;
if (state < lim)
OUTPUT(j - m + 1);

5.4 The example

Sa Sc Sg St
G 1 1 0 1
C 1 0 1 1
A 0 1 1 1
G 1 1 0 1
A 0 1 1 1
G 1 1 0 1
A 0 1 1 1
G 1 1 0 1
0 1 2 3 4 5 6 T 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
GCATCGCAGAGAGTATACAGTACG
o G|011110110101011111101110
: ¢|{101101011111111111111111
- A(110111101111111111111111
s G|111111110111111111111111
.+ Afl111111111011111111111111
s G(111111111101111111111111
s« A|l111111111110111111111111
- G(111111111111011111111111

As Rj3[7] = 0 it means that an occurrence of z has been found at
position 12 -8+ 1 = 5.
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6 Morris-Pratt algorithm

6.1 Main Features

¢ performs the comparisons from left to right;
o preprocessing phase in O(m) space and time complexity;

o searching phase in O(m+n) time complexity (independent from the
alphabet size);

o performs at most 2n — 1 text character comparisons during the
searching phase;

¢ delay bounded by m.

6.2 Description

The design of the Morris-Pratt algorithm follows a tight analysis of the
brute force algorithm (see chapter 2), and especially on the way this
latter wastes the information gathered during the scan of the text.

Let us look more closely at the brute force algorithm. It is possible
to improve the length of the shifts and simultaneously remember some
portions of the text that match the pattern. This saves comparisons
between characters of the pattern and characters of the text and conse-
quently increases the speed of the search.

Consider an attempt at a left position j on y, that is when the window
is positioned on the text factor y[j..j + m — 1]. Assume that the first
mismatch occurs between z[i] and y[i + j] with 0 < i < m. Then,
z[0..i—1] = y[j..i+j—1] = vand a = z[i] # y[i+j] = b. When shifting,
it is reasonable to expect that a prefix v of the pattern matches some
suffix of the portion u of the text. The longest such prefix v is called the
border of u (it occurs at both ends of u). This introduces the notation:
let mpNext[i] be the length of the longest border of 2[0 . .i—1] for 0 < i <
m. Then, after a shift, the comparisons can resume between characters
¢ = z[mpNext[i]] and y[i + j] = b without missing any occurrence of z
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J i+j
y | [« [®
v [ w fa] |
v [v [e] |
Figure 6.1 Shift in the Morris-Pratt algorithm: v is the border of u.
in y, and avoiding a backtrack on the text (see figure 6.1). The value of
mpNext[0] is set to —1. The table mpNext can be computed in O(m)
space and time before the searching phase, applying the same searching
algorithm to the pattern itself, as if = y.
Then the searching phase can be done in O(m + n) time. The Morris-
Pratt algorithm performs at most 2n — 1 text character comparisons
during the searching phase. The delay (maximum number of compar-
isons for a single text character) is bounded by m.
6.3 The C code
void preMp(char *x, int m, int mpNext[]) {
int i, j;
i=0;
j = mpNext[0] = -1;

while (i < m) {
while (j > -1 && x[i] '= x[j]1)
j = mpNext[j];
mpNext [++i] = ++3;

void MP(char #*x, int m, char #*y, int n) {
int i, j, mpNext[XSIZE];

/* Preprocessing */
preMp(x, m, mplNext);

/* Searching */
i=3j=o0;
while (j < mn) {
while (i > -1 && x[i] '= y[j1)
i = mpNext[il;
it+;

)
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jt+;

if (i >=m) {
OUTPUT(j - i);
i = mpNext[il;

6.4

The example

i 0 1 2 3 4 5 6 7 8
2[i] G C & G & G A& G
mpNext[i] | -1 0 0 0 1 0 1 0 1

Searching phase

First attempt:

y [(CATCGCAGAGAGTATACAGTACG

1234
x\GCAGAGAG]

Shift by 3 (i — mpNext[i] = 3 — 0)

Second attempt:

y [GCATCGCAGAGAGTATACAGTACG

1
:::IGCAGAGAG‘

Shift by 1 (i — mpNext[i] =0 — —1)

Third attempt:

y [@§CAT[CGCAGAGAGTATACAGTACSG

1
leCAGAGAG‘

Shift by 1 (i — mpNext[i] =0 — —1)

Fourth attempt:

y [@§CATClGCAGAGAGTATACAGTACSG

12345678
z [GCAGAGAG|

Shift by 7 (i — mpNext[i] =8 — 1)
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Fifth attempt:

y [GCATCGCAGAGA[GMATACAG|TACG

1
leCAGAGAG‘

Shift by 1 (i — mpNext[i] = 1 — 0)

Sixth attempt:

y [GCATCGCAGAGAGTATACAGT|AC G|

1
:::IGCAGAGAG‘

Shift by 1 (i — mpNext[i] =0 — —1)

Seventh attempt:

y [§CATCGCAGAGAGTATACAGTA|CG]

1
z [@¢
Shift by 1 (i — mpNext[i] =0 — —1)

=
[<p]
=
[<p]
=
[<p]

Eighth attempt:

y [GCATCGCAGAGAGTATACAGT A C|G]

1
z [@C
Shift by 1 (i — mpNext[i] =0 — —1)

=
o«
=
[<p]
=
[<p]

Ninth attempt:

y [§CATCGCAGAGAGTATACAGTAC G|

1
:UIGC

=
[<p]
=

GAG‘

Shift by 1 (i — mpNext[i] =0 — —1)

The Morris-Pratt algorithm performs 19 text character comparisons
on the example.
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Knuth-Morris-Pratt algorithm

7.1 Main Features
¢ performs the comparisons from left to right;
o preprocessing phase in O(m) space and time complexity;
o searching phase in O(m+n) time complexity (independent from the
alphabet size);
o performs at most 2n — 1 text character comparisons during the
searching phase;
o delay bounded by logg(m) where @ is the golden ratio: ® = 1+2\/5.
7.2 Description

The design of the Knuth-Morris-Pratt algorithm follows a tight analysis
of the Morris-Pratt algorithm (see chapter 6). Let us look more closely
at the Morris-Pratt algorithm. It is possible to improve the length of
the shifts.

Consider an attempt at a left position j, that is when the the window
is positioned on the text factor y[j..j + m — 1]. Assume that the first
mismatch occurs between z[i] and y[i + j] with 0 < i < m. Then,
z[0..i—1] = y[j..i+j—1] = vand a = z[i] # y[i+j] = b. When shifting,
it is reasonable to expect that a prefix v of the pattern matches some
suffix of the portion u of the text. Moreover, if we want to avoid another
immediate mismatch, the character following the prefix v in the pattern
must be different from a. The longest such prefix v is called the tagged
border of u (it occurs at both ends of u followed by different characters
in #). This introduces the notation: let kmpNext[i] be the length of
the longest border of [0 ..i— 1] followed by a character ¢ different from
z[i] and —1 if no such tagged border exits, for 0 < ¢ < m. Then, after
a shift, the comparisons can resume between characters z[kmpNext[]]
and y[¢ + j] without missing any occurrence of z in y, and avoiding a
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J i+j

y | [« [®
v [ w fa] |
v [v [e] |

Figure 7.1 Shift in the Knuth-Morris-Pratt algorithm: v is a border of u
and a # c.
backtrack on the text (see figure 7.1). The value of kmpNext[0] is set
to —1. The table kmpNext can be computed in O(m) space and time
before the searching phase, applying the same searching algorithm to the
pattern itself, as if x = y.

The searching phase can be performed in O(m+n) time. The Knuth-
Morris-Pratt algorithm performs at most 2n — 1 text character com-
parisons during the searching phase. The delay (maximum number of
comparisons for a single text character) is bounded by logg (m) where ®
. . 1 3
is the golden ratio (® = %)

7.3 The C code
void preKmp(char *x, int m, int kmpNext[]) {
int i, j;
i=0;

j = kmpNext[0] = -1;
while (i < m) {
while (j > -1 && x[i] '= x[j]1)
j = kmpNext[j];
it++;
jtt;
if (x[i] == x[j1)
kmpNext[i] = kmpNext[j];
else
kmpNext[i] = j;

void KMP(char *x, int m, char *y, int n) {
int i, j, kmpNext[XSIZE];

/* Preprocessing */
preKmp(x, m, kmpNext);
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/* Searching */
i=3=o0;
while (j < mn) {
while (i > -1 && x[i] '= y[j1)
i = kmpNext[i];
i++;
jtt;
if (i >=m) {
QUTPUT(j - i);
i = kmpNext[i];

49

7.4

The example

) 0 1 2 3 4 5 6 7 8
[d] G C A G A G A G
kmpNext[i] | -1 0 0 -1 1 -1 1 -1 1
Searching phase
First attempt:
y (CATCGCAGAGAGTATACGCAGTA

1234
x\GCAGAGAG]

Shift by 4 (i — kmpNext[i] =3 — —1)

Second attempt:

y [GCAT|CGCAGAGAGTATACAGTACG

1
mlGCAGAGAG‘

Shift by 1 (i — kmpNext[i] =0 — —1)

Third attempt:

y [§CATClGCAGAGAGTATACAGTACSG

12345678
x\GCAGAGAG\

Shift by 7 (i — kmpNext[i] =8 — 1)
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Fourth attempt:

y [GCATCGCAGAGA[GMATACAG|TACG

2
leCAGAGAG‘

Shift by 1 (i — kmpNext[i] =1 — 0)

Fifth attempt:

y [GCATCGCAGAGAGTATACAGT|AC G|

1
:::IGCAGAGAG‘

Shift by 1 (i — kmpNext[i] =0 — —1)

Sixth attempt:

y [§CATCGCAGAGAGTATACAGTA|CG]

1
z [@¢
Shift by 1 (i — kmpNext[i] =0 — —1)

=
[<p]
=
[<p]
=
[<p]

Seventh attempt:

y [GCATCGCAGAGAGTATACAGT A C|G]

1
z [@C
Shift by 1 (i — kmpNext[i] =0 — —1)

=
o«
=
[<p]
=
[<p]

Eighth attempt:

y [§CATCGCAGAGAGTATACAGTAC G|

1
z [@c¢
Shift by 1 (i — kmpNext[i] =0 — —1)

=
[<p]
=

GAG‘

The Knuth-Morris-Pratt algorithm performs 18 text character com-
parisons on the example.
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Simon algorithm

8.1 Main features
¢ economical implementation of A(z) the minimal Deterministic Fi-
nite Automaton recognizing ¥*z;
¢ preprocessing phase in O(m) time and space complexity;
o searching phase in O(m+n) time complexity (independent from the
alphabet size);
¢ at most 2n — 1 text character comparisons during the searching
phase;
o delay bounded by min{1 + log, m,o}.
8.2 Description

The main drawback of the search with the minimal DFA A(z) (see chap-
ter 3) is the size of the automaton: O(m x ¢). Simon noticed that there
are only a few significant edges in A(z); they are:

¢ the forward edges going from the prefix of z of length k to the prefix
of length k 4+ 1 for 0 < k < m. There are exactly m such edges;

¢ the backward edges going from the prefix of z of length k to a smaller
non-zero length prefix. The number of such edges is bounded by m.

The other edges are leading to the initial state and can then be de-
duced. Thus the number of significant edges is bounded by 2m. Then
for each state of the automaton it is only necessary to store the list of
its significant outgoing edges.

Each state is represented by the length of its associated prefix minus
1 in order that each edge leading to state i, with —1 < < m — 1 is
labelled by z[i] thus it is not necessary to store the labels of the edges.
The forward edges can be easily deduced from the pattern, thus they are
not stored. It only remains to store the significant backward edges.
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We use a table L, of size m — 2, of linked lists. The element L[i] gives
the list of the targets of the edges starting from state 7. In order to avoid
to store the list for the state m — 1, during the computation of this table
L, the integer ¢ is computed such that £+ 1 is the length of the longest
border of z.

The preprocessing phase of the Simon algorithm consists in computing
the table L and the integer £. It can be done in O(m) space and time
complexity.

The searching phase is analogous to the one of the search with an
automaton. When an occurrence of the pattern is found, the current
state is updated with the state £. This phase can be performed in O(m+
n) time. The Simon algorithm performs at most 2n — 1 text character
comparisons during the searching phase. The delay (maximal number of
comparisons for a single text character) is bounded by min{1+log, m,c}.

8.3

The C code

The description of a linked list List can be found section 1.5.

int getTransition(char *x, int m, int p, List L[],
char c) {
List cell;

if (p<m-1&& x[p + 1] == ¢)
return(p + 1);
else if (p > -1) {
cell = L[pl;
while (cell '= NULL)
if (x[cell->element] == c)
return(cell->element);
else
cell = cell->next;
return(-1);
}
else
return(-1);

void setTransition(int p, int q, List L[]1) {
List cell;

cell = (List)malloc(sizeof(struct _cell));
if (cell == NULL)
error ("SIMON/setTransition");
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cell->element = q;
cell->next = L[p];
Llp]l = cell;

int preSimon(char *x, int m, List L[]) {
int i, k, ell;
List cell;

memset (L, NULL, (m - 2)*sizeof(List));
ell = -1;
for (i = 1; i < m; ++i) {

k = ell;
cell = (ell == -1 ? NULL : L[k]);
ell = -1;
if (x[i] == x[x + 1])
ell =k + 1;
else

setTransition(i - 1, k + 1, L);
while (cell !'= NULL) {
k = cell->element;
if (x[i] == x[k])
ell = k;
else
setTransition(i - 1, k, L);
cell = cell->next;
}
¥

return(ell);

void SIMON(char *x, int m, char #*y, int n) {
int j, ell, state;
List L[XSIZE];

/* Preprocessing */
ell = preSimon(x, m, L);

/* Searching */
for (state = -1, j = 0; j < n; ++j) {
state = getTransition(x, m, state, L, y[jl);
if (state >=m - 1) {
OUTPUT(j - m + 1);

55
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state = ell;

8.4 The example

The states are labelled by the length of the prefix they are associated
with minus 1.

0 1 2 3 5 6|

L[]

2 4
(0 (0 ¢ (0,1) ¢ (0,1) 6|

Searching phase

The initial state is —1.

17 iiC ATCGCAGAGAGTATACAGTACG

0

17 lG iiA TCGCAGAGAGTATACAGTACG

1

Yy lG C ii'r CGCAGAGAGTATACAGTACG

2
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ylGCACGCAGAGAGTATACAGTACG

-1

—

17 GCATGCAGAGAGTATACAGTACG

—

-1

—

Yy GCATCCAGAGAGTATACAGTACG

—

0

—

17 GCATCGAGAGAGTATACAGTACG

—

1

—

17 GCATCGCGAGAGTATACAGTACG

—

2

Yy GCATCGCAAGAGTATACAGTACG

3

17 GCATCGCAG‘@GAGTATACAGTACG
4

17 GCATCGCAGAAGTATACAGTACG

5

—

Yy GCATCGCAGAGGTATACAGTACG

—

6

17 GCATCGCAGAGATATACAGTACG

7

5

~
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17 GCATCGCAGAGAGATACAGTACG
-1

—

17 GCATCGCAGAGAGTTACAGTACG

—

-1

y GCATCGCAGAGAGTAACAGTACG

-1

17 GCATCGCAGAGAGTAT@CAGTACG
-1

—

17 GCATCGCAGAGAGTATAAGTACG

—

-1

Yy GCATCGCAGAGAGTATACGTACG

-1

17 GCATCGCAGAGAGTATACATACG
0

—

y GCATCGCAGAGAGTATACAGACG‘

—

-1

Yy GCATCGCAGAGAGTATACAGT‘@CG‘

-1

17 GCATCGCAGAGAGTATACAGTAG‘

-1
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17 GCATCGCAGAGAGTATACAGTAC‘

0

The Simon algorithm performs 24 text character comparisons on the
example.
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9 Colussi algorithm

9.1 Main features

¢ refinement of the Knuth-Morris-Pratt algorithm;

¢ partitions the set of pattern positions into two disjoint subsets; the
positions in the first set are scanned from left to right and when
no mismatch occurs the positions of the second subset are scanned
from right to left;

o preprocessing phase in O(m) time and space complexity;
o searching phase in O(n) time complexity;

¢ performs %n text character comparisons in the worst case.

9.2 Description

The design of the Colussi algorithm follows a tight analysis of the Knuth-
Morris-Pratt algorithm (see chapter 7).

The set of pattern positions is divided into two disjoint subsets. Then
each attempt consists in two phases:

¢ in the first phase the comparisons are performed from left to right
with text characters aligned with pattern position for which the
value of the kmpNext function is strictly greater than —1. These
positions are called noholes;

¢  the second phase consists in comparing the remaining positions
(called holes) from right to left.

This strategy presents two advantages:

¢ when a mismatch occurs during the first phase, after the appropriate
shift it is not necessary to compare the text characters aligned with
noholes compared during the previous attempt;

¢ when a mismatch occurs during the second phase it means that a
suffix of the pattern matches a factor of the text, after the corre-
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v | [o] [o] [o] [o] 8] |
z [ Jof Jo  [ef [ef [N |
z [ o] Jo  [of o] [e] ]

Figure 9.1 Mismatch with a nohole. Noholes are black circles and are com-
pared from left to right. In this situation, after the shift, it is not necessary to
compare the first two noholes again.

sponding shift a prefix of the pattern will still match a factor of the
text, then it is not necessary to compare this factor again.

For0<i<m-—1:

d>0 ifandonlyifz[0..i—1—d]=2z[d..i— 1] and
kmin[i] = { z[i —d] # =[]
0 otherwise .

When kmin[i] # 0 a periodicity ends at position ¢ in z.

For 0 < ¢ < m if kmin[i — 1] # 0 then ¢ is a nohole otherwise i is a
hole.

Let nd 4+ 1 be the number of noholes in z. The table h contains first
the nd + 1 noholes in increasing order and then the m — nd — 1 holes in
decreasing order:

o for 0 < i< nd, h[i] is a nohole and A[i] < h[i + 1] for 0 < i < nd,;
o for nd < i< m, hld]is a hole and h[i] > h[i+ 1] for nd < i< m—1.

If 7 is a hole then rminli] is the smallest period of z greater than i.

The value of first[u] is the smallest integer v such that u < h[v].

Then assume that z is aligned with y[j..j7 + m — 1]. If z[h[k]] =
y[j + h[k]] for 0 < k < r < nd and z[h[r]] # y[j + h[r]]. Let j’
J + kmin[h[r]]. Then there is no occurrence of z beginning in y[j..j']
and z can be shifted by kmin[h[r]] positions to the right. Moreover
z[h[k]] = y[j’ + h[k]] for 0 < k < first[h[r] — kmin[h[r]]] meaning that
the comparisons can be resume with z[h[first[h[r] — kmin[h[r]]]]] and
y[i" + hlfirst[h[r] — kmin[h[r]]]]] (see figure 9.1).

If x[hlk]] = ylj + h[k]] for 0 < k < r and z[h[r]] # y[j + h[r]] with
nd < r < m. Let j/ = j 4+ rmin[h[r]]. Then there is no occurrence of
beginning in y[j ..j'] and & can be shifted by kmin[h[r]] positions to the
right. Moreover z[0..m — 1 — rmin[h[r]]] = y[j’..j + m — 1] meaning
that the comparisons can be resume with z[h[first[m — 1 — rmin[h[r]]]]]
and y[j' + hlfirst[m — 1 — rmin[h[r]]]]] (see figure 9.2).

To compute the values of kmin, a table hmax is used and defined as
follows: hmax[k] is such that z[k.. hmax[k]—1] = z[0.. hmax[k] — k —1]
and z[hmax[k]] # x[hmax[k] — k].

The value of ndh0[i] is the number of noholes strictly smaller than 1.

We can now define two functions shift and next as follows:

<
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v | [o] [o] [Blcfefo]e]o e]o] |
z [ o] Jo] [Blefe]o]e]e]e]e]
z |ofefo]e]o] [o] [of [ef ]

Figure 9.2 Mismatch with a hole. Noholes are black circles and are com-
pared from left to right while holes are white circles and are compared from
right to left. In this situation, after the shift, it is not necessary to compare
the matched prefix of the pattern again.

o shift[i] = kmin[h[i]] and next[i] = ndhO[h[i] — kmin[h[{]]] for i < nd;
o shift[i] = rmin[h[{]] and next[i{] = ndh0[m — rmin[h[{]]] for nd < i <

m;
o shift[m] = rmin|[0] and next[m] = ndh0[m — rmin[h[m — 1]]].

Thus, during an attempt where the window is positioned on the text
factor y[j..j + m — 1], when a mismatch occurs between z[h[r]] and
y[j + h[r]] the window must be shifted by shift[r] and the comparisons
can be resume with pattern position h[next[r]].

The preprocessing phase can be done in O(m) space and time. The
searching phase can then be done in O(n) time complexity and further-
more at most %n text character comparisons are performed during the
searching phase.

9.3

The C code

int preColussi(char *x, int m, int h[], int next[],
int shift[1) {
int i, k, nd, g, r, s;
int hmax[XSIZE], kmin[XSIZE], nhdO[XSIZE], rmin[XSIZE];

/* Computation of hmax */

i=k = 1;
do {
while (x[i] == x[i - k1)
it++;
hmax[k] = i;
q=k+ 1;

while (hmax[q - k] + k < i) {
hmax[q] = hmax[q - k] + k;
q++;

}

k =gq;

if (k == 1 + 1)
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i=k;
} while (k <= m);

/* Computation of kmin */
memset(kmin, 0, m*sizeof(int));
for (i =m; i >= 1; --1i)
if (hmax[i] < m)
kmin[hmax[i]] = 1i;

/* Computation of rmin */
for (i =m - 1; i >= 0; --i) {
if (hmax[i + 1] == m)
r =1+ 1;
if (kmin[i] == 0)

rmin[i] = r;
else
rmin[i] = 0;
¥
/* Computation of h */
s = -1;
r = m;

for (1 = 0; i < m; ++i)
if (kmin[i] == 0)

hi--r] = i;

else
hl++s] = i;

nd = s;

/* Computation of shift */
for (i = 0; i <= nd; ++1i)
shift[i] = kmin[h[i]];
for (i =nd + 1; i < m; ++1i)
shift[i] = rmin[h[il];
shift[m] = rmin[0];

/* Computation of nhd0 */

s = 0;
for (i = 0; i < m; ++i) {
nhd0[i] = s;
if (kmin[i] > 0)
++s;

’
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/* Computation of next */
for (1 = 0; i <= nd; ++i)

next[i] = nhdO[h[i] - kmin[h[i]1];
for (i =nd + 1; i < m; ++1i)

next[i] = nhdO[m - rmin[h[i]]];
next[m] = nhdO[m - rmin[h[m - 1]]];

return(nd);

}

void COLUSSI(char *x, int m, char *y, int n) {
int i, j, last, nd,
h[XSIZE], next[XSIZE], shift[XSIZE];

/* Processing */
nd = preColussi(x, m, h, next, shift);

/* Searching */
i=3=o0;
last = -1;
while (j <= n - m) {
while (i < m && last < j + h[i] &&
x[h[il] == y[j + n[ill)
i++;
if (i >=m || last >= j + h[i]) {
OUTPUT(§);
i = m;
}
if (i > nd)
last = j +m - 1;
j += shift[il;
i = next[il;

65
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9.4

The example

1 o 1 2 3 4 5 6 7 8
[1] G C A G A G A G
kmpNext[i] |-1 0 0 -1 1 -1 1 -1 1
kminl] [0 1 2 0 3 0 5 0
h[i] 1 2 4 6 7 5 3 0
mext[] [0 0 0 0 0 0 0 0 0
shiftfi] |1 2 3 5 8 7 7 T 7T
hmax[iqf] |0 1 2 4 4 6 6 8 8
mminlf] |7 0 0 7T 0 7 0 8
ndh0i] |0 0 1 2 2 3 3 4
nd =3
Searching phase
First attempt:
y [FCATEGCAGAGAGTATACAGTACG
12 3
x (6 CAGAGAG]
Shift by 3 (shift[2])
Second attempt:
y [GCA[TCGCAGAGAGTATACAGTACG
12
z [GCAGAGAG]|
Shift by 2 (shift[1])
Third attempt:
y [GCATCGCAGAGAGTATACAGTACG
81273645
z [GCAGAGAG|

Shift by 7 (shift[8])
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Fourth attempt:

y [GCATCGCAGAGA[GMATACAG|TACG
— |
x [GJEAGAGAG]
Shift by 1 (shift[0])
Fifth attempt:
y [GCATCGCAGAGAG[TATACAGT|AC G|
— |
z [G[CAGAGAG]|
Shift by 1 (shift[0])
Sixth attempt:
y [§CATCGCAGAGAGTATACAGTA|CG]
— |
z [GICAGAGAG]|
Shift by 1 (shift[0])
Seventh attempt:
y[GCATCGCAGAGAGTA[TACAGT A C|G]
— |
z [G[CAGAGAG]|
Shift by 1 (shift[0])
Eighth attempt:
y [@CATCGCAGAGAGTATACAGHTACG|
| - f
z [GCAGHAGAG]|

Shift by 3 (shift[2])

6

~

The Colussi algorithm performs 20 text character comparisons on the

example.
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Galil-Giancarlo algorithm

10.1 Main features
¢ refinement of Colussi algorithm;
o preprocessing phase in O(m) time and space complexity;
o searching phase in O(n) time complexity;
¢ performs %n text character comparisons in the worst case.
10.2 Description

The Galil-Giancarlo algorithm is a variant of the Colussi algorithm (see
chapter 9). The change intervenes in the searching phase. The method
applies when z is not a power of a single character. Thus & # ¢™ with
¢ € X. Let £ be the last index in the pattern such that for 0 < z <
£, 2[0] = z[¢] and z[0] # z[€+ 1]. Assume that during the previous
attempt all the noholes have been matched and a suffix of the pattern
has been matched meaning that after the corresponding shift a prefix
of the pattern will still match a part of the text. Thus the window is
positioned on the text factor y[j..j + m — 1] and the portion y[j . . last]
matches z[0 . .last — j]. Then during the next attempt the algorithm will
scanned the text character beginning with y[last+ 1] until either the end
of the text is reached or a character z[0] # y[j + k] is found. In this
latter case two subcases can arise:

o 2[4+ 1] # y[j + k] or too less 2[0] have been found (k < £) then the
window is shifted and positioned on the text factor y[k+1..k+m],
the scanning of the text is resumed (as in the Colussi algorithm)
with the first nohole and the memorized prefix of the pattern is the
empty word.

o z[l+ 1] = y[j + k] and enough of z[0] has been found (k > ¢) then
the window is shifted and positioned on the text factor y[k — £ —
1..k — £+ m — 2], the scanning of the text is resumed (as in the
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Colussi algorithm) with the second nohole (z[¢ + 1] is the first one)
and the memorized prefix of the pattern is z[0..£+ 1].

The preprocessing phase is exactly the same as in the Colussi algorithm
(chapter 9) and can be done in O(m) space and time. The searching
phase can then be done in O(n) time complexity and furthermore at
most %7Ltext character comparisons are performed during the searching
phase.

10.3

The C code

The function preColussi is given chapter 9.

void GG(char #x, int m, char #y, int n) {
int i, j, k, ell, last, nd;
int h[XSIZE], next[XSIZE], shift[XSIZE];
char heavy;

for (ell = 0; x[ell] == x[ell + 1]; ell++);
if (ell == m - 1)
/* Searching for a power of a single character */
for (j = ell = 0; j < m; ++j)
if (x[0] == y[j1) {
++ell;
if (ell >= m)
OUTPUT(j - m + 1);
}
else
ell = 0;
else {
/* Preprocessing */
nd = preCOLUSSI(x, m, h, next, shift);

/* Searching */
i = j = heavy = 0;
last = -1;
while (j <= n - m) {
if (heavy && i == 0) {
k = last - j + 1;
while (x[0] == y[j + k1)

k++;

if (k <= ell || x[ell + 1] '= y[j + k1) {
i=0;
j+= (k + 1);

last = j - 1;
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else {
i=1;
last = j + k;
j = last - (ell + 1);
}
heavy = 0;
}
else {
while (i < m && last < j + h[i] &&
x[h[il] == y[j + n[ill)
++1;
if (i >=m || last >= j + h[il) {
OUTPUT(j) ;
i=m;
}
if (i > nd)
last = j +m - 1;
j += shift[il;
i = next[il;
}
heavy = (j > last ? 0 : 1);
}

71

10.4 The example

i 0 1 2 3 4 5 6 7 8
2[i] G C A G & G A G
kmpNext[]] [-1 0 0 -1 1 -1 1 -1 1
kminl[i] 0 1 2 0 3 0 5 0
hli] 1 2 4 6 7 5 3 0
next[i] 0 00 0 0 0 0 0 O
shift[i] 1 2 3 5 8 7 7 7 7
hmax[i] 0 1 2 4 4 6 6 8 8
rmin(i] T 0 0 7 0 7 0 8
adhof] |0 0 1 2 2 3 3 4

nd=3and =0
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Searching phase

First attempt:

y [(CATEGCAGAGAGTAT TACG
12 3 '

x (G CAGAGAG]
Shift by 3 (shift[2])
Second attempt:

y [GCA[TCGCAGAGAGTAT TACG

— |
z [GCAGAGAG]|

Shift by 2 (shift[1])
Third attempt:

y [GCATCGCAGAGAG|TAT TACG

812 645
¢ |GCAGAGA G|

Shift by 7 (shift[8])
Fourth attempt:

y [GCATCGCAGAGA[GTAT [T2cCa

— |
z [€]

Shift by 2
Fifth attempt:

y [§CATCGCAGAGAGTAT T A[C G|

— |
z [6[C A G|

Shift by 1 (shift[0])
Sixth attempt:

y [GCATCGCAG GAGTAIT TACIG‘

z |G G A G|

Shift by 1 (shift[0])
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Seventh attempt:

y [GCATCGCAGAGAGTATMACAGITACGG|

12 3
leCAGAGAG‘

Shift by 3 (shift[2])

The Galil-Giancarlo algorithm performs 19 text character comparisons
on the example.

10.5

References

o BRESLAUER, D.; 1992, Efficient String Algorithmics, PhD Thesis,
Report CU-024-92, Computer Science Department, Columbia Uni-
versity, New York, NY.

o GALIL, Z., GIANCARLO, R., 1992, On the exact complexity of string
matching: upper bounds, SIAM Journal on Computing, 21 (3):407-
437.






11 Apostolico-Crochemore algorithm

11.1 Main features

o preprocessing phase in O(m) time and space complexity;
o searching phase in O(n) time complexity;

¢ performs %n text character comparisons in the worst case.

11.2 Description

The Apostolico-Crochemore uses the kmpNext shift table (see chapter
7) to compute the shifts. Let £ = 0 if « is a power of a single character
(z = ¢™ with ¢ € X)) and £ be equal to the position of the first character
of z different from z[0] otherwise (z = a‘bu for a,b € ¥, u € ¥* and
a # b). During each attempt the comparisons are made with pattern
positions in the following order: £,/ 4+1,... . m—2,m—1,0,1,...,£—1.
During the searching phase we consider triple of the form (3, j, k) where:
o the window is positioned on the text factor y[j..j +m — 1];
o 0<k<flandz[0..k—1]=ylj..j+k—-1];
o U<i<mandz[l.i—1]=y[j+£L..i+75—1].
(see figure 11.1).

The initial triple is (¢, 0, 0).

i itk itj j+m—1

Figure 11.1 At each attempt of the Apostolico-Crochemore algorithm we
consider a triple (1, 7, k).
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We now explain how to compute the next triple after (i, j, k) has been
computed. Three cases arise depending on the value of ¢:
. 1=/
If [i] = y[i + j] then the next triple is (i + 1,4, k).
If z[i] # y[i + j] then the next triple is (¢, 7 + 1, max{0,k — 1}).
o I<i<m
If z[i] = y[i + j] then the next triple is (i + 1,7, k).
If 2[i] # y[i + j] then two cases arise depending on the value of
kmpNext[i]:
—  kmpNext[i] < £: then the next triple is
(£,i4+ j — kmpNext[i], max{0, kmpNext[i]}) ,
—  kmpNext[i] > £: then the next triple is
(kmpNext[i],i+ j — kmpNext[i], £) .
. i=m
If k < £ and z[k] = y[j + k] then the next triple is (¢, 7,k + 1).
Otherwise either & < £ and z[k] # y[j + k], or k = £. If k = ¢
an occurrence of x is reported. In both cases the next triple is
computed in the same manner as in the case where £ < ¢ < m.
The preprocessing phase consists in computing the table kmpNext
and the integer £. It can be done in O(m) space and time. The search-
ing phase is in O(n) time complexity and furthermore the Apostolico-
Crochemore algorithm performs at most %n text character comparisons
in the worst case.
11.3 The C code

The function preKmp is given chapter 7.

void AXAMAC(char *x, int m, char *y, int n) {
int i, j, k, ell, kmpNext[XSIZE];

/* Preprocessing */
preKmp(x, m, kmpNext);
for (ell = 1; x[ell - 1] == x[elll; ell++);
if (ell == m)
ell = 0;

/* Searching */
i = ell;
j:k:o;
while (j <= n - m) {
while (i < m && x[i] == y[i + jI1)
++1;

)



11.4 The example

if (i >=m) {

while (k < ell && x[k] == y[j + k1)

++k;
if (k >= ell)
OUTPUT(j) ;

¥
j += (i - kmpNext[il);
if (i == ell)
k = MAX(O, k - 1);
else
if (kmpNext[i] <= ell) {
k = MAX(O, kmpNext[il);

i = ell;
}
else {

k = ell;

i = kmpNext[il;
}

7

~

11.4

The example

i 0 1 2 3 4 5 6 17 8
z[d] G C A G A @ G
kmpNext[i] | -1 0 0 -1 1 -1 1 -1 1

(=1

Searching phase

First attempt:

y [ECATCGCAGAGAGTATA

CAGTACG

123
leCAGAGAG‘

Shift by 4 (i — kmpNext[i] =3 — —1)
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Second attempt:

y [GCAT|CGCAGAGAGTAT AGTACG
1
x [GEAGAGAG]
Shift by 1 (i — kmpNext[i] =1 — 0)
Third attempt:
y [GCATCGCAGAGAG|TAT AGTACG
81234567
z [GCAGAGAG|
Shift by 7 (i — kmpNext[i] =8 — 1)
Fourth attempt:
y [§CATCGCAGAGA|GTAT AG[TACG
1
z [GCAG A G|
Shift by 1 (i — kmpNext[i] =1 — 0)
Fifth attempt:
y [GCATCGCAGAGAG|TAT A G T|A C G]
z [G]C A G A G
Shift by 1 (i — kmpNext[i] =0 — —1)
Sixth attempt:
y [ECATCGCAGAGAGTAT AGTA[CG]
1
z [6[C AGAG|
Shift by 1 (i — kmpNext[i] =0 — —1)
Seventh attempt:
y [§CATCGCAGAGAGTAJT AGTAC|[G]
z (G GAGAG|

Shift by 1 (i — kmpNext[i] =0 — —1)
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Eighth attempt:

y [GCATCGCAGAGAGTATMACAGTACGG|

1234
leCAGAGAG‘

Shift by 3 (i — kmpNext[i] =4 — 1)

On the example the Apostolico-Crochemore algorithm performs 20
text character comparisons on the example.

11.5

References

¢ AposToLico, A., CROCHEMORE, M., 1991, Optimal canonization

of all substrings of a string, Information and Computation 95(1):76—-
95.

o Hancartr, C., 1993, Analyse exacte et en moyenne d’algorithmes
de recherche d’un motif dans un texte, Thése de doctorat de 1’Uni-
versité de Paris 7, France.






12 Not So Naive algorithm

12.1 Main features

¢ preprocessing phase in constant time complexity;
¢ constant extra space complexity;
o searching phase in O(m x n) time complexity;

o (slightly) sub-linear in the average case.

12.2 Description

During the searching phase of the Not So Naive algorithm the character
comparisons are made with the pattern positions in the following order
1,2,....m—2,m—1,0.

For each attempt where the window is positioned on the text factor
ylj..5+m—1]: if 2[0] = 2[1] and 2[1] # y[j + 1] of if 2[0] # z[1] and
z[1] = y[j + 1] the pattern is shifted by 2 positions at the end of the
attempt and by 1 otherwise.

Thus the preprocessing phase can be done in constant time and space.
The searching phase of the Not So Naive algorithm has a quadratic worst
case but it is slightly sub-linear in the average case.

12.3 The C code

void NSN(char *x, int m, char *y, int n) {
int j, k, ell;

/* Preprocessing */
if (x[0] == x[11) {
k = 2;
ell = 1;
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¥
else {
k =1;
ell = 2;
¥

/* Searching */
j=0;
while (j <= n - m)
if (x[1] '= y[j + 1D
j += k;
else {
if (memcmp(x + 2, y + j + 2, m - 2) == 0 &&
x[0] == y[j1)
OUTPUT(§);
j t+= ell;

12.4 The example

k=1land £=2

Searching phase

First attempt:

y [CAMCGCA[GAGAGTATACAGTACG

123
leCAGAGAG‘

Shift by 2

Second attempt:

y [€§CATCGCAGAGAGTATACAGTACSG

1
x|GCAGAGAG|

Shift by 1
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Third attempt:

Shift by 2

ylGCAiTCGCAGAGIAGTATACA G
12
x |G CAGAGAG]
Fourth attempt:
CAGAGAG]TATACA G

y [GCATCG

81273645

z [GC AGA G

Shift by 2
Fifth attempt:

y [§CATCGCAGBAGAGTA|TACA G

z [G[CAGAGAG]|

Shift by 1
Sixth attempt:

y [GCATCGCA[GAGAGTAT/ACA G

z [GEAGAGAG|

Shift by 1
Seventh attempt:

y [§CATCGCAGAGAGTATA|CA G

1
z [G[CAGAGAG]|

Shift by 1
Eighth attempt:

y [§CATCGCAGA[GAGTATAC|A G

z [G[CAGAGAG]|

Shift by 1

83
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Ninth attempt:

Shift by 1

Shift by 1

Shift by 1

Shift by 1

Shift by 1

y [GCATCGO AGAGTATACAGTACG
1
x [GJ6AGAGAG]

Tenth attempt:

y [GCATCGC AGA[GTATACAGTACG

1
z [GICAGAGAG]|

Eleventh attempt:

y [GCATCGC AGAGITATACAGT|ACG|

z [G[CAGAGAG]|

Twelfth attempt:

y [GCATCGO AGAGTAMACAGTA|C G|

1
z [GICAGAGAG]|

Thirteenth attempt:

y [GCATCGC AGAGTA[TACAGTAC|G|

1
z [G[CAGAGAG]|

Fourteenth attempt:

y [§CATCGC AGAGTATACAGTACG|

234
z [GCAGHAGAG]|

Shift by 2
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The Not So Naive algorithm performs 27 text character comparisons
on the example.

12.5

References
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Rouen, France, pp 99-110, PUR 176, Rouen, France.

¢ Hancarr, C., 1993, Analyse exacte et en moyenne d’algorithmes
de recherche d’un motif dans un texte, Thése de doctorat de 1’Uni-
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Forward Dawg Matching algorithm

13.1 Main Features

¢ uses the suffix automaton of z;

o O(n) worst case time complexity;

¢ performs exactly n text character inspections.
13.2 Description

The Forward Dawg Matching algorithm computes the longest factor of
the pattern ending at each position in the text. This is make pos-
sible by the use of the smallest suffix automaton (also called DAWG
for Directed Acyclic Word Graph) of the pattern. The smallest suffix
automaton of a word w is a Deterministic Finite Automaton S(w) =
(@, 40, T, E). The language accepted by S(w) is L(S(w)) = {u € T* :
Jv € ¥* such that w = vu}. The preprocessing phase of the Forward
Dawg Matching algorithm consists in computing the smallest suffix au-
tomaton for the pattern z. It is linear in time and space in the length
of the pattern.

During the searching phase the Forward Dawg Matching algorithm
parses the characters of the text from left to right with the automaton
S(z) starting with state ¢g. For each state ¢ € S(z) the longest path
from ¢g to p is denoted by length(g). This structure extensively uses the
notion of suffix links. For each state p the suffix link of p is denoted by
S[p]. For a state p, let Path(p) = (po, p1, ..., pe) be the suffix path of p
such that pg = p, for 1 < i < ¢, p; = S[pi—1] and pg = qo. For each text
character y[j] sequentially, let p be the current state, then the Forward
Dawg Matching algorithm takes a transition defined for y[j] for the first
state of Path(p) for which such a transition is defined. The current state
p is updated with the target state of this transition or with the initial
state gg if no transition exists labelled with y[j] from a state of Path(p).
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An occurrence of z is found when length(p) = m.
The Forward Dawg Matching algorithm performs exactly n text char-
acter inspections.

13.3 The C code

The function buildSuffixAutomaton is given chapter 25. All the other
functions to build and manipulate the suffix automaton can be found
section 1.5.

int FDM(char *x, int m, char *y, int n) {
int j, init, ell, state;
Graph aut;

/* Preprocessing */

aut = newSuffixAutomaton(2*(m + 2), 2*(m + 2)*ASIZE);
buildSuffixAutomaton(x, m, aut);

init = getInitial(aut);

/* Searching */
ell = 0;
state = init;
for (j = 0; j < m; ++j) {
if (getTarget(aut, state, y[j]) != UNDEFINED) {
++ell;
state = getTarget(aut, state, y[jl);

}
else {
while (state != init &&
getTarget(aut, state, y[j]) == UNDEFINED)
state = getSuffixLink(aut, state);
if (getTarget(aut, state, y[j]) != UNDEFINED) {
ell = getLength(aut, state) + 1;
state = getTarget(aut, state, y[jl);
}
else {
ell = 0;
state = init;
}
}

if (ell == m)
OUTPUT(j -m+ 1);
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13.4 The example

state o1 2 3 4 5 6 7 8 9 10 11 12
suffix ink |O 0 0O 6 8 10 0 12 1 10 6 12 8
length o1 2 3 4 5 1 6 2 7 3 8 4

Searching phase

The initial state 1s 0.
y‘GCATCGCAGAGAGTATACAGTACG‘

1230

yIGCATCGCAGAGAGTATACAGTACG‘

20

yIGCATCGCAGAGAGTATACAGTACG‘

123457910
1
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yIGCATCGCAGAGAGTATACAGTACG‘

6 0

yIGCATCGCAGAGAGTATACAGTACG‘

62340

yIGCATCGCAGAGAGTATACAGTACG‘

6 21

The Forward Dawg Matching algorithm performs exactly 24 text char-
acter inspections on the example.

13.5 References

¢  CROCHEMORE, M., RYyTTER, W., 1994, Text Algorithms, Oxford
University Press.
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Boyer-Moore algorithm

14.1 Main Features
¢ performs the comparisons from right to left;
o preprocessing phase in O(m + o) time and space complexity;
o searching phase in O(m x n) time complexity;
¢ 3n text character comparisons in the worst case when searching for
a non periodic pattern;
¢ O(n/m) best performance.
14.2 Description

The Boyer-Moore algorithm is considered as the most efficient string-
matching algorithm in usual applications. A simplified version of it or
the entire algorithm is often implemented in text editors for the “search”
and “substitute” commands.

The algorithm scans the characters of the pattern from right to left
beginning with the rightmost one. In case of a mismatch (or a complete
match of the whole pattern) it uses two precomputed functions to shift
the window to the right. These two shift functions are called the good-
suffix shift (also called matching shift) and the bad-character shift
(also called the occurrence shift).

Assume that a mismatch occurs between the character z[i] = a of the
pattern and the character y[i + j] = b of the text during an attempt at
position j. Then, z[i+1..m—1] =y[i+j+1..j4+m —1] = v and
z[i] # y[i + j]. The good-suffix shift consists in aligning the segment
yli+j+1..54m—1]=z[i+1..m— 1] with its rightmost occurrence
in « that is preceded by a character different from z[i] (see figure 14.1).
If there exists no such segment, the shift consists in aligning the longest
suffix v of y[i + 7+ 1..5 + m — 1] with a matching prefix of & (see
figure 14.2).
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y | Bl w ]
7| @” shift
z [ Jle]l  w ] |

Figure 14.1 The good-suffix shift, u re-occurs preceded by a character ¢
different from a.

v | B« |

o | I

shift

v v | |

Figure 14.2 The good-suffix shift, only a suffix of u re-occurs in z.

The bad-character shift consists in aligning the text character y[i + j]
with its rightmost occurrence in 2[0..m — 2] (see figure 14.3). If y[i + j]
does not occur in the pattern x, no occurrence of z in y can include
y[i + j], and the left end of the window is aligned with the character
immediately after y[i + j], namely y[i + j + 1] (see figure 14.4).

Note that the bad-character shift can be negative, thus for shifting
the window, the Boyer-Moore algorithm applies the maximum between
the the good-suffix shift and bad-character shift. More formally the two
shift functions are defined as follows.

The good-suffix shift function is stored in a table bmGs of size m+ 1.
Let us define two conditions:

Cs(i, s) : for each k such that i <k <m,s >k or z[k — s] = z[k] ,
and

Co(i,s) :if s < i then z[i — s] # x[{] .

Then, for 0 <7 < m:

bmGs[i + 1] = min{s > 0 : Cs(i, s) and Co(, s) hold}

y | B  w | |
z | | I shift
T l ‘ b | contains no b |

Figure 14.3 The bad-character shift, a occurs in .
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y | B w |
z | [ [ shift
T l contains no b ‘

Figure 14.4 The bad-character shift, a does not occur in z.

and we define bmGs|0] as the length of the period of . The computation
of the table bmGs use a table suff defined as follows:

for 1 <i<m,suff[i] =max{k :z[i—k+1..q =2z[m—km-—1]} .

The bad-character shift function is stored in a table bmBc of size o.
For c e ¥:

min{i: 1 <i<m—1land z[m—1—1d =¢} ifcoccurs
bmBc[c] = nz,

m otherwise .

Tables bmBec and bmGs can be precomputed in time O(m+ o) before
the searching phase and require an extra-space in O(m+o¢). The search-
ing phase time complexity is quadratic but at most 3n text character
comparisons are performed when searching for a non periodic pattern.
On large alphabets (relatively to the length of the pattern) the algo-
rithm is extremely fast. When searching for a™~!b in a” the algorithm
makes only O(n/m) comparisons, which is the absolute minimum for
any string-matching algorithm in the model where the pattern only is
preprocessed.

14.3

The C code

void preBmBc(char *x, int m, int bmBc[]) {
int 1i;

for (i = 0; i < ASIZE; ++i)

bmBc[i] = m;
for (1 =0; i <m - 1; ++1i)
bmBe[x[i]] = m - 1 - 1;

void suffixes(char *x, int m, int *suff) {
int £, g, 1i;

sufflm - 1] = m;
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g=m-1;
for (i =m - 2; 1> 0; --i) {
if (i > g && suff[i +m -1 - f] <1 - g)
suff[i] = suffl[i + m - 1 - f];

else {
if(i<g)
g =1
f = 1i;

while (g >= 0 && x[g] == x[g + m - 1 - £])

suff[i] = £ - g;
}

void preBmGs(char *x, int m, int bmGs[]) {
int i, j, suff[XSIZE];

suffixes(x, m, suff);

for (1 = 0; i < m; ++i)

bmGs[i] = m;
j=0;
for (i =m - 1; i >= -1; --1i)
if (i == -1 || suff[i] ==1i + 1)

for (; j <m-1 - 1i; ++j)
if (bmGs[j] == m)
bmGs[j] = m - 1 - i;
for (1 = 0; i <=m - 2; ++1i)
bmGs[m - 1 - suff[il]l = m - 1 - i;

void BM(char #x, int m, char #y, int n) {
int i, j, bmGs[XSIZE], bmBc[ASIZE];

/* Preprocessing */
preBmGs(x, m, bmGs);
preBmBc(x, m, bmBc);

/* Searching */

j=0;

while (j <= n - m) {
for (i =m - 1; 1 >= 0 && x[i] == y[i + j];
if (i < 0) {
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OUTPUT(§);
j += bmGs[0];
}
else
j += MAX(bmGs[i], bmBc[y[i + j1] - m + 1 + i);

14.4 The example

c 4 C G T

bmBe[e] |1 6 2 8
i 0 1 2 3 4 5 6 7
2i] |G C A G A G A G
sufff]] |1 0 0 2 0 4 0 8
bmGsi] |7 7 7 2 7 4 7 1

Searching phase

First attempt:

y [(CATCGCAGAGAGTATACAGTACG

1
leCAGAGAG‘

Shift by 1 (bmGs[7] = bmBc[A] — T+ T)

Second attempt:

y [GCATCGCAGAGAGTATACAGTACG

321
leCAGAGAG‘

Shift by 4 (bmGs[5] = bmBc[C] — 7+ 5)

Third attempt:

y [GCATC|GCAGAGAGTATACAGTACG

87654321
x\GCAGAGAG\

Shift by 7 (bmGs[0])
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Fourth attempt:
y [GCATCGCAGAGA[GTATARGAG|TACG
321
x [GCAGAEGAG]
Shift by 4 (bmGs[5] = bmBc[C] — 7+ 5)
Fifth attempt:
y[GCATCGCAGAGAGTATACAGTALQG|
21
z [GCAGAGHAG|
Shift by 7 (bmGs[6])
The Boyer-Moore algorithm performs 17 text character comparisons
on the example.
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Turbo-BM algorithm

15.1 Main Features
+  variant of the Boyer-Moore algorithm;
* 1o extra preprocessing needed with respect to the Boyer-Moore al-
gorithm;
¢ constant extra space needed with respect to the Boyer-Moore algo-
rithm,;
o preprocessing phase in O(m + o) time and space complexity;
o searching phase in O(n) time complexity;
¢ 2n text character comparisons in the worst case.
15.2 Description

The Turbo-BM algorithm is an amelioration of the Boyer-Moore algo-
rithm (see chapter 14). It needs no extra preprocessing and requires
only a constant extra space with respect to the original Boyer-Moore al-
gorithm. It consists in remembering the factor of the text that matched
a suffix of the pattern during the last attempt (and only if a good-suffix
shift was performed).

This technique presents two advantages:

¢ it is possible to jump over this factor;
¢ it can enable to perform a turbo-shift.

A turbo-shift can occur if during the current attempt the suffix of the
pattern that matches the text is shorter than the one remembered from
the preceding attempt. In this case let us call u the remembered factor
and v the suffix matched during the current attempt such that uzv is a
suffix of z. Let a and b be the characters that cause the mismatch during
the current attempt in the pattern and the text respectively. Then av
is a suffix of #, and thus of u since |v| < |u|. The two characters ¢ and
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turbo-shift

e

y [_la] v | B > | |

v T a] v |

Figure 15.1 A turbo-shift can apply when |v| < |u].

turbo-shift

e

y | ] v | B v [ |

z | el v @ o« ]

Figure 15.2 ¢ # d so they cannot be aligned with the same character in v.

b occur at distance p in the text, and the suffix of « of length |uzv| has
a period of length p = |zv| since u is a border of uzv, thus it cannot
overlap both occurrences of two different characters a and b, at distance
p, in the text. The smallest shift possible has length |u| — |v|, which we
call a turbo-shift (see figure 15.1).

Still in the case where |v| < |u] if the length of the bad-character shift
is larger than the length of the good-suffix shift and the length of the
turbo-shift then the length of the actual shift must be greater or equal
to |u|+ 1. Indeed (see figure 15.2), in this case the two characters ¢ and
d are different since we assumed that the previous shift was a good-suffix
shift. Then a shift greater than the turbo-shift but smaller than |u|+ 1
would align ¢ and d with a same character in v. Thus if this case the
length of the actual shift must be at least equal to |u|+ 1.

The preprocessing phase can be performed in O(m+ o) time and space
complexity. The searching phase is in O(n) time complexity. The num-
ber of text character comparisons performed by the Turbo-BM algorithm
is bounded by 2n.

15.3

The C code

The functions preBmBc and preBmGs are given chapter 14.

In the TBM function, the variable u memorizes the length of the suffix
matched during the previous attempt and the variable v memorizes the
length of the suffix matched during the current attempt.
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void TBM(char *x, int m, char *y, int n) {
int bcShift, i, j, shift, u, v, turboShift,
bmGs [XSIZE], bmBc[ASIZE];

/* Preprocessing */
preBmGs(x, m, bmGs);
preBmBc(x, m, bmBc);

/* Searching */
j =u=0;
shift = m;
while (j <= n - m) {
i=m- 1;
while (i >= 0 && x[i] == y[i + j]1) {
-
if (u '= 0 & i ==m - 1 - shift)
i -= u;
}
if (i < 0) {
OUTPUT(j);
shift = bmGs[0];
u=m - shift;
}
else {
v=m-1-1ij;
turboShift = u - v;
bcShift = bmBely[i + j11 - m + 1 + i;
shift = MAX(turboShift, bcShift);
shift = MAX(shift, bmGs[i]);
if (shift == bmGs[i])
u = MIN(m - shift, v);
else {
if (turboShift < bcShift)
shift = MAX(shift, u + 1);

j += shift;

15.4 The example

a A C
bmBe[a] | 1 6

N @
oo+
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2[i]
suff [i]
bmGsl[i]

N~ QO
AN DN Qo
— 00 Q|

1O Q=
-1 O =N
~N O
e Q| Ot
-~ O |

Searching phase

First attempt:

y [GCATCGCAGAGAGTATACAGTACG

1
leCAGAGAG‘

Shift by 1 (bmGs[7] = bmBc[A] — T+ T)

Second attempt:

y [G[CATCGECAGAGAGTATACAGTACG

321
leCAGAGAG‘

Shift by 4 (bmGs[5] = bmBc[C] — 7+ 5)

Third attempt:

y [@§CATClGCAGAGAGTATACAGTACSG

65 4321
x\GCAGAGAG\

Shift by 7 (bmGs[0])

Fourth attempt:

y [@§CATCGCAGAGA[GTATACAG|TACSG

z |G CAGAGAG]
Shift by 4 (bmGs[5] = bmBc[C] — 7+ 5)

Fifth attempt:

y[GCATCGCAGAGAGTATHACAGTALQ G|

21
:::IGCAGAGAG‘

Shift by 7 (bmGs[6])

The Turbo-BM algorithm performs 15 text character comparisons on
the example.
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Apostolico-Giancarlo algorithm

16.1 Main Features
+  variant of the Boyer-Moore algorithm;
o preprocessing phase in O(m + o) time and space complexity;
o searching phase in O(n) time complexity;
. %n comparisons in the worst case.
16.2 Description

The Boyer-Moore algorithm (see chapter 14) is difficult to analyze be-
cause after each attempt it forgets all the characters it has already
matched. Apostolico and Giancarlo designed an algorithm which re-
members the length of the longest suffix of the pattern ending at the
right position of the window at the end of each attempt. These informa-
tion are stored in a table skip. Let us assume that during an attempt at
a position less than j the algorithm has matched a suffix of z of length
k at position i + j with 0 < i < m then skip[i + j] is equal to k. Let
suff [i], for 0 < i < m be equal to the length of the longest suffix of x
ending at the position 7 in z (see chapter 14). During the attempt at
position j, if the algorithm compares successfully the factor of the text
yli+7+ 1..54 m— 1] then four cases arise:

Case 1: k > suff[i] and suff[i] = i+ 1. It means that an occurrence of x
is found at position j and skip[j+m—1] is set to m (see figure 16.1).
A shift of length per(z) is performed.

Case 2: k > suff[i] and suff[{] < i. It means that a mismatch occurs
between characters a[i—suff [i]] and y[i+j—suff [{]] and skip[j+m—1]
is set to m — 1 — 1 4 suff[i] (see figure 16.2). A shift is performed
using bmBc[y[i + j — suff[{]]] and bmGs[i — suff[i] + 1].

Case 3: k < suff[i]. It means that a mismatch occurs between characters
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106
Jj_i+J
v | | | |
-
k
z | | |
z | | |
-
suff [i]

Figure 16.1 Case 1, k > suff[1] and suff[i] = i 4+ 1, an occurrence of z is

found.
J i+
v | | | |
_—
k
| |
= | Il | |
_—
suff[i]

Figure 16.2 Case 2, k > suff[i] and suff[i] < 1, a mismatch occurs between

y[i + j — suff[1]] and z[s — suff[i]].

suff[i]
Figure 16.3 Case 3, k < suff[i] a mismatch occurs between y[i + j — k] and
z[1 — k].

i i+
[&] | |

v |

z | Ja] |

= [ 7] L]

suff [1]

Figure 16.4 Case 4, k = suff [1]anda # b.
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z[i— k] and y[i + j — k] and skip[j +m — 1] isset tom —1—i+k
(see figure 16.3). A shift is performed using bmBc[y[i + j — k]] and
bmGs[i — k + 1].

Case 4: k = suff[i]. This is the only case where a “jump” has to be done
over the text factor y[i + j — k 4+ 1..i+ j] in order to resume the
comparisons between the characters y[i + j — k] and «[i — k] (see

figure 16.4).

In each case the only information which is needed is the length of the
longest suffix of z ending at position ¢ on z.

The Apostolico-Giancarlo algorithm use two data structures:
¢ a table skip which is updated at the end of each attempt j in the

following way:
skip[j+m—1]=max{ k:zm—k..m—-1]=
yi+m—=%k..j+m—1]}
o the table suff used during the computation of the table bmGs:
for 1 <i<m,suff[i] =max{k:z[i—k+1..d=2z[m—k,m—1]}

The complexity in space and time of the preprocessing phase of the
Apostolico-Giancarlo algorithm is the same than for the Boyer-Moore
algorithm: O(m + o).

During the search phase only the last m informations of the table skip
are needed at each attempt so the size of the table skip can be reduced to
O(m). The Apostolico-Giancarlo algorithm performs in the worst case
at most gn text character comparisons.

16.3

The C code

The functions preBmBc and preBmGs are given chapter 14. It is enough
to add the table suff as a parameter to the function preBmGs to get the
correct values in the function AG.

void AG(char #x, int m, char #y, int n) {
int i, j, k, s, shift,
bmGs [XSIZE], skip[XSIZE], suff[XSIZE], bmBc[ASIZE];

/* Preprocessing */

preBmGs(x, m, bmGs, suff);
preBmBc(x, m, bmBc);
memset(skip, 0, m*sizeof(int));

/* Searching */
j=0;
while (j <= n - m) {
i=m- 1;
while (i >= 0) {
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k = skipl[il;
s = suffl[il;
if (k > 0)
if (k > s) {
if (i + 1 == s)
i= (-1);
else
i -= s;
break;
¥
else {
i -=k;
if (k < s)
break;
}
else {
if (x[1] == y[i + j1)
--i;
else
break;
¥
¥
if (i < 0) {
OUTPUT(3);
skip[m - 1] = m;
shift = bmGs[0];
}
else {
skip[m - 1] = m - 1 - i;
shift = MAX(bmGs[i], bmBc[y[i + j1] - m + 1 + 1i);
}
j += shift;

memcpy (skip, skip + shift, (m - shift)*sizeof(int));
memset(skip + m - shift, 0, shift*sizeof(int));

16.4 The example

a 4 C G T
bmBe[a] |1 6 2 8
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2[i]
suff [i]
bmGsl[i]

N~ QO
AN DN Qo
— 00 Q|

1O Q=
-1 O =N
~N O
e Q| Ot
-~ O |

Searching phase

First attempt:

y [GCATCGCAGAGAGTATACAGTACG

1
leCAGAGAG‘

Shift by 1 (bmGs[7] = bmBc[A] — T+ T)

Second attempt:

y [G[CATCGECAGAGAGTATACAGTACG

321
leCAGAGAG‘

Shift by 4 (bmGs[5] = bmBc[C] — 7+ 5)

Third attempt:

y [@§CATClGCAGAGAGTATACAGTACSG

65 4321
x\GCAGAGAG\

Shift by 7 (bmGs[0])

Fourth attempt:

y [@§CATCGCAGAGA[GTATACAG|TACSG

z |G CAGAGAG]
Shift by 4 (bmGs[5] = bmBc[C] — 7+ 5)

Fifth attempt:

y[GCATCGCAGAGAGTATHACAGTALQ G|

21
:::IGCAGAGAG‘

Shift by 7 (bmGs[6])

The Apostolico-Giancarlo algorithm performs 15 text character com-
parisons on the example.
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Reverse Colussi algorithm

17.1  Main features
¢ refinement of the Boyer-Moore algorithm,;
¢ partitions the set of pattern positions into two disjoint subsets;
o preprocessing phase in O(m?) time and O(m x o) space complexity;
o searching phase in O(n) time complexity;
¢ 2n text character comparisons in the worst case.
17.2 Description

The character comparisons are done using a specific order given by a
table h.

For each integer ¢ such that 0 < ¢ < m we define two disjoint sets:
Pos(i) = {k:0 < k <iand z[i] = z[i — k]}
Neg(i) = {k:0 < k <iand z[i] # z[i — k]}

For 1 < k < m, let hmin[k] be the minimum integer ¢ such that
£>k—1and k ¢ Neg(i) for all ¢ such that £ <i<m— 1.

For 0 < £ < m — 1, let kmin[f] be the minimum integer k such that
hmin[k] = £ > k if any such k exists and kmin[¢] = 0 otherwise.

For 0 < ¢ < m — 1, let rmin[f] be the minimum integer k such that
r > { and hmin[r] =r — 1.

The value of h[0] is set to m — 1.

After that we choose in increasing order of kmin[f], all the indexes
h[1], ..., h[d] such that kmin[h[{]] # 0 and we set rcGs[i] to kmin[h[i]]
for 1 <1< d.

Then we choose the indexes h[d+ 1], ..., h[m — 1] in increasing order
and we set rcGs[i] to rmin[h[d]] for d < i < m.

The value of reGs[m] is set to the period of .
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The table rcBc is defined as follows:
rcBela,s] = min{k: (k=mor z[m—k — 1] = a) and
(k>m—s—1or
zm—k—s—1]=z[m—s—1])}
To compute the table rcBc we define: for each ¢ € X, locc[e] is the
index of the rightmost occurrence of ¢ in z[0..m — 2] (locc[c] is set to
—1 if ¢ does not occur in z[0..m — 2]).
A table link is used to link downward all the occurrences of each
pattern character.
The preprocessing phase can be performed in O(m?) time and O(m x
o) space complexity. The searching phase is in O(n) time complexity.
17.3 The C code

void preRc(char *x, int m, int h[],
int rcBc[ASIZE][XSIZE], int rcGs[]) {
int a, i, j, k, q, T, s,
hmin[XSIZE], kmin[XSIZE], 1link[XSIZE],
locc[ASIZE], rmin[XSIZE];

/* Computation of link and locc */

for (a = 0; a < ASIZE; ++a)
locclal = -1;

link[0] = -1;

for (i = 0; i <m - 1; ++i) {
link[i + 1] = locc[x[il];
locc[x[il] = 1i;

}

/* Computation of rcBc */
for (a = 0; a < ASIZE; ++a)
for (s = 1; s <=m; ++s) {
i = loccl[al;
j = link[m - s];
while (i - j != s && j >= 0)
if (1 - j > s)
i = 1link[i + 1];
else
j = link[j + 11;
while (i - j > s)
i = link[i + 1];
rcBelalls]l =m - i - 1;
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/* Computation of hmin */
k =1;
i=m- 1;
while (k <= m) {
while (i - k >= 0 && x[i - k] == x[i])
--i;
hminlk] = i;
q=k+ 1;
while (hminl[q - k] - (q - k) > 1) {
hmin[q] = hmin[q - kI;

++q;
}
i+= (q - k);
k=gq;
if (i == m)

i=m-1;

}

/* Computation of kmin */

memset(kmin, 0, m * sizeof(int));

for (k =m; k > 0; --k)
kmin[hmin[k]] = k;

/* Computation of rmin */
for (i =m - 1; i >= 0; --i) {
if (minf[i + 1] == i)
r =1+ 1;
rmin[i] = r;

}

/* Computation of rcGs */
i=1;
for (k = 1; k <= m; ++k)
if (hminl[k] !'= m - 1 && kmin[hmin[k]] == k) {
h[i]l = hmin[k];
rcGs[i++] = k;
}
i=m-1;
for (j =m - 2; j >= 0; --3)
if (kmin[j] == 0) {
hlil = j;
rcGs[i--] = rmin[j];
}

rcGs[m] = rmin[0];
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void RC(char #*x, int m, char #*y, int n) {
int i, j, s, rcBc[ASIZE][XSIZE], rcGs[XSIZE], h[XSIZE];

/* Preprocessing */
preRc(x, m, h, rcBec, rcGs);

/* Searching */
j=0;
s = m;
while (j <= n - m) {
while (j <= n - m && x[m - 1] !'= y[j + m - 1]) {
s = rcBelylj + m - 111[s];
3+ s
}
for (i = 1; i < m && x[h[i]] == y[j + h[ill; ++i);
if (1 >= m)

QUTPUT(j);
s = rcGs[il;
j = s;

17.4 The example

a A C G T
locela] |6 1 5 -1
recBe |1 2 3 4 5 6 7 8

A § 5 5 3 3 3 1 1

C § 6 6 6 6 6 6 6

G 2 2 2 4 4 2 2 2

T § 8 8 8 8 8 8 8

i 0o 1 2 3 4 5 6 7 8

2] |G C A& G A G A& G
link[]] |-1 -1 -1 -1 0 2 3 4
hmin[i] |0 7 3 7 5 5 7 6 7
kmin[) | O 0 0 2 0 4 7 1 0
rmin[d) | 7 7 7 7 7 7 7 8 0
reGs[g) | 0 2 4 7 7 7 7 7 7

hli] 3 5 6 0 1 2 4




17.4 The example

Searching phase

First attempt:

yllGCATCGCHGAGAGTA GTACG
x [GCAGAGAQG]|
Shift by 1 (reBc[A][8])
Second attempt:

y [GCATECGCAGAGAGTA GTACG

| ~ -
z [GCAGAGAG]|

Shift by 2 (reGs[1])
Third attempt:

y [GCA[TCGEAGAGAGTA GTACG

| ~ -
x [GCAGAGAG]

Shift by 2 (reGs[1])
Fourth attempt:

y [GCATC|GCAGAGAG|TA GTACG

S6728341
z [GCAGAGAQG|

Shift by 7 (reGs[8])
Fifth attempt:

y [§CATCGCAGAGA[GTA GITACG

| -
z [GCA G|

Shift by 2 (reGs[1])
Sixth attempt:

y [GCATCGCAGAGAGT|A G TH[Ca|

| -
z |G G AG]

Shift by 5 (reBc[A][2])

115
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The Reverse-Colussi algorithm performs 16 text character comparisons
on the example.

17.5 References

o Courussi, L., 1994, Fastest pattern matching in strings, Journal of
Algorithms. 16(2):163-189.
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Horspool algorithm

18.1 Main Features
¢ simplification of the Boyer-Moore algorithm;
o uses only the bad-character shift;
¢ easy to implement;
o preprocessing phase in O(m + o) time and O(o) space complexity;
o searching phase in O(m x n) time complexity;
¢ the average number of comparisons for one text character is between
1/o and 2/(o + 1).
18.2 Description

The bad-character shift used in the Boyer-Moore algorithm (see chapter
14) is not very efficient for small alphabets, but when the alphabet is
large compared with the length of the pattern, as it is often the case
with the ASCII table and ordinary searches made under a text editor, it
becomes very useful. Using it alone produces a very efficient algorithm
in practice. Horspool proposed to use only the bad-character shift of the
rightmost character of the window to compute the shifts in the Boyer-
Moore algorithm. The preprocessing phase is in O(m+o) time and O(o)
space complexity.

The searching phase has a quadratic worst case but it can be proved
that the average number of comparisons for one text character is between

1/ and 2/(c + 1).
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18.3 The C code

The function preBmBc is given chapter 14.

void HORSPOOL(char *x, int m, char #y, int n) {
int j, bmBc[ASIZE];
char c;

/* Preprocessing */
preBmBc(x, m, bmBc);

/* Searching */
j=0;
while (j <= n - m) {
c=ylj +m- 1];
if (x[m - 1] == ¢ && memcmp(x, y + j, m - 1) == 0)
OUTPUT(§);
j += bmBc[c];

18.4 The example

a 4 C G T
bmBela] |1 6 2 8

Searching phase

First attempt:

y [ECATCGCHAIGAGAGTATACAGTACSG

1
leCAGAGAG‘

Shift by 1 (bmBc[A])

Second attempt:

y [G[ATCGCAGAGAGTATACAGTACSG

2 1
leCAGAGAG‘

Shift by 2 (bmBc[G])
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Third attempt:

y [GCATCGCAGAGAGTATACAGTACG

2 1
leCAGAGAG‘

Shift by 2 (bmBc[G])

Fourth attempt:

@
=
@
=

y [GCATC|GCA GITATACAGTACG

234
z [GCA

Shift by 2 (bmBc[G])

@ o
= o,
Q| N
= 00
(]

Fifth attempt:

y [§CATCGCAGAGAGTAITACAGTACSG

z |G CAGAGA G|
Shift by 1 (bmBc[A])

Sixth attempt:

y [GCATCGCA[GAGAGTATACAGTACG

z |G CAGAGA G|
Shift by 8 (bmBc[T])

Seventh attempt:

y [§CATCGCAGAGAGTATACAGTACG|

2 1
:UIGC AG‘

=
[<p]
=
[<p]

Shift by 2 (bmBc[G])

The Horspool algorithm performs 17 text character comparisons on
the example.

18.5

References

o Ano, A.V., 1990, Algorithms for Finding Patterns in Strings, in
Handbook of Theoretical Computer Science, Volume A, Algorithms



120

Chapter 18 Horspool algorithm

and complexity, J. van Leeuwen ed., Chapter 5, pp 255-300, Else-
vier, Amsterdam.

BaEzZA-YATES, R.A., REGNIER, M., 1992, Average running time
of the Boyer-Moore-Horspool algorithm, Theoretical Computer Sci-
ence 92(1): 19-31.

BEAUQUIER, D., BERSTEL, J., CHRETIENNE, P., 1992, Eléments
d’algorithmique, Chapter 10, pp 337-377, Masson, Paris.

CROCHEMORE,; M., HANcART, C., 1999, Pattern Matching in Str-
ings, in Algorithms and Theory of Computation Handbook, M.J.
Atallah ed., Chapter 11, pp 11-1-11-28, CRC Press Inc., Boca Ra-
ton, FL.

Hancarr, C., 1993, Analyse exacte et en moyenne d’algorithmes
de recherche d’un motif dans un texte, Thése de doctorat de 1’Uni-
versité de Paris 7, France.

HorsprooL, R.N., 1980, Practical fast searching in strings, Software
— Practice & Experience, 10(6):501-506.

LEcroq, T., 1995, Experimental results on string matching algo-
rithms, Software — Practice & Experience 25(7):727-765.

STEPHEN, G.A., 1994, String Searching Algorithms, World Scien-
tific.



19 Quick Search algorithm

19.1 Main Features

¢ simplification of the Boyer-Moore algorithm;

o uses only the bad-character shift;

¢ easy to implement;

o preprocessing phase in O(m + o) time and O(o) space complexity;
o searching phase in O(m x n) time complexity;

o very fast in practice for short patterns and large alphabets.

19.2 Description

The Quick Search algorithm uses only the bad-character shift table (see
chapter 14). After an attempt where the window is positioned on the
text factor y[j ..j+m—1], the length of the shift is at least equal to one.
So, the character y[j + m] is necessarily involved in the next attempt,
and thus can be used for the bad-character shift of the current attempt.
The bad-character shift of the present algorithm is slightly modified to
take into account the last character of = as follows: for c € ¥

gsBeld = {min{i:O <i<mand z[m—1-i=c} ifcoccursinz ,
m

otherwise .

The preprocessing phase is in O(m+ o) time and O(¢) space complexity.

During the searching phase the comparisons between pattern and text
characters during each attempt can be done in any order. The searching
phase has a quadratic worst case time complexity but it has a good
practical behaviour.
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19.3 The C code

void preQsBc(char *x, int m, int gsBc[]) {
int 1i;

for (i = 0; i < ASIZE; ++i)
gqsBc[i] = m + 1;

for (1 = 0; i < m; ++i)
qsBec[x[i]] = m - i;

void QS(char #*x, int m, char #*y, int n) {
int j, 9sBc[ASIZE];

/* Preprocessing */
preQsBc(x, m, gsBc);

/* Searching */
j=0;
while (j <= n - m) {
if (memcmp(x, y + j, m) == 0)
OUTPUT(§);
j += gqsBclyl[j + ml]; /* shift */

19.4 The example

a A
2

G T
gsBc|a] 1 9

C
7

Searching phase

First attempt:

y [ECATCGCAlGAGAGTATACAGTACG

1234
x\GCAGAGAG]

Shift by 1 (gsBc[G])
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Second attempt:

y [GIEATCGCAGAGAGTATACAGTACG

1
leCAGAGAG‘

Shift by 2 (gsBc[A])

Third attempt:

y [GCATCGCAGAGAGTATACAGTACG

1
:::IGCAGAGAG‘

Shift by 2 (gsBc[A])

Fourth attempt:

y [@§CATClGCAGAGAGTATACAGTACSG

12345678
z [GCAGAGAG|

Shift by 9 (gsBc[T])

Fifth attempt:

y [GCATCGCAGAGAGTMTACAGT A|C G|

1
leCAGAGAG‘

Shift by 7 (gsBc[C])

The Quick Search algorithm performs 15 text character comparisons
on the example.

19.5

References

¢  CROCHEMORE, M., LECcroq, T., 1996, Pattern matching and text
compression algorithms, in CRC Computer Science and Engineering
Handbook, A.B. Tucker Jr ed., Chapter 8, pp 162-202, CRC Press
Inc., Boca Raton, FL.

¢« Lecroq, T., 1995, Experimental results on string matching algo-
rithms, Software — Practice & Experience 25(7):727-765.

*  STEPHEN, G.A. 1994, String Searching Algorithms, World Scien-
tific.
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¢ SunpaAY, D.M., 1990, A very fast substring search algorithm, Com-
munications of the ACM 33(8):132-142.
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Tuned Boyer-Moore algorithm

20.1 Main Features
¢ simplification of the Boyer-Moore algorithm;
¢ easy to implement;
¢ very fast in practice.

20.2 Description

The Tuned Boyer-Moore is a implementation of a simplified version of
the Boyer-Moore algorithm which is very fast in practice. The most
costly part of a string-matching algorithm is to check whether the char-
acter of the pattern match the character of the window. To avoid doing
this part too often, it is possible to unrolled several shifts before actu-
ally comparing the characters. The algorithm used the bad-character
shift function to find [m — 1] in y and keep on shifting until finding it,
doing blindly three shifts in a row. This required to save the value of
bmBc[z[m — 1]] in a variable shift and then to set bmBc[z[m — 1]] to
0. This required also to add m occurrences of z[m — 1] at the end of y.
When z[m — 1] is found the m — 1 other characters of the window are
checked and a shift of length shift is applied.

The comparisons between pattern and text characters during each
attempt can be done in any order. This algorithm has a quadratic worst-
case time complexity but a very good practical behaviour.
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20.3

The C code

The function preBmBc is given chapter 14.

void TUNEDBM(char *x, int m, char *y, int n) {
int j, k, shift, bmBc[ASIZE];

/* Preprocessing */
preBmBc(x, m, bmBc);

shift = bmBc[x[m - 11];
bmBc[x[m - 111 = 0;
memset(y + n, x[m - 1], m);

/* Searching */
j=0;
while (j < n) {

k = bmBc[y[j + m -11];

while (k !'= 0) {

j += bmBcl[y[j + m -111;

bmBc[y[j + m -117;
bmBc[y[j + m -117;

k;
J =k
j+=k

L
Il

’

}

if (memcmp(x, y + j, m - 1) == 0 && j < n)
OUTPUT(§);

j += shift; /* shift */

20.4

The example

a A C
1

G T
bmBc[a] 6 0 8

shift = 2
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Searching phase

First attempt:

y [(€ATCGCAGAGAGTATACAGTACG

1
meAGAGAﬂ

2
meAGAGAﬂ

x@CAGAGAq

x@CAGAGAq

5
xWCAGAGAﬂ

Shift by 2 (shift)

Second attempt:

y [GCATCGCAGAGAGTATACAGTACG

1
mmCAGAGAq

2
meAGAGAﬂ

Shift by 2 (shift)

Third attempt:

y[GCATCGCAGAGAGTATACAGTACSG

1
meAGAGAﬂ

2345678
xMCAGAGAﬂ

Shift by 2 (shift)
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Fourth attempt:

y [GCATCGCAGAGAGTATACAGTACG

1
mlGCAGAGAG‘

2
leCAGAGAG‘

leCAGAGAG‘

leCAGAGAG‘

5
leCAGAGAG‘

Shift by 2 (shift)

The Tuned Boyer-Moore algorithm performs 11 text character com-
parisons and 11 text character inspections on the example.

20.5

References

« HuMmE, A., SunpAYy, D.M., 1991, Fast string searching, Software —
Practice & Experience 21(11):1221-1248.

o STEPHEN, G.A. 1994, String Searching Algorithms, World Scien-
tific.
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Zhu-Takaoka algorithm

21.1  Main features
+  variant of the Boyer-Moore algorithm;
¢ uses two consecutive text characters to compute the bad-character
shift;
o preprocessing phase in O(m + 0?) time and space complexity;
¢ searching phase in O(m x n) time complexity.
21.2 Description

Zhu and Takaoka designed an algorithm which performs the shift by con-
sidering the bad-character shift (see chapter 14) for two consecutive text
characters. During the searching phase the comparisons are performed
from right to left and when the window is positioned on the text factor
y[j ..j+m—1] and a mismatch occurs between z[m—k] and y[j +m— k]
while zlm —k+1..m—1]=y[j+m—k+1..54+ m — 1] the shift is
performed with the bad-character shift for text characters y[j + m — 2]
and y[j + m — 1]. The good-suffix shift table is also used to compute the
shifts.

The preprocessing phase of the algorithm consists in computing for
each pair of characters (a,b) with a,b € X the rightmost occurrence of
abin z[0..m — 2].



130 Chapter 21 Zhu-Takaoka algorithm

For a,b € X:

ztBcla, b = k <

k<m-—2
or
k=m-—1
or

k=m

and zfm—k..m—k+1]=ab
and ab does not occur
inzlm—k+2..m-2],

z[0] = b and ab does not occur
inz[0..m—2] ,

z[0] # b and ab does not occur
inz[0..m—2] .

It also consists in computing the table bmGs (see chapter 14). The
preprocessing phase is in O(m + ¢?) time and space complexity.
The searching phase has a quadratic worst case.

21.3 The C code

The function preBmGs is given chapter 14.

void preZtBc(char *x, int m, int ztBc[ASIZE][ASIZE]) {

int i, j;

for (i = 0; i < ASIZE; ++i)
for (j = 0; j < ASIZE; ++j)
ztBc[i]l[j]1 = m;
for (i = 0; i < ASIZE; ++i)
ztBc[i] [x[0]] = m - 1;
for (1 =1; i <m - 1; ++1i)

ztBc[x[i - 1]11[x[i]l]

=m -1 - 1i;

void ZT(char #*x, int m, char #*y, int n) {
int i, j, ztBc[ASIZE][ASIZE], bmGs[XSIZE];

/* Preprocessing */
preZtBc(x, m, ztBc);
preBmGs(x, m, bmGs);

/* Searching */

j=0;

while (j <= n - m) {

i=m- 1;

while (i < m && x[i] == y[i + j1)

--1;
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if (i <0) {
OUTPUT(j);
j += bmGs[0];
}
else
j += MAX(bmGs[i],
ztBclylj + m - 211[y[j + m - 111);

21.4 The example

ztBe | A C G T
A 8 8 2 8
C 5 8 7 8
G 1 6 7 8
T 8 8 7 8
1 0o 1 2 3 4 5 6 7
2] |6 ¢ A G A G A G
bmGs[i] |7 7 7 2 7 4 7 1

Searching phase

First attempt:

y [GCATCGCAGAGAGTATACAGTACG

1
leCAGAGAG‘

Shift by 5 (ztBc[C][A])

Second attempt:

y [GCATC|GCAGAGAGTATACAGTACG

87654321
x\GCAGAGAG\

Shift by 7 (bmGs[0])
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Third attempt:

y [GCATCGCAGAGA[GTATARGAG|TACG

321
leCAGAGAG‘

Shift by 4 (bmGs[6])

Fourth attempt:

y[GCATCGCAGAGAGTATACAGTALQG|

21
:::IGCAGAGAG‘

Shift by 7 (bmGs[7] = ztBc[C][G])

The Zhu-Takaoka algorithm performs 14 text character comparisons
on the example.

21.5 References

o 7ZHu, R.F., Takaoka, T. 1987, On improving the average case of
the Boyer-Moore string matching algorithm, Journal of Information
Processing 10(3):173-177.
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Berry-Ravindran algorithm

22.1 Main features
¢ hybrid of the Quick Search and Zhu-Takaoka algorithms;
o preprocessing phase in O(m + 0?) space and time complexity;
¢ searching phase in O(m x n) time complexity.

22.2 Description

Berry and Ravindran designed an algorithm which performs the shifts
by considering the bad-character shift (see chapter 14) for the two con-
secutive text characters immediately to the right of the window.

The preprocessing phase of the algorithm consists in computing for
each pair of characters (a,b) with a,b € ¥ the rightmost occurrence of
ab in axb. For a,be X

1 ifefm—1]=a |,
m—i+1 if z[iz[i+ 1] =ab ,
m+1 if [0] =4,

m-+2 otherwise .

brBc[a, b] = min

The preprocessing phase is in O(m + o%) space and time complexity.

After an attempt where the window is positioned on the text factor
y[j .. j+m—1] ashift of length brBc[y[j+ m], y[j + m+1]] is performed.
The text character y[n] is equal to the null character and y[n + 1] is set
to this null character in order to be able to compute the last shifts of
the algorithm.

The searching phase of the Berry-Ravindran algorithm has a O(mxn)
time complexity.
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22.3 The C code

void preBrBc(char *x, int m, int brBc[ASIZE][ASIZE]) {
int a, b, i;

for (a = 0; a < ASIZE; ++a)

for (b = 0; b < ASIZE; ++b)
brBc[allb] = m + 2;

for (a = 0; a < ASIZE; ++a)
brBec[a] [x[0]] = m + 1;

for (1 =0; i <m - 1; ++1i)
brBe[x[il] [x[i + 111 = m - i;

for (a = 0; a < ASIZE; ++a)
brBe[x[m - 1]11[a] = 1;

void BR(char #*x, int m, char #y, int n) {
int j, brBc[ASIZE][ASIZE];

/* Preprocessing */
preBrBc(x, m, brBc);

/* Searching */
yln + 11 = °\0’;
j=0;
while (j <= n - m) {
if (memcmp(x, y + j, m) == 0)
OUTPUT(j);
j += brBelylj + ml1ly[j + m + 111;

22.4 The example

brBe | A cC G T *
A 10 10 2 10 10
C 7 10 9 10 10
G 1 1 1 1 1
T 10 10 9 10 10
* 10 10 9 10 10

The star (*) represents any character in X\ {4,C, G, T}.
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Searching phase

First attempt:

y [GCATCG C 4

G A

G A

GTATAC

C G

1234
:::‘GCAGAGAG‘

Shift by 1 (brBc[G][A])

Second attempt:

y [GIEATCGCA

GlA

G A

GTATAC

C G

1

leCAGAGA

Shift by 2 (brBc[A][G])

Third attempt:

y [GCA[TCGCA

GTATAC

1

leCAGA

Shift by 2 (brBc[A][G])

Fourth attempt:

y [GCATC|GCA

GTATAC

1234

x\GCA

Shift by 10 (brBc[T][A])

Fifth attempt:

y [ECATCGGCA

G A

GTA[TAC

c[c]

Shift by 1 (brBc[G][0])

Sixth attempt:

x|Gc

=

y [ECATCGCA

G A

Shift by 10 (brBc[0][0])

GTATI|AC

1

leC

=

135
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The Berry-Ravindran algorithm performs 16 text character compar-
isons on the example.
22.5 References

¢« BERRY, T., RAVINDRAN, S.; 1999, A fast string matching algorithm
and experimental results, in Proceedings of the Prague Stringology
Club Workshop’99, J. Holub and M. Simének ed., Collaborative
Report DC-99-05, Czech Technical University, Prague, Czech Re-
public, 1999, pp 16-26.
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Smith algorithm

23.1 Main features
¢ takes the maximum of the Horspool bad-character shift function
and the Quick Search bad-character shift function;
o preprocessing phase in O(m + o) time and O(o) space complexity;
o searching phase in O(m x n) time complexity.
23.2 Description

Smith noticed that computing the shift with the text character just next
the rightmost text character of the window gives sometimes shorter shift
than using the rightmost text character of the window. He advised then
to take the maximum between the two values.

The preprocessing phase of the Smith algorithm consists in computing
the bad-character shift function (see chapter 14) and the Quick Search
bad-character shift function (see chapter 19).

The preprocessing phase is in O(m + o) time and O(c) space com-
plexity.

The searching phase of the Smith algorithm has a quadratic worst case
time complexity.
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23.3 The C code

The function preBmBc is given chapter 14 and the function preQsBc is
given chapter 19.

void SMITH(char *x, int m, char #y, int n) {
int j, bmBc[ASIZE], qsBc[ASIZE];

/* Preprocessing */
preBmBc(x, m, bmBc);
preQsBc(x, m, gsBc);

/* Searching */
j=0;
while (j <= n - m) {
if (memcmp(x, y + j, m) == 0)
OUTPUT(§);
j += MAX(bmBcly[j + m - 111, gqsBcly[j + mll);

23.4 The example

a 4 C G T
bmBe[a] |1 6 2 8
gsBela] |2 7 1 9

Searching phase

First attempt:

y [ECATCGCAlGAGAGTATACAGTACSG

1234
x\GCAGAGAG]

Shift by 1 (bmBc[A] = gsBc[G])

Second attempt:

y [GI€ATCGCAGAGAGTATACAGTACG

1
leCAGAGAG‘

Shift by 2 (bmBc[G] = gsBc[A])
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Third attempt:

y [GCATCGCAGAGAGTATACAGTACG

1
leCAGAGAG‘

Shift by 2 (bmBc[G] = gsBc[A])

Fourth attempt:

y [GCATC|GCAGAGAGTATACAGTACG

12345678
z [GCAGAGAG|

Shift by 9 (gsBc[T])

Fifth attempt:

y [§CATCGCAGAGAGTATACAGTA|CG]

1
leCAGAGAG‘

Shift by 7 (gsBc[C])

The Smith algorithm performs 15 text character comparisons on the
example.

23.5

References

o SwmiTH, P.D., 1991, Experiments with a very fast substring search
algorithm, Software — Practice & Experience 21(10):1065-1074.
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24.1 Main features

o first compares the last pattern character, then the first and finally
the middle one before actually comparing the others;

o performs the shifts like the Horspool algorithm;
o preprocessing phase in O(m + o) time and O(o) space complexity;

o searching phase in O(m x n) time complexity.

24.2 Description

Raita designed an algorithm which at each attempt first compares the
last character of the pattern with the rightmost text character of the
window, then if they match it compares the first character of the pat-
tern with the leftmost text character of the window, then if they match it
compares the middle character of the pattern with the middle text char-
acter of the window. And finally if they match it actually compares the
other characters from the second to the last but one, possibly comparing
again the middle character.

Raita observed that its algorithm had a good behaviour in practice
when searching patterns in English texts and attributed these perfor-
mance to the existence of character dependencies. Smith made some
more experiments and concluded that this phenomenon may rather be
due to compiler effects.

The preprocessing phase of the Raita algorithm consists in computing
the bad-character shift function (see chapter 14). It can be done in
O(m + o) time and O(o) space complexity.

The searching phase of the Raita algorithm has a quadratic worst case
time complexity.
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24.3 The C code

The function preBmBc is given chapter 14.

void RAITA(char *x, int m, char #y, int n) {
int j, bmBc[ASIZE];
char ¢, firstCh, *secondCh, middleCh, lastCh;

/* Preprocessing */
preBmBc(x, m, bmBc);
firstCh = x[0];
secondCh = x + 1;
middleCh = x[m/2];
lastCh = x[m - 1];

/* Searching */
j=0;
while (j <= n - m) {
c=ylj +m-1]1;
if (lastCh == c &% middleCh == y[j + m/2] &&
firstCh == y[j] &&
memcmp(secondCh, y + j + 1, m - 2) == 0)
OUTPUT () ;
j += bmBc[c];

24.4 The example

a 4 C G T
bmBe[a] |1 6 2 8

Searching phase

First attempt:

y [ECATCGCHAIGAGAGTATACAGTACSG

1
mlGCAGAGAG‘

Shift by 1 (bmBc[A])
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Second attempt:

y [GIEATCGCAG|A

G A

G T

ATAC

2 1
leCAGAGAG‘

Shift by 2 (bmBc[G])

Third attempt:

o
=

y [GCA[TCGCA

Gl A

G T

ATAC

2

:::IGCAGAGA

Shift by 2 (bmBc[G])

Fourth attempt:

y [GCATCGCAGA

G[T

ATAC

2456 3

~

x\GCAGA

Shift by 2 (bmBc[G])

Fifth attempt:

y [GCATCGC|AGA

:CIGCA

Shift by 1 (bmBc[A])

Sixth attempt:

y [GCATCGCA[GA

AT[AC

leC

A G

Shift by 8 (bmBc[T])

Seventh attempt:

y [ECATCGCAGA

ATIAC

Shift by 2 (bmBc[G])

:chC

=

143
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The Raita algorithm performs 18 text character comparisons on the
example.
24.5 References

o Raira, T., 1992, Tuning the Boyer-Moore-Horspool string search-
ing algorithm, Software — Practice & Experience, 22(10):879-884.

e SwmiTH, P.D., 1994, On tuning the Boyer-Moore-Horspool string
searching algorithms, Software — Practice & Experience, 24(4):435-
436.
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25.1 Main Features

o uses the suffix automaton of z%;

o fast on practice for long patterns and small alphabets;

o preprocessing phase in O(m) time and space complexity;
o searching phase in O(m x n) time complexity;

¢ optimal in the average.

25.2  Description

The Boyer-Moore type algorithms match some suffixes of the pattern
but it is possible to match some prefixes of the pattern by scanning the
character of the window from right to left and then improve the length
of the shifts. This is made possible by the use of the smallest suffix
automaton (also called DAWG for Directed Acyclic Word Graph) of the
reverse pattern. The resulting algorithm is called the Reverse Factor
algorithm.

The smallest suffix automaton of a word w is a Deterministic Finite
Automaton S(w) = (@, qo0,T, E). The language accepted by S(w) is
L(S(w)) = {u € ¥* : v € T* such that w = vu}. The preprocessing
phase of the Reverse Factor algorithm consists in computing the smallest
suffix automaton for the reverse pattern z%. It is linear in time and space
in the length of the pattern.

During the searching phase, the Reverse Factor algorithm parses the
characters of the window from right to left with the automaton S(z%),
starting with state gg. It goes until there is no more transition defined
for the current character of the window from the current state of the
automaton. At this moment it is easy to know what is the length of the
longest prefix of the pattern which has been matched: it corresponds to
the length of the path taken in S(z%) from the start state gq to the last
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final state encountered. Knowing the length of this longest prefix, it is
trivial to compute the right shift to perform.

The Reverse Factor algorithm has a quadratic worst case time com-

plexity but it is optimal in average. It performs O(n x (log, m)/m)
inspections of text characters on the average reaching the best bound
shown by Yao in 1979.

25.3 The C code

All the functions to create and manipulate a data structure suitable for
a suffix automaton are given section 1.5.

void buildSuffixAutomaton(char *x, int m, Graph aut) {
int i, art, init, last, p, q, T;
char c;

init = getInitial(aut);
art = newVertex(aut);
setSuffixLink(aut, init, art);
last = init;
for (i = 0; i < m; ++i) {
c = x[il;
p = last;
q = newVertex(aut);
setLength(aut, q, getLength(aut, p) + 1);
setPosition(aut, g, getPosition(aut, p) + 1);
while (p !'= init &&
getTarget(aut, p, c¢) == UNDEFINED) {
setTarget(aut, p, ¢, q);
setShift(aut, p, ¢, getPosition(aut, q) -
getPosition(aut, p) - 1);
p = getSuffixLink(aut, p);
}
if (getTarget(aut, p, c¢) == UNDEFINED) {
setTarget (aut, init, c, q);
setShift(aut, init, c,
getPosition(aut, q) -
getPosition(aut, init) - 1);
setSuffixLink(aut, q, init);
}
else
if (getLength(aut, p) + 1 ==
getLength(aut, getTarget(aut, p, c)))
setSuffixLink(aut, q, getTarget(aut, p, c));
else {
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r = newVertex(aut);
copyVertex(aut, r, getTarget(aut, p, c));
setLength(aut, r, getLength(aut, p) + 1);
setSuffixLink(aut, getTarget(aut, p, c), r);
setSuffixLink(aut, q, r);
while (p '= art &&
getLength(aut, getTarget(aut, p, c)) >=
getLength(aut, r)) {
setShift(aut, p, c,
getPosition(aut,
getTarget(aut, p, c)) -
getPosition(aut, p) - 1);
setTarget(aut, p, ¢, r);
p = getSuffixLink(aut, p);

}
last = q;
¥
setTerminal (aut, last);
while (last != init) {
last = getSuffixLink(aut, last);
setTerminal (aut, last);

char *reverse(char *x, int m) {
char *xR;
int 1i;

xR = (char *)malloc((m + 1)*sizeof(char));
for (1 = 0; i < m; ++i)
xR[i] = x[m - 1 - i];
xR[m] = °\0’;
return(xR);

int RF(char *x, int m, char *y, int n) {
int i, j, shift, period, init, state;
Graph aut;
char *xR;

/* Preprocessing */
aut = newSuffixAutomaton(2*(m + 2), 2*(m + 2)*ASIZE);
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xR = reverse(x, m);
buildSuffixAutomaton(xR, m, aut);

init =

getInitial(aut);

period = m;

/* Searching */

j=0;
while

1 =

shi

(j <= n-m {

m- 1;
state = init;
ft = m;
le (i + j >= 0 &&

whi

¥
if
¥
j +
}
}
The test

getTarget(aut, state, y[i + j1) !=
UNDEFINED) {
state = getTarget(aut, state, y[i + j1);
if (isTerminal(aut, state)) {
period = shift;
shift = i;

__i;
1i<0){
QUTPUT(3) ;

shift = period;

= shift;

i + j >= 0 in the inner loop of the searching phase of the

function RF is only necessary during the first attempt, if z occurs at
position 0 on y. Thus, in practice, to avoid testing at all the following
attempts the first attempt could be distinguished from all the others.
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25.4 The example

L£(8) = {GCAGAGAG, GCAGAGA, GCAGAG, GCAGA, GCAG, GCA, GC, G, ¢}

Searching phase

The initial state is 0
First attempt:

y [(CATEGCAGAGAGTATACAGTACG

* 8 7 2
:chCAGAGAG‘

Shift by 5 (8-3)

Second attempt:

y [GCATC|GCAGAGAGTATACAGTACG

*x 87654321
x\GCAGAGAG\

Shift by 7 (8-1)
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Third attempt:
y [GCATCGCAGAGA[GTATACAG|TACG
*7 21
x [GCAGAGAG]
Shift by 7 (8-1)
The Reverse Factor algorithm performs 17 text character inspections
on the example.
25.5 References

o BAEZA-YATES, R.A., NAVARRO G., RIBEIRO-NETO B., 1999, In-
dexing and Searching, in Modern Information Retrieval, Chapter 8,
pp 191-228, Addison-Wesley.

¢ CROCHEMORE, M., CzuMAJ, A., GASIENIEC, L., JAROMINEK, S.,
LeEcroq, T., PLaNnDowsKl, W., RyTTER, W., 1992, Deux méth-
odes pour accélérer D’algorithme de Boyer-Moore, in Théorie des
Automates et Applications, Actes des 2° Journées Franco-Belges,
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France.

¢  CROCHEMORE, M., CzuMAJ, A., GASIENIEC, L., JAROMINEK, S.,
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26.1 Main Features

¢ refinement of the Reverse Factor algorithm;

o preprocessing phase in O(m) time and space complexity;
o searching phase in O(n) time complexity;

o performs 2n text character inspections in the worst case;

¢ optimal in the average.

26.2 Description

It is possible to make the Reverse Factor algorithm (see chapter 25)
linear. It is, in fact, enough to remember the prefix u of z matched
during the last attempt. Then during the current attempt when reaching
the right end of u, it is easy to show that it is sufficient to read again at
most the rightmost half of u. This is made by the Turbo Reverse Factor
algorithm.

If a word z is a factor of a word w we define shift(z, w) the displacement
of zin w to be the least integer d > 0 such that wim—d—|z|—1..m—d] =
z.

The general situation of the Turbo Reverse Factor algorithm is when
a prefix u is found in the text during the last attempt and for the current
attempt the algorithm tries to match the factor v of length m — |u| in
the text immediately at the right of u. If v is not a factor of z then the
shift is computed as in the Reverse Factor algorithm. If v is a suffix of =
then an occurrence of « has been found. If v is not a suffix but a factor
of « then it is sufficient to scan again the min{per(u), |u|/2} rightmost
characters of u. If u is periodic (i.e. per(u) < |u|/2) let z be the suffix
of u of length per(u). By definition of the period z is an acyclic word
and then an overlap such as shown in figure 26.1 is impossible.

Thus z can only occur in u at distances multiple of per(u) which
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| z |

Figure 26.1 Impossible overlap if z is an acyclic word.

implies that the smallest proper suffix of uv which is a prefix of  has a
length equal to |uv|— shift(zv, ) = m — shift(zv, ). Thus the length of
the shift to perform is shift(zv, z).

If u is not (per(u) > |u|/2), it is obvious that  can not re-occur in the
left part of u of length per(u). It is then sufficient to scan the right part
of u of length |u| — per(u) < |u|/2 to find a non defined transition in the
automaton. The function shift is implemented directly in the automaton
S(z) without changing the complexity of its construction.

The preprocessing phase consists in building the suffix automaton of
2. 1t can be done in O(m) time complexity.

The searching phase is in O(n) time complexity. The Turbo Reverse
Factor performs at most 2n inspections of text characters and it is also
optimal in average performing O(n x (log, m)/m) inspections of text
characters on the average reaching the best bound shown by Yao in

1979.

26.3

The C code

The function preMp is given chapter 6. The functions reverse and
buildSuffixAutomaton are given chapter 25. All the other functions to
create and manipulate a data structure suitable for a suffix automaton
are given section 1.5.

void TRF(char *x, int m, char *y, int n) {
int period, i, j, shift, u, period0fU, disp, init,
state, mu, mpNext[XSIZE + 1];
char *xR;
Graph aut;

/* Preprocessing */

aut = newSuffixAutomaton(2*(m + 2), 2*(m + 2)*ASIZE);
xR = reverse(x, m);

buildSuffixAutomaton(xR, m, aut);

init = getInitial(aut);

preMp(x, m, mplNext);

period = m - mpNext[m];

i=0;

shift = m;
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/* Searching */

0;
while (j <= n - m) {
i=m- 1;
state = init;
u=m- 1 - shift;
period0fU = (shift !=m ?
m - shift - mpNext[m - shift]
shift = m;
disp = 0;
while (i > u &&
getTarget(aut, state, y[i + j1) !=
UNDEFINED) {
disp += getShift(aut, state, y[i + j1);
state = getTarget(aut, state, y[i + j1);
if (isTerminal(aut, state))
shift = i;
-

if (i <= u)
if (disp == 0) {
OUTPUT(§);
shift = period;
}
else {
mu = (u + 1)/2;
if (period0fU <= mu) {
u -= period0fU;
while (i > u &&

153

1 0);

getTarget(aut, state, y[i + j1) !=

UNDEFINED) {

disp += getShift(aut, state, y[i + j1);
state = getTarget(aut, state, y[i + j1);

if (isTerminal(aut, state))
shift = i;
__i;

if (i <= u)
shift = disp;
}
else {
u=1u-mu- 1;
while (i > u &&

getTarget(aut, state, y[i + j1) !=
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UNDEFINED) {
disp += getShift(aut, state, y[i + j1);
state = getTarget(aut, state, y[i + j1);
if (isTerminal(aut, state))

shift = i;
—-i

b
j += shift;

26.4 The example

L£(8) = {GCAGAGAG, GCAGAGA, GCAGAG, GCAGA, GCAG, GCA, GC, G, ¢}
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shift | A C G T
0 |1 6 0
1

2 4 0
3 10

4 2 0
5 |0

6 0

7 0
8

Searching phase

The initial state is 0
First attempt:

y [(CATEGCAGAGAGTATACAGTACG
' *872'
x [6CAGAGAG]
Shift by 5 (8-3)
Second attempt:
y [GCATC|GCAGAGAGTATACAGTACG
' 54321
 [GCAGAGAG]
Shift by 7 (8-1)
Third attempt:
y [GCATCGCAGAGA[GTATACAG|TACG
' *721'
z [GCAGAGAG]|

Shift by 7 (8-1)

155

The Turbo Reverse Factor algorithm performs 13 text character in-

spections on the example.
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Backward Oracle Matching algorithm

27.1  Main Features
¢ version of the Reverse Factor algorithm using the suffix oracle of =
instead of the suffix automaton of z%;
o fast in practice for very long patterns and small alphabets;
o preprocessing phase in O(m) time and space complexity;
o searching phase in O(m x n) time complexity;
¢ optimal in the average.
27.2 Description

The Boyer-Moore type algorithms match some suffixes of the pattern
but it is possible to match some prefixes of the pattern by scanning
the character of the window from right to left and then improve the
length of the shifts. This is make possible by the use of the suffix or-
acle of the reverse pattern. This data structure is a very compact au-
tomaton which recognizes at least all the suffixes of a word and slightly
more other words The string-matching algorithm using the oracle of
the reverse pattern is called the Backward Oracle Matching algorithm.
The suffix oracle of a word w is a Deterministic Finite Automaton
O(w) = (@,q0,T,E). The language accepted by O(w) is such that
{u € * : Jv € T* such that w = vu} C L(O(w)). The preprocessing
phase of the Backward Oracle Matching algorithm consists in computing
the suffix oracle for the reverse pattern 2. Despite the fact that it is able
to recognize words that are not factor of the pattern, the suffix oracle
can be used to do string-matching since the only word of length greater
or equal m which is recognized by the oracle is the reverse pattern itself.
The computation of the oracle is linear in time and space in the length of
the pattern. During the searching phase the Backward Oracle Matching
algorithm parses the characters of the window from right to left with the
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automaton O(z®) starting with state go. It goes until there is no more
transition defined for the current character. At this moment the length
of the longest prefix of the pattern which is a suffix of the scanned part
of the text is less than the length of the path taken in O(z®) from the
start state ¢p and the last final state encountered. Knowing this length,
it is trivial to compute the length of the shift to perform.

The Backward Oracle Matching algorithm has a quadratic worst case
time complexity but it is optimal in average. On the average it performs
O(n(log, m)/m) inspections of text characters reaching the best bound
shown by Yao in 1979.

27.3

The C code

Only the external transitions of the oracle are stored in link lists (one per
state). The labels of these transitions and all the other transitions are
not stored but computed from the word . The description of a linked
list List can be found section 1.5.

#define FALSE 0
#define TRUE 1

int getTransition(char *x, int p, List L[], char c) {
List cell;

if (p > 0 && x[p - 11 == ¢)
return(p - 1);
else {
cell = L[pl;
while (cell '= NULL)
if (x[cell->element] == c)
return(cell->element);
else
cell = cell->next;
return(UNDEFINED) ;

void setTransition(int p, int q, List L[]1) {
List cell;

cell = (List)malloc(sizeof(struct _cell));
if (cell == NULL)

error ("BOM/setTransition");
cell->element = q;
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cell->next = L[p];
Llp]l = cell;

void oracle(char *x, int m, char T[], List L[]) {
int i, p, q;
int S[XSIZE + 1];
char c;

Sm] =m + 1;

for (i =m; i > 0; --i) {
c = x[i- 1];
p = S[il;

while (p <= m &&
(q = getTransition(x, p, L, ¢)) ==
UNDEFINED) {
setTransition(p, i - 1, L);
p = Slpl;
}
S[i -1l =(p==m+17m: q);

p = 0;

while (p <= m) {
T[p] = TRUE;
p = Slpl;

void BOM(char *x, int m, char *y, int n) {
char T[XSIZE + 1];
List L[XSIZE + 1];
int i, j, p, period, q, shift;

/* Preprocessing */
memset (L, NULL, (m + 1)*sizeof(List));
memset (T, FALSE, (m + 1)*sizeof(char));
oracle(x, m, T, L);

/* Searching */

j=0;

while (j <= n - m) {
i=m- 1;

p=m
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shift = m;
while (i + j >= 0 &&
(q = getTransition(x, p, L, y[i + j1)) !=
UNDEFINED) {
P =4
if (T[p] == TRUE) {
period = shift;
shift = i;

--i;

b

if (1 <0) {
OUTPUT(j);
shift = period;

b

j += shift;

The test i + j >= 0 in the inner loop of the searching phase of the
function BOM is only necessary during the first attempt if  occurs at
position 0 on y. Thus to avoid testing at all the following attempts the
first attempt could be distinguished from all the others.

27.4

The example
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1

zi]
[7]
[1]

Searching phase

R
— o0 =

=~ QO
= 00 QA =
= o =N
= O Q| W
= -1 Q Ot

~ 8

The initial state is 8
First attempt:

y [GCATEGCAGAGAGTATACAGTACG

* 0
leCAGAGAG‘

Shift by 5 (8-3)

[are

Second attempt:

y [@§CATClGCAGAGAGTATACAGTACSG

*x 01234567
z [GCAGAGAG|

Shift by 7 (8-1)

Third attempt:

y [@§CATCGCAGAGA[GTATACAG|TACSG

167
AG\

= %
(]

leCAG

Shift by 7 (8-1)

The Backward Oracle Matching algorithm performs 17 text character
inspections on the example.

27.5 References

o Arrauzen, C., CROCHEMORE, M., RArriNOT M., 1999, Factor
oracle: a new structure for pattern matching, in Proceedings of
SOFSEM’99, Theory and Practice of Informatics, J. Pavelka, G.
Tel and M. Bartosek ed., Milovy, Czech Republic, Lecture Notes in
Computer Science 1725, pp 291-306, Springer-Verlag, Berlin.
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Galil-Seiferas algorithm

28.1 Main features
¢ constant extra space complexity;
o preprocessing phase in O(m) time and constant space complexity;
o searching phase in O(n) time complexity;
o performs bn text character comparisons in the worst case.
28.2 Description

Throughout this chapter we will use a constant k. Galil and Seiferas
suggest that practically this constant could be equal to 4.
Let us define the function reach for 0 < ¢ < m as follows:

reach(i) = i+ max{t’ <m—i:2[0..¢] =2+ 1..¢ +i+1]} .

Then a prefix z[0..p] of z is a prefix period if it is basic and
reach(p) > k x p.

The preprocessing phase of the Galil-Seiferas algorithm consists in
finding a decomposition uv of z such that v has at most one prefix
period and |u| = O(per(v)). Such a decomposition is called a perfect
factorization.

Then the searching phase consists in scanning the text y for every
occurrences of v and when v occurs to check naively if u occurs just
before in y.

In the implementation below the aim of the preprocessing phase (func-
tions newP1, newP2 and parse) is to find a perfect factorization uv of
where u = 2[0..s — 1] and v = z[s..m — 1]. Function newP1 finds the
shortest prefix period of z[s..m — 1]. Function newP2 finds the second
shortest prefix period of z[s..m — 1] and function parse increments s.

Before calling function search we have:
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Figure 28.1 A perfect factorization of .

o z[s..m — 1] has at most one prefix period;

o ifz[s..m — 1] does have a prefix period, then its length is py;
o z[s..s+ p1+ ¢q1 — 1] has shortest period of length p;

o z[s..s+ p1+ ¢1] does not have period of length p;.

The pattern z is of the form z[0..s— 1]z[s..m—1] where z[s..m—1]
is of the form z%z’az” with z basic, |z| = p1, 2’ prefix of z, z’a not a
prefix of z and |2¢2/| = p1 + q1 (see figure 28.1).

It means that when searching for z[s..m — 1] in y:

o ifa[s..s+p1+q1 — 1] has been matched a shift of length p; can be
performed and the comparisons are resumed with z[s + ¢1];

o otherwise if a mismatch occurs with z[s + ¢] with ¢ # p1 + ¢1 then
a shift of length ¢/k + 1 can be performed and the comparisons are
resumed with z[0].

This gives an overall linear number of text character comparisons.

The preprocessing phase of the Galil-Seiferas algorithm is in O(m)
time and constant space complexity. The searching phase is in O(n)
time complexity. At most bn text character comparisons can be done
during this phase.

28.3

The C code

All the variables are global.

char *x, *y;
int k, m, n, p, pl, p2, q, q1, 92, s;

void search() {
while (p <= n - m) {
while (x[s + q] == y[p + s + ql)

++q;
if (¢ == m - s & memcmp(x, y + p, s + 1) == 0)
OUTPUT(p) ;
if (q == p1 + q1) {
p += pi;
q -= pi;
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else {
p += (a/k + 1);
q = 0;

¥

void parse() {
while (1) {
while (x[s + q1] == x[s + p1 + qi])
++91;
while (pl + g1 >= k#*pl) {
s += pi;
ql -= pi;
}
pl += (q1/k + 1);
ql = 0;
if (p1 >= p2)
break;
}
newP1();

void newP2() {
while (x[s + q2] == x[s + p2 + q2] && p2 + g2 < k*p2)

++92;
if (p2 + q2 == k*p2)
parse();
else
if (s + p2 + 2 == m)
search();
else {
if (g2 == p1 + q1) {
p2 += pl;
q2 -= pl;
}
else {
p2 += (q2/k + 1);
q2 = 0;
}
newP2();
}
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void newP1() {
while (x[s + qi] == x[s + p1 + q1])

++q1;
if (pl + q1 >= kxp1l) {
p2 = qi;
q2 = 0;
newP2();
¥
else {
if (s + p1 + q1 == m)
search();
else {
pl += (qi/k + 1);
ql = 0;
newP1();
}
¥

void GS(char *argX, int argM, char *argY, int argl) {

x = argX;

m = argh;

y = argy;

n = arghl;

k = 4;
P=49=s=49l=p2=qg2=0;
pl = 1;

newP1();

28.4 The example

pIO,qIO,SIO,p1:7,Q1:1

Searching phase
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First attempt:

y [(CATCGCAGAGAGTATACAGTACG

1234
x\GCAGAGAG]

Shift by 1

Second attempt:

y [GIEATCGCAGAGAGTATACAGTACG

1
leCAGAGAG‘

Shift by 1

Third attempt:

y [§CATCGCAGAGAGTATACAGTACSG

1
x|GCAGAGAG|

Shift by 1

Fourth attempt:

y [GCATCGCAGAGAGTATACAGTACG

1
leCAGAGAG‘

Shift by 1

Fifth attempt:

y [@§CAT[CGCAGAGAGTATACAGTACSG

1
:CIGCAGAGAG‘

Shift by 1

Sixth attempt:

y [@§CATClGCAGAGAGTATACAGTACSG

12345678
z [GCAGAGAG|

Shift by 7 (p1)
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Seventh attempt:

y [GCATCGCAGAGA[GMATACAG|TACG

1
leCAGAGAG‘

Shift by 1

Eighth attempt:

y[GCATCGCAGAGAG[TATACAGT|AC G|

1
:::IGCAGAGAG‘

Shift by 1

Ninth attempt:

y [§CATCGCAGAGAGTATACAGTA|CG]

1
leC

=
[<p]
=
[<p]
=
[<p]

Shift by 1

Tenth attempt:

y[GCATCGCAGAGAGTA[TACAGT A C|G]

1
mIGC

=
o«
=
[<p]
=
[<p]

Shift by 1

Eleventh attempt:

y [§CATCGCAGAGAGTATACAGTAC G|

1
:UIGC

=
[<p]
=

GAG‘

Shift by 1

The Galil-Seiferas algorithm performs 21 text character comparisons
on the example.

28.5 References

¢  CROCHEMORE, M., RYyTTER, W., 1994, Text Algorithms, Oxford
University Press.
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Two Way algorithm

29.1 Main features
¢ requires an ordered alphabet;
o preprocessing phase in O(m) time and constant space complexity;
o searching phase in O(n) time;
o performs 2n — m text character comparisons in the worst case.
29.2 Description

The pattern z is factorized into two parts z¢ and z, such that x =
z¢xy. Then the searching phase of the Two Way algorithm consists
in comparing the characters of z, from left to right and then, if no
mismatch occurs during that first stage, in comparing the characters of
zg from right to left in a second stage.

The preprocessing phase of the algorithm consists then in choosing a
good factorization z,x,. Let (u,v) be a factorization of z. A repeti-
tion in (u,v) is a word w such that the two following properties hold:
(i) wis a suffix of u or u is a suffix of w;

(ii) w is a prefix of v of v is a prefix of w.

In other words w occurs at both sides of the cut between u and v with
a possible overflow on either side. The length of a repetition in (u,v) is
called a local period and the length of the smallest repetition in (u, v)
is called the local period and is denoted by r(u, v).

Each factorization (u,v) of « has at least one repetition. It can be
easily seen that

1< r(u,v) <z .

A factorization (u, v) of # such that r(u, v) = per(z) is called a critical
factorization of z.
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If (u,v) is a critical factorization of x then at the position |u| in z
the global and the local periods are the same. The Two Way algorithm
chooses the critical factorization (zg, ) such that |z,| < per(z) and |z,|
is minimal.

To compute the critical factorization (x4, 2,) of # we first compute the
maximal suffix z of x for the order < and the maximal suffix z for the
reverse order <. Then (2, 2,) is chosen such that |z¢| = max{|z|, |3|}.

The preprocessing phase can be done in O(m) time and constant space
complexity.

The searching phase of the Two Way algorithm consists in first com-
paring the character of z, from left to right, then the character of
from right to left.

When a mismatch occurs when scanning the k-th character of z,, then
a shift of length k is performed.

When a mismatch occurs when scanning z, or when an occurrence of
the pattern is found, then a shift of length per(z) is performed.

Such a scheme leads to a quadratic worst case algorithm, this can
be avoided by a prefix memorization: when a shift of length per(x)
is performed the length of the matching prefix of the pattern at the
beginning of the window (namely m—per(z)) after the shift is memorized
to avoid to scan it again during the next attempt.

The searching phase of the Two Way algorithm can be done in O(n)
time complexity. The algorithm performs 2n —m text character compar-
isons in the worst case. Breslauer designed a variation of the Two Way
algorithm which performs less than 2n — m comparisons using constant
space.

29.3

The C code

/* Computing of the maximal suffix for <= */
int maxSuf(char *x, int m, int *p) {

int ms, j, k;

char a, b;

k = *%xp = 1;
while (j + k < m) {
a = x[j + k1;
b = x[ms + k];
if (a < b) {
j += k;
k =1;
*p = j - ms;
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}
else
if (a == b)
if (k !'= *p)
++k;
else {
Jj += *p;
k =1;
}
else { /* a > b */
ms = j;
j =ms + 1;
k = *p = 1;
}

}

return(ms);

}

/* Computing of the maximal suffix for >=
int maxSufTilde(char *x, int m, int #*p) {
int ms, j, k;
char a, b;

ms = -1;

j=0;

k = xp = 1;

while (j + k < m) {
a = x[j + k];

b = x[ms + k];
if (a > b) {
j+=k;
k=1;

*p = j - ms;

¥
else
if (a == b)
if (k !'= *p)
++k;
else {
j = *p;
k =1;
}
else { /* a < b */
ms = j;
j =ms + 1;
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k = *p = 1;
}
¥

return(ms);

/* Two Way string matching algorithm. */
void TW(char #x, int m, char #y, int n) {
int i, j, ell, memory, p, per, {;

/* Preprocessing */
i = maxSuf(x, m, &p);
j = maxSufTilde(x, m, &q);

if (i > 3) {
ell = i;
per = p;
¥
else {
ell = j;
per = q;
¥

/* Searching */
if (memcmp(x, x + per, ell + 1) == 0) {
i= o
memory = -1;
while (j <= n - m) {
i = MAX(ell, memory) + 1;
while (i < m && x[i] == y[i + j1)
++1;
if (i >=m) {
i = ell;
while (i > memory && x[il == y[i + j])
—-i
if (i <= memory)
OUTPUT(J);

j += per;
memory = m - per - 1;
b
else {
j += (1 - ell);
memory = -1;
X
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}
else {
per = MAX(ell + 1, m - ell - 1) + 1;
j=0;
while (j <= n - m) {
i=-ell + 1;
while (i < m && x[i] == y[1i + jI1)
++1;
if (i >=m) {
i = ell;
while (i >= 0 && x[i] == y[i + jI1)
-
if (i < 0)
OUTPUT(j) ;
j += per;
}
else
j += (1 - ell);
}
}

Ird
{

29.4

The example

r GCAGAGAG
local period 137722221

z¢ = GC, =z, = AGAGAG
Searching phase

First attempt:

y [ECATCGCAlGAGAGTATACAGTACG

12
leCAGAGAG‘

Shift by 2

Second attempt:

y [6§CATECGCAGAGAGTATACAGTACSG

1
mlGCAGAGAG‘

Shift by 1
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Third attempt:

y [GCA[TCGCAGAGAGTATACAGTACG

x IGCAGAGAG‘
Shift by 1

Fourth attempt:

y [GCAT|CGOAGAGAGTATACAGTACG

:CIGCAGAGAG‘

Shift by 1

Fifth attempt:

y [@§CATClGCAGAGAGTATACAGTACSG

781234568
z [GCAGAGAG|

Shift by 7

Sixth attempt:

y [GCATCGCAGAGA[GTATACAG|TACG

leCAGAGAG‘

Shift by 2

Seventh attempt:

y [GCATCGCAGAGAGTATACGAGT A|CG]

Shift by 2

Eighth attempt:

y [GCATCGCAGAGAGTATHACAGHTACG|

leCAGAGAG‘

Shift by 3

The Two Way algorithm performs 20 text character comparisons on
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the example.

29.5
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String Matching on Ordered Alphabets

30.1 Main features

*  no preprocessing phase;

¢ requires an ordered alphabet;

¢ constant extra space complexity;

o searching phase in O(n) time;

o performs 6n + 5 text character comparisons in the worst case.
30.2 Description

During an attempt where the window is positioned on the text factor
y[j ..j+m—1], when a prefix u of z has been matched and a mismatch
occurs between characters a in # and b in y (see figure 30.1), the algo-
rithm tries to compute the period of ub, if it does not succeed in finding
the exact period it computes an approximation of it.

Let us define tw®w’ the Maximal-Suffix decomposition (MS de-
composition for short) of the word x such that:

o v = ww is the maximal suffix of z according to the alphabetical
ordering;

¢ w is basic;
o e>1;

¢+ w'is a proper prefix of w.

Figure 30.1 Typical attempt during the String Matching on Ordered Al-
phabets algorithm.
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P k
- -
Lt Jwlw]w]w]w]o]
0 i i i+k
Figure 30.2 Function nextMaximalSuffix: meaning of the variables ¢, j, k
and p.

Then we have [t| < per(z).

If tw®w’ is the MS decomposition of a nonempty word z then the four
properties hold:

o if ¢ is a suffix of w then per(z) = per(v);

«  per(x) > [t;

o if [t| > |w| then per(z) > |v| = |z| — [t|;

o if ¢ is not a suffix of w and |¢| < |w| then per(z) > min(|v|, [tw®|).

If ¢ is a suffix of w then per(z) = per(v) = |w|.

Otherwise per(z) > max(|t]|, min(|v|, [tw®]|)) > |z|/2.

If tw®w' is the MS decomposition of a nonempty word z, per(z) = |w]
and e > 1 then tw® 'w’ is the MS decomposition of z’ = tw® w'.

The algorithm computes the maximal suffix of the matched prefix of
the pattern appended with the mismatched character of the text after
each attempt. It avoids to compute it from scratch after a shift of length
per(w) has been performed.

The String Matching on Ordered Alphabets needs no preprocessing
phase.

The searching phase can be done in O(n) time complexity using a
constant extra space. The algorithm performs no more than 6n + 5 text
character comparisons.

30.3 The C code

Figure 30.2 gives the meaning of the four variables ¢, j, k£ and p in the
function nextMaximalSuffix: i = |t|—1, j = [tw®|—1, k = |w'|+ 1 and
p=|wl

/* Compute the next maximal suffix. */
void nextMaximalSuffix(char *x, int m,
int *i, int *j, int *k, int *p) {
char a, b;

while (*j + *k < m) {
a = x[*i + *k];
b = x[*j + *k];
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if (a == b)
if (#k == *p) {
(*3) += *p;
*k = 1;
}
else
++(*k) ;
else
if (a > b) {
(*3) += *k;
*k = 1;
*p = *j - *¥i;
}
else {
*j = *j;
++(*3);
*k = *p = 1;

/* String matching on ordered alphabets algorithm. */
void SMOA(char *x, int m, char *y, int n) {
int i, ip, j, jp, k, p;

/* Searching */

ip = -1;
i=3=7Jp=0;
k=p=1;

while (j <= n - m) {
while (i + j < n &% i < m && x[i] == y[i + j1)

++1;

if (1 == 0) {
++3;
ip = -1;
jp = 0;
k=p=1;

}

else {
if (i >= m)

OUTPUT(§) ;

nextMaximalSuffix(y + j, i+1, &ip, &jp, &k, &p);
if (ip < 0 ||

(ip < p &&
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memcmp(y + j, y + j + p, ip + 1) == 0)) {

j +=p;
i-=p;
if (i < 0)
i=0;
if (jp - ip > p)
jp -=p;
else {
ip = -1;
jp = 0;
k=p=1;
}
}
else {
j += (MAX(ip + 1,
MIN(i - ip - 1, jp + 1)) + 1);
i=]jp=0;
ip = -1;
k=p-=1;
}

30.4 The example
Searching phase

First attempt:

y [ECATCGCAGAGAGTATACAGTACSG

1234
x\GCAGAGAG]

After a call of nextMaximalSuffix: ip = 2,jp = 3,k = 1,p=1. It
performs 6 text character comparisons.

Shift by 4

Second attempt:

y [€§CAT[CGCAGAGAGTATACAGTACSG

1
mlGCAGAGAG‘

Shift by 1
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Third attempt:

y [GCATC[GCAGAGAGTATACAGTACG

12345678
x\GCAGAGAG\

183

After a call of nextMaximalSuffix: ip = 7,jp = 8,k = 1,p=1. It

performs 15 text character comparisons.

Shift by 9

Fourth attempt:

y [§CATCGCAGAGAGTATACA Afc q]
; |
z [GCAGA G|
Shift by 1
Fifth attempt:
y [GCATCGCAGAGAGTA[TACA A caq]
; |
z [@CAg A G|
Shift by 1
Sixth attempt:
y [§CATCGCAGAGAGTATIACA K|
; f
z [GC A G A G]

Shift by 1

The string matching on ordered alphabets algorithm performs 37 text

character comparisons on the example.

30.5

References

¢ CROCHEMORE, M., 1992, String-matching on ordered alphabets,

Theoretical Computer Science 92(1):33-47.

¢ CROCHEMORE, M., RYyTTER, W., 1994, Text Algorithms, Oxford

University Press.
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Optimal Mismatch algorithm

31.1 Main features
¢ variant of the Quick Search algorithm,;
¢ requires the frequencies of the characters;
o preprocessing phase in O(m? + o) time and O(m + o) space com-
plexity;
o searching phase in O(m x n) time complexity.
31.2 Description

Sunday designed an algorithm where the pattern characters are scanned
from the least frequent one to the most frequent one. Doing so one may
hope to have a mismatch most of the times and thus to scan the whole
text very quickly. One needs to know the frequencies of each of the
character of the alphabet.

The preprocessing phase of the Optimal Mismatch algorithm consists
in sorting the pattern characters in decreasing order of their frequencies
and then in building the Quick Search bad-character shift function (see
chapter 19) and a good-suffix shift function adapted to the scanning
order of the pattern characters. It can be done in O(m? + o) time and
O(m + o) space complexity.

The searching phase of the Optimal Mismatch algorithm has a O(m x
n) time complexity.
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31.3

The C code
The function preQsBc is given chapter 19.

typedef struct patternScanOrder {
int loc;
char c;

} pattern;

int freq[ASIZE];

/* Construct an ordered pattern from a string. */
void orderPattern(char *x, int m, int (*pcmp)(),
pattern *pat) {
int 1i;

for (1 = 0; i <= m; ++i) {
patl[il.loc = i;
patl[il.c = x[i];

}

gsort(pat, m, sizeof(pattern), pcmp);

/* Optimal Mismatch pattern comparison function. */
int optimalPcmp(pattern *patl, pattern *pat2) {
float fx;

fx = freq[pati->c] - freql[pat2->c];
return(fx ? (fx > 0 ? 1 : -1)
(pat2->loc - pati->loc));

/* Find the next leftward matching shift for
the first ploc pattern elements after a
current shift or lshift. */

int matchShift(char *x, int m, int ploc,

int 1shift, pattern *pat) {
int i, j;

for (; lshift < m; ++1lshift) {
i = ploc;
while (--i >= 0) {
if ((j = (patl[i].loc - 1shift)) < 0)
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continue;
if (patlil.c '= x[j])
break;
}
if (1 < 0)
break;
¥
return(lshift);

/* Constructs the good-suffix shift table
from an ordered string. */
void preAdaptedGs(char *x, int m, int adaptedGs[],
pattern *pat) {
int 1lshift, i, ploc;

adaptedGs[0] = lshift = 1;
for (ploc = 1; ploc <= m; ++ploc) {
1shift = matchShift(x, m, ploc, lshift, pat);
adaptedGs[ploc] = 1lshift;
}
for (ploc = 0; ploc <= m; ++ploc) {
lshift = adaptedGs[ploc];
while (lshift < m) {
i = pat[ploc].loc - 1lshift;
if (i < 0 || patlplocl.c !'= x[i]l)
break;
++1shift;
1shift = matchShift(x, m, ploc, lshift, pat);
}
adaptedGs[ploc] = 1lshift;

/* Optimal Mismatch string matching algorithm. */
void OM(char #*x, int m, char #*y, int n) {
int i, j, adaptedGs[XSIZE], qsBc[ASIZE];
pattern pat[XSIZE];

/* Preprocessing */

orderPattern(x, m, optimalPcmp, pat);
preQsBc(x, m, gsBc);

preAdaptedGs(x, m, adaptedGs, pat);
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/* Searching */
j=0;
while (j <= n - m) {
i=0;
while (i < m && pat[i]l.c == y[j + pat[i].loc])
++1;
if (1 >= m)
OUTPUT(J);
j += MAX(adaptedGs[il,qsBcly[j + ml]);
}

31.4 The example

c 4 C G T
freqle] |8 5 7 4
gsBe[e] |2 7T 1 9
i 0 1 2 3 4 5 6 7
2[1] G C & G & G A& G
pat[ijJloc |1 7 5 3 0 6 4 2
patfilc |[C G G G G A A A
i 0 1 2 3 4 5 6 7 8
adaptedGs[¢] | 1 3 4 2 7 7 7 7 7

Searching phase

First attempt:
y [(CATCGCAGAGAGTATACAGTACG

1 2
leCAGAGAG‘

Shift by 3 (adaptedGs[1])

Second attempt:
y [GCA[TCGOAGAGAGTATACAGTACG

1 4 3 2
:::IGCAGAGAG‘

Shift by 2 (gsBc[A] = adaptedGs[3])
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Fourth attempt:

y [GCATC[GCAGAGAGTATACAGTACG

51847362
x\GCAGAGAG\

Shift by 9 (gsBc[T])

Fifth attempt:

y [GCATCGCAGAGAGTATACAGT A|C G|

1
leCAGAGAG‘

Shift by 7 (gsBc[C])

The Optimal Mismatch algorithm performs 15 text character compar-
isons on the example.

31.5

References

¢ SunpaAY, D.M., 1990, A very fast substring search algorithm, Com-
munications of the ACM 33(8):132-142.
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Maximal Shift algorithm

32.1 Main features
¢ variant of the Quick Search algorithm,;
¢ quadratic worst case time complexity;
o preprocessing phase in O(m? + o) time and O(m + o) space com-
plexity;
o searching phase in O(m x n) time complexity.
32.2 Description

Sunday designed an algorithm where the pattern characters are scanned
from the one which will lead to a larger shift to the one which will lead
to a shorter shift. Doing so one may hope to maximize the lengths of
the shifts.

The preprocessing phase of the Maximal Shift algorithm consists in
sorting the pattern characters in decreasing order of their shift and then
in building the Quick Search bad-character shift function (see chapter
19) and a good-suffix shift function adapted to the scanning order of the
pattern characters. It can be done in O(m? + o) time and O(m + o)
space complexity.

The searching phase of the Maximal Shift algorithm has a quadratic
worst case time complexity.
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32.3 The C code

The function preQsBc is given chapter 19. The functions orderPattern,
matchShift and preAdaptedGs are given chapter 31.

typedef struct patternScanOrder {
int loc;
char c;

} pattern;

int minShift[XSIZE];

/* Computation of the MinShift table values. */
void computeMinShift(char *x, int m) {
int i, j;

for (i = 0; i < m; ++i) {
for (j =1 -1; j >= 0; --3j)
if (x[1] == x[j1)
break;
minShift[i] = i - j;

/* Maximal Shift pattern comparison function. */
int maxShiftPcmp(pattern *patl, pattern *pat2) {
int dsh;

dsh = minShift[pat2->loc] - minShift[pati->loc];
return(dsh ? dsh : (pat2->loc - pati->loc));

/* Maximal Shift string matching algorithm. */
void MS(char #*x, int m, char #*y, int n) {
int i, j, gqsBc[ASIZE], adaptedGs[XSIZE];
pattern pat[XSIZE];

/* Preprocessing */

computeMinShift(x ,m);

orderPattern(x, m, maxShiftPcmp, pat);
preQsBc(x, m, gsBc);

preAdaptedGs(x, m, adaptedGs, pat);
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/* Searching */
j=0;
while (j <= n - m) {
i=0;
while (i < m && pat[i]l.c == y[j + pat[i].loc])
++1;
if (i >= m)
OUTPUT(§);
j += MAX(adaptedGs[il, gsBcly[j + mll);

32.4 The example

i 0 1 2 3 4 5 6 7
2[i] G C & G & G A G
minShiftfi] [1 2 3 3 2 2 2 2
pat[iJdloc |3 2 7 6 5 4 1 0
patfilc |G A G A G A C G
c 4 C G T
gsBe[e] |2 7T 1 9
i 01 2 3 4 5 6 7 8
adaptedGs[¢] | 1 3 3 7 4 7 7 7 7

Searching phase

First attempt:

y [(CATCGCAGAGAGTATACAGTACG

1
leCAGAGAG‘

Shift by 1 (gsBc[G] = adaptedGs[0])

Second attempt:

y [GICATEGCAGAGAGTATACAGTACG

1
leCAGAGAG‘

Shift by 2 (gsBc[A])
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Third attempt:
y [GCA[TCG[ GIAGTATACAGTACG
1
z [GCAE G|
Shift by 2 (gsBc[A])
Fourth attempt:
y [GCATC[aC GAGTATACAGTACSG
8 7 543
z [GCA G A G
Shift by 9 (gsBc[T])
Fifth attempt:
y [§CATCGC GAGTATARCAGTA|CG|
1
z [GCAGAGAG]|
Shift by 7 (gsBc[C])
The Maximal Shift algorithm performs 12 text character comparisons
on the example.
32.5 References

¢ SunpaAY, D.M., 1990, A very fast substring search algorithm, Com-
munications of the ACM 33(8):132-142.
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Skip Search algorithm

33.1 Main features
¢ uses buckets of positions for each character of the alphabet;
¢ preprocessing phase in O(m + o) time and space complexity;
o searching phase in O(m x n) time complexity;
¢ O(n) expected text character comparisons.

33.2 Description

For each character of the alphabet, a bucket collects all the positions of
that character in 2. When a character occurs k times in the pattern,
there are k corresponding positions in the bucket of the character. When
the word is much shorter than the alphabet, many buckets are empty.
The preprocessing phase of the Skip Search algorithm consists in com-
puting the buckets for all the characters of the alphabet: for ¢ € &

zle]={i:0<i<m-—1and z[i] =c} .

The space and time complexity of this preprocessing phase is O(m+ o).

The main loop of the search phase consists in examining every m-th
text character, y[j] (so there will be n/m main iterations). For y[j],
it uses each position in the bucket z[y[j]] to obtain a possible starting
position p of z in y. It performs a comparison of z with y beginning at
position p, character by character, until there is a mismatch, or until all
match.

The Skip Search algorithm has a quadratic worst case time complexity
but the expected number of text character inspections is O(n).
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33.3 The C code
The description of a linked list List can be found section 1.5.

void SKIP(char *x, int m, char *y, int n) {
int i, j;
List ptr, z[ASIZE];

/* Preprocessing */
memset(z, NULL, ASIZE*sizeof(List));
for (i = 0; 1 < m; ++i) {
ptr = (List)malloc(sizeof(struct _cell));
if (ptr == NULL)
error ("SKIP");
ptr->element = i;
ptr->next = z[x[i]];
z[x[i]] = ptr;
}

/* Searching */
for (j =m - 1; j <mn; j +=m)
for (ptr = z[y[jl]; ptr !'= NULL; ptr = ptr->next)
if (memcmp(x, y + j - ptr->element, m) == 0) {
if (j - ptr->element <= n - m)
OUTPUT(j - ptr->element);
}
else
break;

In practice the test j - ptr->element <= n - mcan be omitted and
the algorithm becomes :

void SKIP(char *x, int m, char *y, int n) {
int i, j;
List ptr, z[ASIZE];

/* Preprocessing */
memset(z, NULL, ASIZE*sizeof(List));
for (1 = 0; i < m; ++1i) {
ptr = (List)malloc(sizeof(struct _cell));
if (ptr == NULL)
error ("SKIP");
ptr->element = i;
ptr->next = z[x[il];
z[x[i]] = ptr;
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}

/* Searching */
for (j =m - 1; j <mn; j += m)
for (ptr = z[y[jl]; ptr != NULL; ptr = ptr->next)
if (memcmp(x, y + j - ptr->element, m) == 0)
OUTPUT(j - ptr->element);

33.4 The example

z[c]
(6,4,
1)

3

2)

(
(7,5,3,0)

H Qo Qo

)

Searching phase

First attempt:

GAGTATACAGTACG

y [GIEATCG

o
=

L]
=

2
leCAGAGAG‘

y [GCA[LCG

Q
=
[<p]
=

GiAGTATACAGTACG

1
leCAGAGAG‘

y [GCATC|GCAGAGAGTATACAGTACG

12345678
x\G GAG\

«Q
o«
=

Shift by 8

Second attempt:

ylGCATCGCAGAGAGTATACAGTACG

1

Shift by 8
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Third attempt:
y [GCATCGCAGAGAGTATHACAGTACGG|
2 1
z [@CAGAGAG]
The Skip Search algorithm performs 14 text character inspections on
the example.
33.5 References

o CHARRAS, C., LEcroq, T., PEHOUSHEK, J.D., 1998, A very fast
string matching algorithm for small alphabets and long patterns, in
Proceedings of the 9th Annual Symposium on Combinatorial Pat-
tern Matching, M. Farach-Colton ed., Piscataway, New Jersey, Lec-
ture Notes in Computer Science 1448, pp 55—64, Springer-Verlag,
Berlin.
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KmpSkip Search algorithm

34.1 Main features
¢ improvement of the Skip Search algorithm;
¢ uses buckets of positions for each character of the alphabet;
o preprocessing phase in O(m + o) time and space complexity;
o searching phase in O(n) time complexity.

34.2 Description

It is possible to make the Skip Search algorithm (see chapter 33) linear
using the two shift tables of Morris-Pratt (see chapter 6) and Knuth-
Morris-Pratt (see chapter 7).

For 1 < i < m, mpNext[i] is equal to the length of the longest border
of [0..7 — 1] and mpNext[0] = —1.

For 1 < i < m, kmpNext[i] is equal to length of the longest border of
z[0..i— 1] followed by a character different from z[i], kmpNext[0] = —1
and kmpNext[m] = m — per(z).

The lists in the buckets are explicitly stored in a table list.

The preprocessing phase of the KmpSkip Search algorithm is in O(m+
¥)) time and space complexity.

A general situation for an attempt during the searching phase is the
following (see figure 34.1):

¢ jis the current text position;

o xli] = ylil;
¢ start = j — ¢ is the possible starting position of an occurrence of z
in y;

. wall is the rightmost scanned text position;
o z[0..wall — start — 1] = y[start..wall — 1];
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start wall 7

v | | [ L]
z | [ 1|

i

Figure 34.1 General situation during the searching phase of the KmpSkip
algorithm.

The comparisons are performed from left to right between a[wall —
start..m — 1] and y[wall..start + m — 1] until a mismatch or a whole
match occurs. Let k > wall — start be the smallest integer such that
z[k] # y[start + k] or k = m if an occurrence of z starts at position start
in y.
Then wall takes the value of start + k.
After that the algorithm KmpSkip computes two shifts (two new
starting positions): the first one according to the skip algorithm (see
algorithm AdvanceSkip for details), this gives us a starting position
skipStart, the second one according to the shift table of Knuth-Morris-
Pratt, which gives us another starting position kmpStart.
Several cases can arise:
¢+ skipStart < kmpStart then a shift according to the skip algorithm
is applied which gives a new value for skipStart, and we have to
compare again skipStart and kmpStart;

¢ kmpStart < skipStart < wall then a shift according to the shift table
of Morris-Pratt is applied. This gives a new value for kmpStart. We
have to compare again skipStart and kmpStart;

¢ skipStart = kmpStart then another attempt can be performed with
start = skipStart;

¢ kmpStart < wall < skipStart then another attempt can be per-
formed with start = skipStart.

The searching phase of the KmpSkip Search algorithm is in O(n) time.

34.3

The C code

The function preMp is given chapter 6 and the function preKmp is given
chapter 7.

int attempt(char *y, char *x, int m, int start, int wall) {
int k;

k = wall - start;
while (k < m && x[k] == y[k + start])
++k;

)

return(k);
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void KMPSKIP(char *x, int m, char *y, int n) {
int i, j, k, kmpStart, per, start, wall;
int kmpNext[XSIZE], list[XSIZE], mpNext[XSIZE],
z[ASIZE];

/* Preprocessing */
preMp(x, m, mplNext);
preKmp(x, m, kmpNext);
memset(z, -1, ASIZE*sizeof(int));
memset(list, -1, m*sizeof(int));
z[x[01] = 0;
for (i = 1; i < m; ++i) {
list[i] = z[x[i]];
z[x[i]] = i;
¥

/* Searching */
wall = 0;
per = m - kmpNext[m];
i=3=-1;
do {
j 4= m;
} while (j < n && z[y[j1] < 0);
if (j >= n)
return;
i = z[y[j1];
start = j - 1i;
while (start <= n - m) {
if (start > wall)
wall = start;
k = attempt(y, x, m, start, wall);
wall = start + k;
if (k == m) {

OUTPUT(start);

i -= per;
}
else

i = list[i];
if (i < 0) {

do {

j+=m

} while (j < n && z[y[j1] < 0);
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if (j >= n)
return;
i = z[y[j1];

}
kmpStart = start + k - kmpNext[k];
k = kmpNext[k];
start = j - 1i;
while (start < kmpStart ||
(kmpStart < start && start < wall)) {
if (start < kmpStart) {
i = list[il;
if (i <0) {
do {
j +=m;
} while (j < n && z[y[jl] < 0);
if (j >= n)
return;
i = z[y[j1];
}
start = j - 1i;
}
else {
kmpStart += (k - mpNext[k]);
k = mpNext[k];

34.4 The example

c A G T
zZlej |6 1 7 -1

i 0 1 2 3 4 5 6 T
Isti] | -1 -1 -1 0 2 3 4 5

i 0o 1 2 3 4 5 6 7 8

2[i] G C A G A G A G
mpNext[i]] | -1 0 0 0 1 0 1 0 1
kmpNext[]] | -1 0 0 -1 1 -1 1 -1 1
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Searching phase

First attempt:

y [G[CATCGCAGAGAGTATACAGTACG

2
leCAGAGAG‘

y [GCATCG

«Q
=
o
=
| 2]
=

GTATACAGTACG

1
leCAGAGAG‘

y [GCATCG

Q
=
[<p]
=
[<p]
=

GITATACAGTACG

1234586738
x‘G

(@]
(]
@

Shift by 8

Second attempt:

ylGCATCGCAGAGAGTATACAGTACG

Shift by 8

Third attempt:

y[GCATCGCAGAGAGTATNCAGTACG|

2 1
:::IGCAGAGAG‘

The KmpSkip Search algorithm performs 14 text character inspections
on the example.

34.5

References

o CHARRAS, C., LEcroq, T., PEHOUSHEK, J.D., 1998, A very fast
string matching algorithm for small alphabets and long patterns, in
Proceedings of the 9th Annual Symposium on Combinatorial Pat-
tern Matching, M. Farach-Colton ed., Piscataway, New Jersey, Lec-
ture Notes in Computer Science 1448, pp 55-64, Springer-Verlag,
Berlin.
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Alpha Skip Search algorithm

35.1 Main features

¢ improvement of the Skip Search algorithm;

o uses buckets of positions for each factor of length log, m of the

pattern;

o preprocessing phase in O(m) time and space complexity;

o searching phase in O(m x n) time complexity;

¢+ O(log, mx(n/(m—Ilog,m))) expected text character comparisons.
35.2 Description

The preprocessing phase of the Alpha Skip Search algorithm consists in
building a trie T'(z) of all the factors of the length £ = log, m occurring
in the word z. The leaves of T'(z) represent all the factors of length £ of
z. There is then one bucket for each leaf of T'(x) in which is stored the
list of positions where the factor, associated to the leaf, occurs in x.

The worst case time of this preprocessing phase is linear if the alphabet
size 1s considered to be a constant.

The searching phase consists in looking into the buckets of the text
factors y[j..j+£— 1] forall j = k x (m — £+ 1) — 1 with the integer k
in the interval [1, | (n — £)/m]].

The worst case time complexity of the searching phase is quadratic
but the expected number of text character comparisons is O(log, m x

(n/(m —log, m))).
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35.3 The C code

The description of a linked list List can be found section 1.5.

List *z;
#define getZ(i) z[(i)]

void setZ(int node, int i) {
List cell;

cell = (List)malloc(sizeof(struct _cell));
if (cell == NULL)
error ("ALPHASKIP/setZ");
cell->element = i;
cell->next = z[node];
z[node] = cell;

/* Create the transition labelled by the
character ¢ from node node.
Maintain the suffix links accordingly. */
int addNode(Graph trie, int art, int node, char c) {
int childNode, suffixNode, suffixChildNode;

childNode = newVertex(trie);

setTarget(trie, node, c, childNode);

suffixNode = getSuffixLink(trie, node);

if (suffixNode == art)
setSuffixLink(trie, childNode, node);

else {
suffixChildNode = getTarget(trie, suffixNode, c);
if (suffixChildNode == UNDEFINED)

suffixChildNode = addNode(trie, art,
suffixNode, c);

setSuffixLink(trie, childNode, suffixChildNode);

}

return(childNode);



35.3 The C code 207

void ALPHASKIP(char *x, int m, char *y, int n, int a) {
int b, i, j, k, logM, temp, shift, size, pos;
int art, childNode, node, root, lastNode;
List current;
Graph trie;

logh = 0;
temp = m;
while (temp > a) {
++logh;
temp /= a;
}
if (logM == 0) logM = 1;
else if (logM > m/2) logM = m/2;

/* Preprocessing */
size = 2 + (2#m - logM + 1)*logh;
trie = newTrie(size, size*ASIZE);
z = (List *)calloc(size, sizeof(List));
if (z == NULL)
error ("ALPHASKIP");

root = getInitial(trie);
art = newVertex(trie);
setSuffixLink(trie, root, art);
node = newVertex(trie);
setTarget(trie, root, x[0], node);
setSuffixLink(trie, node, root);
for (i = 1; i < logM; ++i)
node = addNode(trie, art, node, x[il);
pos = 0;
setZ(node, pos);
pos++;
for (i = logM; i <m - 1; ++i) {
node = getSuffixLink(trie, node);
childNode = getTarget(trie, node, x[i]);
if (childNode == UNDEFINED)
node = addNode(trie, art, node, x[il);
else
node = childNode;
setZ(node, pos);
pos++;
¥
node = getSuffixLink(trie, node);
childNode = getTarget(trie, node, x[il);
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if (childNode == UNDEFINED) {
lastNode = newVertex(trie);
setTarget(trie, node, x[m - 1], lastNode);
node = lastNode;

¥

else
node = childNode;

setZ(node, pos);

/* Searching */
shift = m - logh + 1;
for (j =m + 1 - logM; j < n - logM; j += shift) {
node = root;
for (k = 0; node != UNDEFINED && k < logM; ++k)
node = getTarget(trie, node, y[j + k1);
if (node != UNDEFINED)
for (current = getZ(node);
current != NULL;
current = current->next) {
b = j - current->element;
if (x[0] == y[b] &&
memcmp(x + 1, y+ b+ 1, m - 1) == 0)
OUTPUT(b);
}
}

free(z);

35.4 The example
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AGA | (4,2)
caG | (1)
GAG | (5,3)
Gca | (0)

Searching phase

First attempt:

y [GCATC|GCAGAGAGTATACAGTACG

123

y[GCATClGCAGAGAGTATACAGTACG

[ee]

1234567
z [GCAGAGAG|

Shift by 6

Second attempt:

y [GCATCGCAGAGAGTATACAGTACG

Shift by 6

Third attempt:

y [GCATCGCAGAGAGTATMACAGTAGG|

y [@§CATCGCAGAGAGTATACAGTACG|

1
leCAGAGAG‘

The Alpha Skip Search algorithm performs 18 text character inspec-
tions on the example.

35.5 References

o CHARRAS, C., LEcroq, T., PEHOUSHEK, J.D., 1998, A very fast
string matching algorithm for small alphabets and long patterns, in
Proceedings of the 9th Annual Symposium on Combinatorial Pat-
tern Matching, M. Farach-Colton ed., Piscataway, New Jersey, Lec-
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ture Notes in Computer Science 1448, pp 55-64, Springer-Verlag,
Berlin.



A Example of graph implementation

A possible implementation of the interface of section 1.5 follows.

struct _graph {
int vertexNumber,

edgeNumber,
vertexCounter,
initial,
*terminal,
*target,
*suffixLink,
*length,
*position,
*shift;

};

typedef struct _graph *Graph;
typedef int boolean;

#define UNDEFINED -1

/* returns a new data structure for

a graph with v vertices and e edges */
Graph newGraph(int v, int e) {

Graph g;

g = (Graph)calloc(1l, sizeof(struct _graph));
if (g == NULL)
error("newGraph");

g->vertexNumber = v;
g->edgeNumber = e;
g->initial = 0;
g->vertexCounter = 1;

return(g);
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Appendix A Example of graph implementation

/* returns a new data structure for

a automaton with v vertices and e edges */
Graph newAutomaton(int v, int e) {

Graph aut;

aut = newGraph(v, e);
aut->target = (int *)calloc(e, sizeof(int));
if (aut->target == NULL)

error ("newAutomaton") ;
aut->terminal = (int *)calloc(v, sizeof(int));
if (aut->terminal == NULL)

error ("newAutomaton") ;
return(aut);

/* returns a new data structure for

a suffix automaton with v vertices and e edges */
Graph newSuffixAutomaton(int v, int e) {

Graph aut;

aut = newAutomaton(v, e);
memset (aut->target, UNDEFINED, e*sizeof(int));
aut->suffixLink = (int *)calloc(v, sizeof(int));
if (aut->suffixLink == NULL)

error ("newSuffixAutomaton");
aut->length = (int *)calloc(v, sizeof(int));
if (aut->length == NULL)

error ("newSuffixAutomaton'");
aut->position = (int *)calloc(v, sizeof(int));
if (aut->position == NULL)

error ("newSuffixAutomaton'");
aut->shift = (int *)calloc(e, sizeof(int));
if (aut->shift == NULL)

error ("newSuffixAutomaton");
return(aut);

/* returns a new data structure for
a trie with v vertices and e edges */
Graph newTrie(int v, int e) {
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Graph aut;

aut = newAutomaton(v, e);
memset (aut->target, UNDEFINED, e*sizeof(int));
aut->suffixLink = (int *)calloc(v, sizeof(int));
if (aut->suffixLink == NULL)

error("newTrie");
aut->length = (int *)calloc(v, sizeof(int));
if (aut->length == NULL)

error("newTrie");
aut->position = (int *)calloc(v, sizeof(int));
if (aut->position == NULL)

error("newTrie");
aut->shift = (int *)calloc(e, sizeof(int));
if (aut->shift == NULL)

error("newTrie");
return(aut);

/* returns a new vertex for graph g */
int newVertex(Graph g) {
if (g != NULL && g->vertexCounter <= g->vertexNumber)
return(g->vertexCounter++);
error("newVertex");

/* returns the initial vertex of graph g */
int getInitial(Graph g) {
if (g '= NULL)
return(g->initial);
error("getInitial");

/* returns true if vertex v is terminal in graph g */
boolean isTerminal(Graph g, int v) {
if (g != NULL && g->terminal != NULL &&
v < g->vertexNumber)
return(g->terminal[v]);
error("isTerminal");
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/* set vertex v to be terminal in graph g */
void setTerminal(Graph g, int v) {
if (g != NULL && g->terminal != NULL &&
v < g->vertexNumber)
g->terminallv] = 1;
else
error("isTerminal");

/* returns the target of edge from vertex v
labelled by character ¢ in graph g */
int getTarget(Graph g, int v, unsigned char c) {
if (g != NULL && g->target != NULL &&
v < g->vertexNumber && v¥c < g->edgeNumber)
return(g->target [v¥(g->edgeNumber/g->vertexNumber) +
cl);

error("getTarget");

/* add the edge from vertex v to vertex t
labelled by character c in graph g */
void setTarget(Graph g, int v, unsigned char c, int t) {
if (g != NULL && g->target != NULL &&
v < g->vertexNumber &&
vkc <= g->edgeNumber && t < g->vertexNumber)
g->target [v*(g->edgeNumber/g->vertexNumber) + c] = t;
else
error("setTarget");

/* returns the suffix link of vertex v in graph g */
int getSuffixLink(Graph g, int v) {
if (g != NULL && g->suffixLink !'= NULL &&
v < g->vertexNumber)
return(g->suffixLink[v]);
error("getSuffixLink");

/* set the suffix link of vertex v
to vertex s in graph g */
void setSuffixLink(Graph g, int v, int s) {
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if (g != NULL && g->suffixLink !'= NULL &&
v < g->vertexNumber && s < g->vertexNumber)
g->suffixLink[v] = s;

else
error("setSuffixLink");

/* returns the length of vertex v in graph g */
int getLength(Graph g, int v) {
if (g !'= NULL &% g->length != NULL &&
v < g->vertexNumber)
return(g->lengthl[v]);
error("getLength");

/* set the length of vertex v to integer ell in graph g */
void setLength(Graph g, int v, int ell) {
if (g !'= NULL &% g->length != NULL &&
v < g->vertexNumber)
g->length[v] = ell;
else
error("setLength");

/* returns the position of vertex v in graph g */
int getPosition(Graph g, int v) {
if (g != NULL && g->position != NULL &&
v < g->vertexNumber)
return(g->position([v]);
error("getPosition");

/* set the length of vertex v to integer ell in graph g */
void setPosition(Graph g, int v, int p) {
if (g != NULL && g->position != NULL &&
v < g->vertexNumber)
g->position[v] = p;
else
error("setPosition");
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/* returns the shift of the edge from vertex v
labelled by character ¢ in graph g */
int getShift(Graph g, int v, unsigned char c) {
if (g != NULL && g->shift != NULL &&
v < g->vertexNumber && v¥c < g->edgeNumber)
return(g->shift[v*(g->edgeNumber/g->vertexNumber) +
cl);
error("getShift");

/* set the shift of the edge from vertex v
labelled by character ¢ to integer s in graph g */
void setShift(Graph g, int v, unsigned char c, int s) {
if (g != NULL && g->shift != NULL &&
v < g->vertexNumber && v*c <= g->edgelNumber)
g->shift[v*(g->edgeNumber/g->vertexNumber) + c] = s;
else
error("setShift");

/* copies all the characteristics of vertex source
to vertex target in graph g */
void copyVertex(Graph g, int target, int source) {
if (g != NULL && target < g->vertexNumber &&
source < g->vertexNumber) {
if (g->target != NULL)
memcpy (g->target +
target*(g->edgeNumber/g->vertexNumber),
g->target +
source*(g->edgeNumber/g->vertexlumber),
(g->edgeNumber/g->vertexNumber)*
sizeof(int));
if (g->shift != NULL)
memcpy (g->shift +
target*(g->edgeNumber/g->vertexNumber),
g->shift +
source*(g->edgeNumber/g->vertexlumber),
g->edgeNumber/g->vertexNumber) *
sizeof(int));
if (g->terminal != NULL)
g->terminal[target] = g->terminal[sourcel;
if (g->suffixLink != NULL)
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g->suffixLink[target] = g->suffixLink[sourcel;
if (g->length !'= NULL)

g->length[target] = g->length[sourcel;
if (g->position != NULL)

g->position[target] = g->position[sourcel;

}

else

error("copyVertex");
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