
Nonsymmetric operads in combinatorics

Samuele Giraudo

UNIVERSITÉ PARIS-EST, LIGM (UMR 8049), CNRS, ENPC, ESIEE PARIS, UPEM, F-77454, MARNE-LA-VALLÉE, FRANCE

Email address: samuele.giraudo@u-pem.fr



2010 Mathematics Subject Classification. 05-00, 05C05, 05E15, 16T05, 18D50.

Key words and phrases. Combinatorics; Algebraic combinatorics; Computer science;
Tree; Formal power series; Rewrite system; Operad; Bialgebra; Hopf bialgebra; Pre-Lie

algebra; Dendriform algebra.

ABSTRACT. Operads are algebraic devices offering a formalization of the
concept of operations with several inputs and one output. Such opera-
tions can be naturally composed to form bigger and more complex ones.
Coming historically from algebraic topology, operads intervene now as
important objects in computer science and in combinatorics. The theory
of operads, together with the algebraic setting and the tools accompany-
ing it, promises advances in these two areas. On the one hand, operads
provide a useful abstraction of formal expressions, and also, provide con-
nections with the theory of rewrite systems. On the other hand, a lot of
operads involving combinatorial objects highlight some of their proper-
ties and allow to discover new ones.

This book presents the theory of nonsymmetric operads under a
combinatorial point of view. It portrays the main elements of this the-
ory and the links it maintains with several areas of computer science
and combinatorics. A lot of examples of operads appearing in combina-
torics are studied and some constructions relating operads with known
algebraic structures are presented. The modern treatment of operads
consisting in considering the space of formal power series associated
with an operad is developed. Enrichments of nonsymmetric operads as
colored, cyclic, and symmetric operads are reviewed.

This text is addressed to any computer scientist or combinatorist who
looks a complete and a modern description of the theory of nonsymmet-
ric operads. Evenly, this book is intended to an audience of algebraists
who are looking for an original point of view fitting in the context of
combinatorics.

March 5, 2019
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Introduction

Combinatorics, algebra, and programming

Let us start this text by considering two fields of mathematics: combinatorics and
algebra, and a field of computer science: programming. These topics have far more in
common than it appears at first glance and we shall explain why.

Combinatorics. One of the most common activities in combinatorics consists in
studying families of combinatorial objects such as permutations, words, trees, or graphs.
One of the most common activities about such families is to provide formulas to enu-
merate them according to a decent size notion. A large number of tools exists for this
purpose such as manipulation of generating series, use of bijections, and use of decom-
positions rules to break objects into elementary pieces. This last tool is crucial and relies
on the fact that if one knows a way to compose objects to build a bigger one, then with-
out much effort one knows a way to decompose them. Let us, for instance, consider the
celebrated set of Motzkin paths. Recall that a Motzkin path is a walk in the quarter plane
connecting the origin to a point on the x-axis by means of steps , , and . Let us
denote by (u1, u2) the binary composition rule consisting in substituting u1 (resp. u2)
with the first (resp. second) point of , and by (u1, u2, u3) the ternary composition
rule consisting in substituting u1 (resp. u2, u3) with the first (resp. second, third) point of

. By using these two operations, one can, for instance, provide the decomposition

=
( (

, ,
)
, ( , , )

)
(0.0.1)

of the Motzkin path appearing as left member. An easy result says that a nonempty
Motzkin path decomposes in a unique way either as a step followed by a Motzkin
path, or as a step followed by a Motzkin path, a step , and another Motzkin path.
This leads to the expression

M = { } t { ( , u2) : u2 ∈M} t { ( , u2, u3) : u2, u3 ∈M} (0.0.2)

describing the set M of all Motzkin paths. From (0.0.2), one harvests combinatorial
data as a formula to count Motzkin paths of a given size (with respect to an adequate
notion of size), bijections between Motzkin paths and other families of combinatorial
objects admitting similar decompositions (like Motzkin trees or Motzkin configurations
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2 INTRODUCTION

of chords in polygons), or even the definition of generalizations of these objects (by
adding colors on the steps, or by adding other possible sorts of steps).

Algebra. On another side, in algebra, the study of algebraic structures consisting
in a set of operations and the relations they satisfy is very habitual. To specify such an
algebraic structure, one provides the nontrivial relations satisfied by its operations. For
instance, any binary operation ? satisfying for any inputs x1, x2, and x3 the relation

(x1 ? x2) ? x3 − x1 ? (x2 ? x3) = (x1 ? x3) ? x2 − x1 ? (x3 ? x2) (0.0.3)

specifies the class of the so-called pre-Lie algebras. Classical examples include among
others monoids, groups, lattices, associative algebras, commutative algebras, and dendri-
form algebras. An obvious but important fact is that expressions and relations can be
composed: the variables in a relation refer to any term of the algebraic structure. For
instance, in (0.0.3), all the occurrences of x2 can be replaced by a term x4 ? x5, leading to
the relation

(x1 ? (x4 ? x5)) ? x3 − x1 ? ((x4 ? x5) ? x3) = (x1 ? x3) ? (x4 ? x5)− x1 ? (x3 ? (x4 ? x5)) (0.0.4)

that still holds. Furthermore, by seeing the binary operation ? as a device

?
x1 x2

(0.0.5)

having two inputs x1 and x2 and one output x1 ? x2, Relation (0.0.3) reformulates as

?
?

x1 x2

x3
−

?
?x1

x2 x3

= ?
?

x1 x3

x2
−

?
?x1

x3 x2

, (0.0.6)

and Relation (0.0.4) as

?
?

?

x1

x4 x5

x3 −
?

?
?x1

x4 x5

x3

= ?
?

?

x1 x3 x4 x5

−
?

?
?

x1

x3

x4 x5

. (0.0.7)

Therefore, one observes that algebraic expressions translates as syntax trees, and that
composition and substitution of expressions translates as grafting of trees.

Programming. In programming, and more precisely in the context of functional
programming, one encounters expressions of the form

f(g1(v1, v2),g2(v3), v4) (0.0.8)

where f, g1, and g2 are function names, and v1, v2, v3, and v4 are value names. This func-
tion call can be considered as a program, and the returned value is the value computed
by the execution of the program. When our programming language satisfies referential
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transparency (that is, any expression can be substituted by its value without changing the
overall computation), the call (0.0.8) is equivalent to both the calls

f(w1,g2(v3), v4) and f(g1(v1, v2),w2, v4) (0.0.9)

where w1 is the value of g1(v1, v2) and w2 is the value of g2(v3). As a consequence, this
leads to the fact that the order of evaluation of the sub-expressions g1(v1, v2) and g2(v3)
does not influence the computation of (0.0.8). Furthermore, by seeing the functions f1,
g1, and g2 as black boxes

f , g1 , g2 (0.0.10)

where inputs are depicted below and outputs above the boxes, the program (0.0.8) is made
of compositions of such black boxes where inputs are completed with values (that are
arguments of the function calls). Under this formalism, this program and its evaluation
are depicted as

f

v4g1

v1 v2

g2

v3

→ f

w1 w2 v4

→ w (0.0.11)

where w is the value computed by the program. In this context, the evaluation of a
program can be carried out by using rewrite rules on such composition diagrams.

Nonsymmetric operads as a meeting point

The three previous examples highlight the importance of the notion of composition in
combinatorics, algebra, and programming. This is precisely the common point between
these three fields we want to emphasize. Let us develop this concept.

Coherent compositions. The compositions of combinatorial objects, of syntax trees
of algebraic expressions, and of function calls have to be coherent. Indeed, to lead
to interesting and substantial consequences, they have to mimic the usual functional
composition. Composing two objects x and y consists in choosing a substitution sector
a of x and in replacing a it by a copy of y. This composition is denoted by x ◦a y and is
schematically represented, in the following arbitrary example, as

a b

c

︸ ︷︷ ︸
x

◦a e
f

︸ ︷︷ ︸
y

=
e

f b

c

︸ ︷︷ ︸
x◦ay

. (0.0.12)
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To be coherent, this composition has to satisfy the two relations


 a b ◦a



 ◦b = =



 a b ◦b



 ◦a ,

(0.0.13)
and
(

a ◦a b

)
◦b = = a ◦a

(
b ◦b

)
.

(0.0.14)
First relation can be thought as a horizontal compatibility, and the second as a vertical
one.

To come back on the previous examples:

(1) In a Motzkin path u, the substitution sectors are its points, specified by their positions i.
The composition u ◦i v of two Motzkin paths u and v consists in replacing the ith point
of u by a copy of v.

(2) In a syntax tree t of an algebraic expression, the substitution sectors are its leaves,
specified by their labels xi. The composition t ◦xi s of two syntax trees t and s consists in
grafting the root of s onto the leaf xi of t.

(3) In a function f of a functional programming language, the substitution sectors are
its parameters xi provided that f admits the prototype f(x1, . . . , xi−1, xi, xi+1, . . . , xn). The
composition f◦xi g where f is the function just considered and g is a function admitting the
prototype g(y1, . . . , ym) is the function with prototype f(x1, . . . , xi−1, y1, . . . , ym, xi+1, . . . , xn)
defined as the function calling f wherein its ith argument substituting xi is set to the value
returned by g.

It is easy to see that Relations (0.0.13) and (0.0.14) are satisfied in these cases.

Nonsymmetric operads. Nonsymmetric operads are precisely algebraic structures
furnishing an abstraction of this concept of generalized compositions. Intuitively, a non-
symmetric operad O is a set (or a vector space) equipped with a map | − | associating
a positive integer with each of its elements, and with composition maps ◦i. Each ele-
ment x of O is seen as an operator of arity |x| and the composition maps of O satisfy
the coherence relations stated above. Nonsymmetric operads mimic and generalize in
this way the usual functional composition for any families of objects. There exist, for
instance, nonsymmetric operads on words, permutations, binary trees, Schröder trees,
configurations of chords, and paths.

There are a lot of reasons motivating the study of nonsymmetric operads. Here
follow the main ones:
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(A) Endowing a set of combinatorial objects with the structure of a nonsymmetric operad
provides an algebraic framework for studying it. This framework can potentially stress
some of the properties of the combinatorial objects, as for instance, enumerative results
and the discovery of hidden symmetries.

(B) Continuing this last point, with any nonsymmetric operad O defined in the category
of sets, it is associated a space of formal power series K 〈〈O〉〉 on the elements of O.
This notion of series on nonsymmetric operads generalizes the usual one. Moreover,
the extension of the composition maps of O on K 〈〈O〉〉 leads to generalizations of the
multiplication and the composition products of series. All this provides alternative ways
to obtain expressions for the generating series of families of combinatorial objects.

(C) Nonsymmetric operads admit close connections with the combinatorics of planar
rooted trees. This is due to the fact that free nonsymmetric operads can be constructed
on sets of such trees. Moreover, given a nonsymmetric operad O, a classical question
consists in exhibiting a presentation by generators and relations of O. Since any non-
symmetric operad can be described as a quotient of a free operad, the computation of
a presentation is based upon manipulation of trees. In this context, tools coming from
rewrite systems and some of their properties like termination and confluence intervene.

(D) There are a lot of generalizations of nonsymmetric operads, increasing their fields
of applications. For instance, in a symmetric operad O, all symmetric groups S(n), n ∈ N,
act on the sets of elements of arity n of O by permuting the inputs of their elements.
Besides, in a colored operad O, the inputs and outputs have a color and the composition
of two elements is defined only if the colors of the involved input and output match. In
fact, our previous example about functional programming and composition of functions
lies in this context of colors operads when the language is typed: the colors play the role
of data types.

(E) Given a nonsymmetric operad O, there is a notion of algebras over O. More precisely,
an algebra over O is a vector space A wherein elements of O behave as operations on
A by respecting the arities and the composition maps of the nonsymmetric operad.
For instance, any algebra over the associative operad is an associative algebra, and any
algebra over the pre-Lie operad is a pre-Lie algebra.

(F) Related to the previous point, all the algebras over O form a category of algebras.
In this way, by studying O, one obtains general results on all the algebras over O. For
instance, it is possible to show that the sum of the two usual generators of the dendri-
form operad behaves as an associative operation. This implies that the sum of the two
operations of any dendriform algebra is associative. Besides, operads furnish here a
framework for operation calculus.

(G) Again related to the two previous points, nonsymmetric operads lead to the discovery
of link between different categories of algebras. Indeed, if φ : O1 → O2 is a morphism
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between two nonsymmetric operads O1 and O2, one can construct from φ a functor
from the category of algebras over O2 to the category of algebras over O1. For instance,
there is a morphism from the two-associative operad to the duplicial operad leading to
a functor from the category of duplicial algebras (algebras endowed with two binary
associative operations satisfying one extra relation) to the category of two-associative
algebras (algebras endowed with two binary associative operations).

(H) Given a nonsymmetric operad O satisfying some precise properties, it is possible
to compute a presentation by generators and relations of its so-called Koszul dual O!.
This duality is an extension of the Koszul duality for associative algebras and establishes
connections between nonsymmetric operads at first sight very different. For instance,
the dendriform operad and the diassociative operad are Koszul dual one of the other.
Moreover, linked to this notion of Koszul duality, there is a notion of Koszulity for non-
symmetric operads. This property, defined originally algebraically, admits equivalent
reformulations in terms of properties of rewrite systems on trees associated with the
presentation of the nonsymmetric operads. Moreover, given a Koszul nonsymmetric
operad O admitting an Hilbert series, the alternating version of the Hilbert series of O!

and the one of O are inverse one of the other for series composition. This property
admits for instance applications for enumerative prospects.

Construction of the book

We now give some practical information about this text.

Point of view. All the algebraic structures considered here are linear spans K 〈C〉
of some sets of combinatorial objects C. For this reason, these spaces admit always an
explicit basis C. Moreover, to handle families of combinatorial objects, we introduce
the notion of collections. A collection is a set of combinatorial objects presented as a
disjoint union of subsets of objects satisfying a same property. For instance, a graded
collection is a set of combinatorial objects defined as a disjoint union of sets of objects
of a same size. We shall consider different sorts of collections as colored, multigraded,
or symmetric collections, suited to the study of some particular algebraic structures.

Main purposes and audience. The aim of this text is to give a presentation of
the theory of nonsymmetric operads under the context of algebraic combinatorics. We
orient our exposition of properties of operads toward enumerative and combinatorial
directions. This book is also intended to be an introduction to algebraic combinatorics:
the first chapters deal with combinatorics and combinatorics of trees, while next one deals
with general properties of algebraic structures on combinatorial families. For instance,
Hopf bialgebras, forming a vast and rich topic in algebraic combinatorics, are studied
here.
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We decide to not overload the text with bibliographic and historical references. For
this reason, each chapter ends with a section containing bibliographic material. Besides,
to present as much results as possible about combinatorics, algebraic combinatorics, and
operads, we decide to not mention their proofs. For a vast majority of them, they can be
treated as not so hard exercises.

This book is addressed to any computer scientist or combinatorist who is aiming to
establish a first contact with the theory of operads. Evenly, this book is intended to an
audience of algebraists who are looking for an original point of view fitting in the context
of combinatorics.

Structure. The book contains five chapters. Each chapter depends on the previous
ones. They are organized as follows.
(1) Chapter 1 presents general notions about combinatorics and collections. It also pro-
vides definitions about collections endowed with a poset structure. These structures
intervene in changes of bases of algebraic structures. It presents finally collections en-
dowed with rewrite rules. These collections intervene as tools to establish presentations
of nonsymmetric operads.

(2) Chapter 2 is devoted to general treelike structures. It presents syntax trees, that
are sorts of trees appearing in the study of nonsymmetric operads. Rewrite systems
on syntax trees are considered and tools to prove their termination or confluence are
provided.

(3) Chapter 3 concerns algebraic structures defined on the linear span of collections.
These vector spaces are called polynomial spaces. It presents also the notion of biprod-
ucts on polynomial spaces and of types of bialgebras. Classical types of bialgebras ap-
pearing in combinatorics are given: associative, dendriform, and pre-Lie algebras, and
Hopf bialgebras.

(4) Chapter 4 presents nonsymmetric operads and related notions. It exposes the notions
of algebras over operads, free operads, presentations by generators and relations, Koszul
duality, and Koszulity. Several examples of operads appearing in algebraic combinatorics
are reviewed.

(5) Chapter 5 contains generalizations, applications, and apertures of the theory of non-
symmetric operads. It reviews three topics in this vein. First, formal power series on
nonsymmetric operads are considered and applications to enumeration are provided.
Next, enrichments of nonsymmetric operads are discussed: colored operads, cyclic op-
erads, and symmetric operads. Finally, it provides an overview of product categories, a
generalization of operads wherein elements can have several outputs.





CHAPTER 1

Enriched collections

This preliminary chapter contains general notions about combinatorics used in the
rest of the book. We introduce the notion of collections of combinatorial objects and
then the notions of posets and rewrite systems, which are seen as collections endowed
with some extra structure.

1. Collections

A collection is a set of combinatorial objects partitioned into subsets of objects sharing
a same property. Operations over collections are then introduced and some classical
examples of collections are provided.

1.1. Structured collections. There are many kinds of collections such as graded,
multigraded, colored, cyclic, and symmetric. Definitions about them are provided here.

1.1.1. Elementary definitions. Let I be a nonempty set called index set. An I-
collection is a set C expressible as a disjoint union

C =
⊔

i∈I
C(i) (1.1.1)

where all C(i), i ∈ I , are (possibly infinite) sets. All the elements of C (resp. C(i) for
an i ∈ I) are called objects (resp. i-objects) of C. If x is an i-object of C, we say that
the index ind(x) of x is i. When for all i ∈ I , all C(i) are finite sets, C is combinatorial.
Besides, C is finite if C is finite as a set. The empty I-collection is the set ∅. When I is a
singleton, C is simple. Any set can thus be seen as a simple collection and conversely.

A relation on C is a binary relation R on C such that for any objects x and y of C
satisfying xR y, ind(x) = ind(y). Let C1 and C2 be two I-collections. A map φ : C1 → C2

is an I-collection morphism if, for all x ∈ C1, ind(x) = ind(φ(x)). We express by C1 ' C2

the fact that there exists an isomorphism between C1 and C2. Besides, if for all i ∈ I ,
C1(i) ⊆ C2(i), C1 is a subcollection of C2. For any i ∈ I , we can regard each C(i) as a
subcollection of C consisting only in all its i-objects. Moreover, for any subset J of I , we
denote by C(J) the subcollection of C consisting only in all its j-objects for all j ∈ J .

Let us now consider particular I-collections for precise sets I . Table 1.1 contains an
overview of the properties that such collections can satisfy.

9



10 1. ENRICHED COLLECTIONS

Collections

Combinatorial Finite Simple With products

k-graded

Colored1-graded

Monochrome k-coloredConnected Augmented Monatomic

Cyclic Symmetric

TABLE 1.1. The most common sorts of I-collections (in bold) and the properties (in italic)
they can satisfy. The inclusions relations between these sorts of collections read from
bottom to top. For instance, cyclic collections are particular 1-graded collections which are
themselves particular k-graded collections which are themselves particular collections.

1.1.2. Graded collections. An N-collection is called a graded collection. If C is a
graded collection, for any object x of C, the size |x| of x is the integer ind(x). The map
| − | : C → N is the size function of C.

We say that C is connected if C(0) is a singleton, and that C is augmented if C(0) = ∅.
Moreover, C is monatomic if it is augmented and C(1) is a singleton. We denote by {ε}
the graded collection such that ε is an object satisfying |ε| = 0. This collection is called
the unit collection. Observe that {ε} is connected, and that C is connected if and only if
there is a unique collection morphism from {ε} to C. We denote by {•} the collection
such that • is an atom, that is an object satisfying | • | = 1. This collection is called the
neutral collection. Observe that {•} is monatomic, and that C is monatomic if and only
if C is augmented and there is a unique collection morphism from {•} to C. When C is
a combinatorial graded collection, the generating series of C is the series

GC(t) :=
∑

n∈N
#C(n)tn, (1.1.2)

where t is a formal parameter and #S denotes the cardinality of any finite set S. This
formal power series encodes the integer sequence of C, that is the sequence (#C(n))n∈N.
Observe that if C1 and C2 are two combinatorial graded collections, C1 ' C2 holds if and
only if GC1 (t) = GC2 (t).

1.1.3. Multigraded collections and statistics. A k-graded collection (also called multi-
graded collection) is an Nk-collection for an integer k > 1. To not overload the notation,
we denote by C (n1, . . . , nk) the subset C ((n1, . . . , nk)) of any k-graded collection C. Re-
call that a statistics on an I-collection C is a map s : C → N, associating a nonnegative
integer value with any object of C. Multigraded collections are useful to work with ob-
jects endowed with many statistics. Indeed, if x is an (n1, . . . , nk)-object of a k-graded
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collection C, one sets sj (x) := nj for each 1 6 j 6 k. This defines in this way k statistics
sj : C → N, 1 6 j 6 k.

1.1.4. Colored collections. Let C be a finite set, called set of colors. A C-colored
collection C is an I-collection such that

I :=
{
(a, u) : a ∈ C and u ∈ C` for an ` ∈ N

}
. (1.1.3)

In other terms, any object x of C has an index (a, u) ∈ C × C` , ` ∈ N, called C-colored
index. Moreover, the output color of x is out(x) := a, and the word of input colors of x
is in(x) := u. The jth input color of x is the jth letter of in(x), denoted by inj (x). To not
overload the notation, we denote by C(a, u) the subset C((a, u)) of C. We say that C is
monochrome if C is a singleton. For any nonnegative integer k, a k-colored collection is
a C-colored collection where C is the set of integers {1, . . . , k}.

1.1.5. Cyclic collections. Let C be a graded collection endowed for all n ∈ N with
maps

�n: C(n)→ C(n) (1.1.4)

such that each n+1st functional power �n+1
n is the identity map on C(n). Then, one says

that C is a cyclic collection and that the �n , n ∈ N, are the cycle maps of C. Observe
that by setting for any n ∈ N, • : Z/(n+1)Z × C(n) → C(n) as the map defined for any
k ∈ Z/(n+1)Z and x ∈ C(n) by k •x :=�kn (x), • is a left group action of the cyclic group of
order n + 1 on C(n). The reason why we demand that each �n is of order n + 1 (and
not of order n) will appear in the context of cyclic operads.

1.1.6. Symmetric collections. Let us first denote by S the graded collection of all the
bijections on the set {1, . . . , n}, n ∈ N, such that the size of a bijection is the cardinality
of its domain. Let C be a graded collection endowed, for all n ∈ N and σ ∈ S(n), with
maps

}σ : C(n)→ C(n) (1.1.5)

such that }Idn is the identity map on C(n), where Idn denotes the identity map of S(n),
and }σ1 ◦ }σ2 = }σ2◦σ1 for any bijections σ1 and σ2 of S(n). Then, one says that C is a
symmetric collection and that the }σ , σ ∈ S(n), are the symmetric maps of C. Observe
that by setting for any n ∈ N, • : S(n)×C(n)→ C(n) as the map defined for any σ ∈ S(n)
and x ∈ C(n) by σ •x := }σ (x), • is a left group action of the symmetric group of order
n on C(n).

1.1.7. Collections with products. Let C be an I-collection. A product on C is a map

? : C (J1)× · · · × C
(
Jp
)
→ C (1.1.6)

where p ∈ N and J1, . . . , Jp are nonempty subsets of I . The arity of ? is p and the index
domain of ? is the set J1 × · · · × Jp . A sequence

(
x1, . . . , xp

)
of objects of C is a valid

input for ? whenever ?
(
x1, . . . , xp

)
is defined, that is,

(
ind (x1) , . . . , ind

(
xp
))

belongs to
the index domain of ?. When C is endowed with a set of such products, we say that C
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is an I-collection with products. Such a product ? can be seen as an operation taking
p elements of C as input and outputting one element of C. Let us now review some
properties a product ? of the form (1.1.6) can satisfy.

First, when the index domain of ? is Ip , ? is complete. When J1 = · · · = Jp = {i} for
a certain index i of I , and, for any valid input

(
x1, . . . , xp

)
for ?, ind

(
?
(
x1, . . . , xp

))
= i,

we say that ? is internal. Besides, when there is a map ω : J1× · · · × Jp → I satisfying, for
any valid input

(
x1, . . . , xp

)
for ?,

?
(
x1, . . . , xp

)
∈ C

(
ω
(
ind (x1) , . . . , ind

(
xp
)))

, (1.1.7)

we say that ? is ω-concentrated (or simply concentrated when it not useful to specify ω).
In intuitive terms, this means that the index of the result of a product depends only of
the indexes of its operands. Finally, in the particular case where C is a graded collection,
? is graded if ? is ω-concentrated for the map ω : Np → N defined by ω

(
n1, . . . , np

)
:=

n1 + · · ·+np . As a side remark, the cycle maps (resp. symmetric maps) of a cyclic (resp.
symmetric) collection C are unary internal products on C.

1.2. Operations over collections. We list here the most important operations that
take as input I-collections and output new ones. Some of these are defined only on
graded collections. Table 1.2 shows an overview of some properties of these operations.
Since combinatorial graded collections have generating series, we provide expressions
for the generating series of the collection produced by the exposed operations.

1.2.1. Sum operation. Let C1 and C2 be two I-collections. The sum of C1 and C2 is
the I-collection C1 +C2 such that, for all i ∈ I ,

(C1 +C2) (i) := C1(i) t C2(i). (1.2.1)

In other words, each object of index i of C1 +C2 is either an object of index i of C1 or an
object of index i of C2. Since the sum operation (1.2.1) is defined through a disjoint union,
when the sets C1(i) and C2(i) are not disjoint, there are in (C1 +C2) (i) two copies of each
element belonging to the intersection C1(i)∩C2(i), one coming from C1(i), the other from
C2(i). Moreover, observe that the sum operation admits the empty I-collection ∅ as unit
and that it is associative and commutative. The iterated version of the operation + shall
be denoted by

⊔
in the sequel.

When C1 and C2 are combinatorial, C1 + C2 is combinatorial. Moreover, when C1

and C2 are combinatorial and graded, the generating series of C1 +C2 satisfies

GC1+C2 (t) = GC1 (t) + GC2 (t). (1.2.2)
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Name Arity Inputs Output

Sum 2 I-coll. C1 and C2 I-coll. C1 +C2

Casting 1 I-coll C J-coll. Castω(C)

Cartesian product p ∈ N Ik-coll. Ck , 1 6 k 6 p I1 × · · · × Ip-coll.
[[[
C1, . . . , Cp

]]]
×

Hadamard product p ∈ N I-coll. C1, . . . , Cp I-coll.
[[[
C1, . . . , Cp

]]]
�

List collection 1 I-coll. C T(I)-coll. List(C)

Multiset collection 1 I-coll. C M(I)-coll. MSet(C)

Set collection 1 I-coll. C S(I)-coll. Set(C)

`-suspension 1 graded coll. C graded coll. Sus` (C)

Augmentation 1 graded coll. C graded coll. Aug(C)

Composition 2 graded coll. C1 and C2 graded coll. C1 �C2

C-coloration 1 graded coll. C C-colored coll. ColC(C)

Cycle 1 graded coll. C Cyclic coll. Cyc(C)

Regularization 1 graded coll. C symmetric coll. Reg(C)

TABLE 1.2. Main properties of some operations over collections. Here, I , J , and I1 , . . . , Ip ,
p ∈ N, are index sets, C is a set of colors, T(I) is the set of all the finite tuples of elements
of I , M(I) is the set of all the finite multisets of elements of I , S(I) is the set of all the finite
subsets of I , and ` is an integer.

1.2.2. Casting operation. Let C be an I-collection, J be an index set, and ω : I → J be
a map. The ω-casting of C is the J-collection Castω(C) defined for any j ∈ J by

(Castω(C)) (j) :=
⊔

i∈I
ω(i)=j

C(i). (1.2.3)

In other words, each object of index j ∈ J of Castω(C) comes from an object of index
i ∈ I of C such that ω(i) = j . Observe also that the right member of (1.2.3) is equal
to C

(
ω−1(j)

)
.

When the codomain of ω is N, Castω(C) is a graded collection called ω-graduation of
C. Let us detail two particular cases of ω-graduations. When C is a k-graded collection,
for any 1 6 p 6 k we call p-graduation of C the πp-graduation of C for the map
πp : Nk → N defined by πp ((n1, . . . , nk)) := np. Besides, when C is a C-colored collection
where C is a set of colors, we call graduation of C the ω-graduation of C for the map ω
sending any C-colored index (a, u) to the length of the tuple u.
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Observe that when C is combinatorial and each fiber ω−1(j) is finite for any j ∈ J ,
Castω(C) is combinatorial.

1.2.3. Cartesian product operation. Let p ∈ N, I1, . . . , Ip be index sets, and C1 be
an I1-collection, . . . , Cp be an Ip-collection. The Cartesian product of C1, . . . , Cp is the
I1 × · · · × Ip-collection

[[[
C1, . . . , Cp

]]]
× such that, for all

(
i1, . . . , ip

)
∈ I1 × · · · × Ip,

[[[
C1, . . . , Cp

]]]
×
((
i1, . . . , ip

))
:= C1 (i1)× · · · × Cp

(
ip
)
. (1.2.4)

In other words, each object of index
(
i1, . . . , ip

)
of
[[[
C1, . . . , Cp

]]]
× is a tuple

(
x1, . . . , xp

)

such that for any 1 6 k 6 p, each xk is an object of index ik of Ck. As a special
but important case, the Cartesian product [[[ ]]]× of zero I-collections is the I-collection
containing the empty tuple (that is, the unique tuple of length 0). The index of this object
is the empty tuple on I (that is, the unique element of I0). To not overload the notation,
we denote by

[[[
C1, . . . , Cp

]]]
×
(
i1, . . . , ip

)
the set

[[[
C1, . . . , Cp

]]]
×
((
i1, . . . , ip

))
for any index(

i1, . . . , ip
)

of I1 × · · · × Ip .

Observe that when all the C1, . . . , Cp are combinatorial,
[[[
C1, . . . , Cp

]]]
× is combinato-

rial. Besides, when all the C1, . . . , Cp are graded,
[[[
C1, . . . , Cp

]]]
× is a p-graded collection.

When J is an index set and ω : I1 × · · · × Ip → J is a map, the ω-Cartesian product
operation of C1, . . . , Cp is the J-collection

[[[
C1, . . . , Cp

]]]ω
× := Castω

([[[
C1, . . . , Cp

]]]
×
)
. (1.2.5)

By definition of the casting and the Cartesian product operations, one has, for any j ∈ J ,
[[[
C1, . . . , Cp

]]]ω
×(j) =

{(
x1, . . . , xp

)
∈ C1 × · · · × Cp : ω

(
ind (x1) , . . . , ind

(
xp
))

= j
}
. (1.2.6)

In other words, each object of index j ∈ J of
[[[
C1, . . . , Cp

]]]ω
× is a tuple

(
x1, . . . , xp

)
such

that for any 1 6 k 6 p, each xk is an object of Ck , and the image by ω of the tuple formed
by the indexes of x1, . . . , xp is j .

Observe that when all the C1, . . . , Cp are combinatorial and each fiber ω−1(j) is finite
for any j ∈ J ,

[[[
C1, . . . , Cp

]]]ω
× is combinatorial. When all the index sets I1, . . . , Ip , and J are

equal to N, we denote by + : Np → N the map defined by +
((
n1, . . . , np

))
:= n1 + · · ·+np.

When all the C1, . . . , Cp are combinatorial and graded,
[[[
C1, . . . , Cp

]]]+
× is combinatorial

and its generating series satisfies

G[[[C1,...,Cp ]]]+× (t) =
∏

16k6p
GCk (t). (1.2.7)

1.2.4. Hadamard product operation. Let p ∈ N and C1, . . . , Cp be I-collections. The
Hadamard product of C1, . . . , Cp is the I-collection

[[[
C1, . . . , Cp

]]]
� such that, for all i ∈ I ,

[[[
C1, . . . , Cp

]]]
�(i) :=

[[[
C1, . . . , Cp

]]]
×



i, . . . , i︸ ︷︷ ︸
p terms



 . (1.2.8)
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In other words, each object of index i of
[[[
C1, . . . , Cp

]]]
� is a tuple

(
x1, . . . , xp

)
such that

for all 1 6 k 6 p, all the xk are objects of index i of Ck.

Observe that when all the C1, . . . , Cp are combinatorial,
[[[
C1, . . . , Cp

]]]
� is combinato-

rial. When all the C1, . . . , Cp are combinatorial and graded,
[[[
C1, . . . , Cp

]]]
� is combinato-

rial and its generating series satisfies

G[[[C1,...,Cp ]]]� (t) =
∑

n∈N




∏

16k6p
#Ck(n)



 tn. (1.2.9)

1.2.5. List collection operation. Let C be an I-collection. Let us denote by T(I) the
index set of all the finite tuples

(
i1, . . . , ip

)
, p ∈ N, of elements of I . The list collection of

C is the T(I)-collection List(C) such that

List(C) :=
⊔

p∈N











 C, . . . , C︸ ︷︷ ︸
p terms











× (1.2.10)

In other words, each object of List(C) is a tuple
(
x1, . . . , xp

)
of objects of C and its index is

the element
(
ind (x1) , . . . , ind

(
xp
))

of T(I). Moreover, for any subset S of N, let ListS(C)
be the subcollection of List(C) restrained on tuples that have a length in S.

Observe that when C is combinatorial, List(C) is combinatorial.

When J is an index set and ω : T(I) → J is a map, the ω-list collection of C is the
J-collection

Listω(C) := Castω (List(C)) . (1.2.11)

By definition of the casting and the list collection operations, one has, for any j ∈ J ,

(Listω(C)) (j) =
{(
x1, . . . , xp

)
∈ Cp : p ∈ N and ω

((
ind (x1) , . . . , ind

(
xp
)))

= j
}
. (1.2.12)

In other words, each object of index j ∈ J of Listω(C) is a tuple
(
x1, . . . , xp

)
, p ∈ N, such

that for all 1 6 k 6 p, the xk are objects of C, and the image by ω of the tuple formed
by the indexes of x1, . . . , xp is j . Moreover, for any subset S of N, let ListωS (C) be the
subcollection of Listω(C) restrained on tuples that have a length in S.

Observe that when C is combinatorial and each fiber ω−1(j) is finite for any j ∈ J ,
Listω(C) is combinatorial. When I and J are equal to N, we denote by + : T(N)→ N the
map defined by +

((
n1, . . . , np

))
:= n1 + · · · + np . When C is combinatorial and graded,

List+(C) is combinatorial if and only if C is augmented. In this case, its generating series
satisfies

GList+(C)(t) = 1
1−GC(t) . (1.2.13)
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1.2.6. Multiset collection operation. Let C be an I-collection. Let us denote by M(I)
the index set formed by all finite multisets *i1, . . . , ip+, p ∈ N, of elements of I . The
multiset collection of C is the M(I)-collection MSet(C) such that, for all *i1, . . . , ip+ ∈
M(I), p ∈ N,

(MSet(C))
(
*i1, . . . , ip+

)
:=




⋃

σ∈S(p)
(List(C))

(
iσ (1), . . . , iσ (p)

)


 /≡, (1.2.14)

where S is the graded collection of bijections defined in Section 1.1.6 and ≡ is the
equivalence relation on List(C) satisfying, for any

(
x1, . . . , xp

)
∈ List(C), p ∈ N, and any

bijection σ ∈ S(p),
(
x1, . . . , xp

)
≡
(
xσ (1), . . . , xσ (p)

)
. (1.2.15)

In other words, each object of MSet(C) is an ≡-equivalence class of tuples of List(C)
and such an ≡-equivalence class

[(
x1, . . . , xp

)]
≡ can be represented by the multiset

*x1, . . . , xp+. Therefore, the objects of MSet(C) can be regarded as multisets of objects
of C.

When J is an index set and ω :M(I) → J is a map, the ω-multiset collection of C is
the J-collection

MSetω(C) := Castω(MSet(C)). (1.2.16)

By definition of the casting and the multiset collection operations, one has, for any j ∈ J ,

(MSetω(C)) (j) =
{
*x1, . . . , xp+ : p ∈ N and ω

(
*ind (x1) , . . . , ind

(
xp
)
+
)

= j
}
. (1.2.17)

In other words, each object of index j ∈ J of MSetω(C) is a finite multiset *x1, . . . , xp+,
p ∈ N, such that for all 1 6 k 6 p, the xk are objects of C, and the image by ω of the
multiset formed by the indexes of x1, . . . , xp is j .

Observe that when C is combinatorial and each fiber ω−1(j) is finite for any j ∈ J ,
MSetω(C) is combinatorial. When I and J are equal to N, we denote by + :M(N)→ N the
map defined by +

(
*n1, . . . , np+

)
:= n1 + · · · + np. When C is combinatorial and graded,

MSet+(C) is combinatorial if and only if C is augmented. In this case, its generating
series satisfies

GMSet+(C)(t) =
∏

n∈N\{0}

(
1

1− tn

)#C(n)
. (1.2.18)

1.2.7. Set collection operation. Let C be an I-collection. Let us denote by S(I) the
index set formed by all finite subsets of elements of I . The set collection of C is the S(I)-
collection Set(C) defined as the subcollection of MSet(C) containing only the multisets
having all their elements with multiplicity 1. In this way, the objects of Set(C) can be
represented as finite sets of objects of C.
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When J is an index set and ω : S(I) → J is a map, the ω-set collection of C is the
J-collection

Setω(C) := Castω(Set(C)). (1.2.19)

By definition of the casting and the set collection operations, one has, for any j ∈ J ,

Setω(C)(j) =
{
{x1, . . . , xp} ⊆ C : p ∈ N and ω

({
ind (x1) , . . . , ind

(
xp
)})

= j
}
. (1.2.20)

In other words, each object of index j ∈ J of Setω(C) is a finite set {x1, . . . , xp}, p ∈ N,
such that for all 1 6 k 6 p, the xk are objects of C, and the image by ω of the set formed
by the indexes of x1, . . . , xp is j .

Observe that when C is combinatorial and each fiber ω−1(j) is finite for any j ∈ J ,
Setω(C) is combinatorial. When I and J are equal to N, we denote by + : S(N) → N the
map defined by +

(
{x1, . . . , xp}

)
:= x1 + · · · + xp. When C is combinatorial and graded,

Setω(C) is combinatorial (without requiring any additional condition contrariwise to the
similar cases for the list and multiset collection operations) and its generating series
satisfies

GSet+(C)(t) =
∏

n∈N\{0}
(1 + tn)#C(n) . (1.2.21)

1.2.8. Suspension and augmentation operations. Let C be a graded collection. For
any ` ∈ Z, the `-suspension of C is the graded collection Sus` (C) such that, for all n ∈ N,

(Sus` (C)) (n) :=





C(n − `) if n − ` ∈ N,
∅ otherwise.

(1.2.22)

Observe that Sus1 (Sus−1(C)) is the subcollection C \ C(0) of C, that is the augmented
collection having the objects of C without its objects of size 0. We call this collection the
augmentation of C and we denote it by Aug(C).

When C is combinatorial, Sus` (C) and Aug(C) are combinatorial and their generating
series satisfy, respectively,

GSus` (C)(t) = t`
(
GC(t)−GC([0,−`−1])(t)

)
(1.2.23)

where [0, −` − 1] is the set of the integers n satisfying 0 6 n 6 −` − 1, and

GAug(C)(t) = GC(t)−#C(0). (1.2.24)

1.2.9. Composition operation. Let C1 and C2 be two graded collections. The compo-
sition of C1 and C2 is the graded collection C1 �C2 such that, for all n ∈ N,

(C1 �C2) (n) :=
⊔

k∈N

[[[
C1(k),

(
List+{k} (C2)

)
(n)
]]]
ω
× (1.2.25)

where ω : N2 → N is the map defined by ω (n1, n2) := n2. In other words, each object of
size n of C1 �C2 is an ordered pair (x, (y1, . . . , yk)), k ∈ N, where x is an object of C1 of



18 1. ENRICHED COLLECTIONS

size k, and (y1, . . . , yk) is a tuple of objects of C2 such that the sum of the sizes of the yj ,
1 6 j 6 k is n. Observe that, if C3 is a graded collection,

C1 � {•} ' C1 ' {•} � C1, (1.2.26a)

(C1 �C2)�C3 ' C1 � (C2 �C3) . (1.2.26b)

When C1 and C2 are combinatorial and graded, C1 �C2 is combinatorial if and only
if C2 is augmented. In this case, its generating series satisfies

GC1�C2 (t) = GC1 (GC2 (t)) . (1.2.27)

1.2.10. Coloration operation. Let C be a graded collection and C be a set of col-
ors. The C-coloration of C is the C-colored collection ColC(C) defined, for all C-colored
indexes (a, u) ∈ C× C` , ` ∈ N, by

(ColC(C)) (a, u) := {(a, x, u) : x ∈ C(`)} . (1.2.28)

In other words, each object of ColC(C) is built from an object x of C by equipping it
freely with an output color from C and a word of input colors from C having the size of
x as length.

When C is combinatorial, the graduation Castω (ColC(C)) of ColC(C) is combinatorial
if and only if the set of colors C is finite. In this case, by setting m := #C, its generating
series satisfies

GCastω(ColC(C))(t) =
∑

n∈N
#C(n)mn+1 tn. (1.2.29)

1.2.11. Cycle operation. Let C be a graded collection. The cycle collection of C is
the graded collection Cyc(C) defined, for all n ∈ N, by

(Cyc(C)) (n) := {(x, k) : x ∈ C(n) and 0 6 k 6 n} . (1.2.30)

In other words, each object of Cyc(C) is built from an object x of C by equipping it
freely with a nonnegative integer nongreater than its size.

Let us observe that by defining, for any n ∈ N, the map �n: (Cyc(C))(n)→ (Cyc(C))(n)
by �n ((x, k)) := (x, k + 1 (mod n + 1)) for any (x, k) ∈ (Cyc(C))(n), each �n is a cycle
map of Cyc(C). Therefore Cyc(C) is cyclic.

When C is combinatorial, Cyc(C) is combinatorial and its generating series satisfies

GCyc(C)(t) =
∑

n∈N
#C(n)(n + 1) tn. (1.2.31)
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1.2.12. Regularization operation. Let C be a graded collection. The regularization
of C is the graded collection Reg(C) defined by

Reg(C) := [[[C,S]]]� (1.2.32)

where S is the graded collection of bijections defined in Section 1.1.6. In other words,
each object of Reg(C) is built from an object x of C by equipping it freely with a bijection
of S(n) where n is the size of x.

Let us observe that by defining, for any σ ∈ S(n), n ∈ N, the map }σ : (Reg(C))(n)→
(Reg(C))(n) by }σ ((x, ν)) :=

(
x, σ−1 ◦ ν

)
for any (x, ν) ∈ (Reg(C))(n), each }σ is a sym-

metric map of Reg(C). Therefore, Reg(C) is symmetric.

When C is combinatorial, Reg(C) is combinatorial and its generating series satisfies

GReg(C)(t) =
∑

n∈N
#C(n)n! tn. (1.2.33)

1.3. Examples. We define, in some cases by using the operations of Section 1.2,
some usual graded combinatorial collections. At the same time, we set here our main
notations and definitions about their objects.

1.3.1. Natural numbers. We can regard the set N as the graded collection satisfying
N(n) := {n} for all n ∈ N. Hence, List+({•}) ' N. Moreover, for any ` ∈ N, let N>` be the
graded collection defined by

N>` := Sus` (Sus−` (N)) . (1.3.1)

By definition of the suspension operation over graded collections, N>` is the set of all
integers greater than or equal to `. Observe that N>1 = Aug(N). The generating series
of N>` satisfies

GN>` (t) = t`
1− t =

∑

n∈N>`

tn. (1.3.2)

Observe also that the list collection operation over graded collections can be expressed
as a composition involving N since

List+(C) ' N�C (1.3.3)

for any graded collection C. We shall consider in the sequel, for any x, z ∈ N, the
subcollections [x, z] := {y ∈ N : x 6 y 6 z} , and [x] := [1, x] of N. These examples of
graded collections are among the simplest nontrivial ones.
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1.3.2. Words. Let A be an alphabet, that is a set whose elements are called letters.
One can see A as a graded collection wherein all letters are atoms. In this case, we
denote by A∗ the graded collection List+(A). By definition, the objects of A∗ are finite
sequences of elements of A. We call words on A these objects. When A is finite, A∗ is
combinatorial and it follows from (1.2.13) that the generating series of A∗ satisfies

GA∗ (t) = 1
1−mt =

∑

n∈N
mn tn (1.3.4)

where m := #A. If u := (a1, . . . , an) is a word on A, it follows from the definition of A∗

that the size |u| of u is n. The unique word on A of size 0 is denoted by ε and is called
empty word.

Let u := (a1, . . . , an) be a word on A. The ith letter of u is ai and is denoted by
u(i). For any letter b ∈ A, the number of occurrences |u|b of b in u is the cardinality of
the set {i ∈ [|u|] : u(i) = b} . When A is endowed with a total order 4 and u is nonempty,
max4(u) is the greatest letter appearing in u with respect to 4. Moreover, an inversion
of u is a pair (i, j) such that i < j , u(i) 6= u(j), and u(j)4u(i). Given two words u and v on
A, the concatenation of u and v is the word u · v containing from left to right the letters
of u and then the ones of v. The concatenation · is a graded complete product on A∗.
If u can be expressed as u = u1 · u2 where u1, u2 ∈ A∗, we say that u1 is a prefix of u
and this property is denoted by u 4p v. For any subset S := {s1 6 · · · 6 sk} of [|u|], u|S
is the word u (s1) . . . u (sk). Moreover, when v is a word such that there exists S ⊆ [|u|]
satisfying v = u|S , v is a subword of u.

A language on A is subcollection of A∗. A language L on A is prefix if for all u ∈ L
and v ∈ A∗, v 4p u implies v ∈ L. We denote by A+ the language Aug(A∗) containing all
nonempty words on A, and, for any n ∈ N, by An the language A∗(n).

1.3.3. Integer compositions. By regarding the set N as a graded collection as ex-
plained in Section 1.3.1, let Com be the combinatorial graded collection List+ (N>1). It
follows from (1.2.13) and (1.3.2) that the generating series of Com is

GCom(t) = 1− t
1− 2t = 1 +

∑

n∈N>1

2n−1 tn. (1.3.5)

Hence, the integer sequence of Com begins by

1, 1, 2, 4, 8, 16, 32, 64, 128 (1.3.6)

and is Sequence A011782 of [Slo]. By definition, the objects of Com are finite sequences
of positive numbers. We call integer compositions (or, for short, compositions) these
objects. If λ := (λ1, . . . ,λk) is a composition, it follows from the definition of Com that
the size |λ| of λ is λ1 + · · ·+ λk. The length `(λ) of λ is k, and for any i ∈ [`(λ)], the ith
part of λ is λi. The unique composition of size 0 is denoted by ε and is called empty
composition (even if ε is already used to express the empty word, this overloading of
notation is not a problem in practice).

http://oeis.org/A011782
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The descents set of λ is the set

Des(λ) := {λ1,λ1 + λ2, . . . ,λ1 + λ2 + · · ·+ λk−1} . (1.3.7)

For instance, Des(4131) = {4, 5, 8}. Moreover, for any word u defined on an alphabet A
equipped with a total order 4, the composition cmp(u) of u is the composition of size
|u| defined by

cmp(u) := (|u1| , . . . , |uk|) , (1.3.8)

where u = u1 · . . . · uk is the factorization of u in longest nondecreasing factors (with
respect to the order 4). For instance, if u := a2a2a3a1a3a2a1a2 is a word on the alphabet
A := {a1, a2, a3} ordered by a14a24a3, cmp(u) = 3212. When #A > 2, this map cmp is
a surjective collection morphism from A∗ to Com.

Integer compositions are drawn as ribbon diagrams in the following way. For each
part λi of λ, we draw a horizontal line of λi boxes. These lines are organized so that the
line for the first part of λ is the uppermost, and the first box of the line of the part λi+1

is glued below the last box of the line of the part λi , for all i ∈ [`(λ) − 1]. For instance,
the ribbon diagram of the composition 4131 is

. (1.3.9)

1.3.4. Integer partitions. Again by regarding the set N as a graded collection as con-
sidered in Section 1.3.1, let Par be the graded combinatorial collection MSet+ (N>1). Since
#N>1(n) = 1 for all n > 1, it follows from (1.2.18) that the generating series of Par is

GPar(t) =
∏

n∈N>1

1
1− tn . (1.3.10)

Hence, the integer sequence of Par begins by

1, 1, 2, 3, 5, 7, 11, 15, 22 (1.3.11)

and is Sequence A000041 of [Slo]. By definition, the objects of Par are finite multisets
of positive integers. We call integer partitions (or, for short, partitions) these objects.
As a consequence of the definition of Par, the size |λ| of any partition λ is the sum of
the integers appearing in the multiset λ. Due to the definition of partitions as multisets,
we can present a partition as an ordered sequence of positive integers with respect to
any total order on N>1. For this reason, we denote any partition λ by a nonincreasing
sequence (λ1, . . . , λk) of positive integers (that is, λi > λi+1 for all i ∈ [k − 1]). Under this
convention, the length `(λ) of λ is k, and for any i ∈ [`(λ)], the ith part of λ is λi.

http://oeis.org/A000041
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1.3.5. Permutations. A permutation of size n is a bijection σ from [n] to [n]. The
combinatorial graded collection of all permutations is, in accordance with the notations
of Section 1.1.6, denoted by S. The generating series of S is

GS(t) =
∑

n∈N
n! tn. (1.3.12)

Hence, the integer sequence of S begins by

1, 1, 2, 6, 24, 120, 720, 5040, 40320 (1.3.13)

and is Sequence A000142 of [Slo]. Any permutation σ of S(n) is denoted as a word
σ (1) . . . σ (n) on N>1. Under this convention, a permutation of size n is a word on the
alphabet [n] with exactly one occurrence of each letter of [n]. The composition operation
◦ of maps is a concentrated product on S and the valid inputs of ◦ are the ordered pairs
(σ1, σ2) such that |σ1| = |σ2|.

A descent of σ ∈ S(n) is a position i ∈ [n − 1] such that σ (i) > σ (i+ 1). The set of all
descents of σ is denoted by Des(σ ). For any word u defined on an alphabet A equipped
with a total order 4, the standardized std(u) of u is the permutation of size |u| having
the same inversions as the ones of u. In other terms std(u) has its letters in the same
relative order as those of u, with respect to 4, where equal letters of u are ordered from
left to right as the smallest to the greatest. For example, by considering the alphabet
N equipped with the natural order of integers, std(211241) = 412563. This map std is a
surjective collection morphism from N∗ to S.

1.3.6. Binary trees. Let BT• be the combinatorial graded collection satisfying the
relation

BT• = {⊥}+
[[[
{•}, [[[BT•,BT• ]]]+×

]]]+
×, (1.3.14)

where ⊥ is an object of size 0 called leaf and • is an atomic object called internal node.
We call binary tree each object of BT•. By definition, a binary tree t is either the
leaf ⊥ or an ordered pair (•, (t1, t2)) where t1 and t2 are binary trees. Observe that this
description of binary trees is recursive. For instance,

⊥, (•, (⊥,⊥)), (•, ((•, (⊥,⊥)), ⊥)), (•, (⊥, (•, (⊥,⊥)))), (•, ((•, (⊥,⊥)), (•, (⊥,⊥)))),
(1.3.15)

are binary trees. If t is a binary tree different from the leaf, by definition, t can be
expressed as t = (•, (t1, t2)) where t1 and t2 are two binary trees. In this case, t1 (resp. t2)
is the left subtree (resp. right subtree) of t. By drawing each leaf by and each binary
tree with at least one internal node by an internal node attached below it, from left to
right, to its left and right subtrees by means of edges , the binary trees of (1.3.15) are
depicted by

, , , , . (1.3.16)

http://oeis.org/A000142
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By definition of the sum and the Cartesian product operations over graded collections,
the size of a binary tree t satisfies

|t| =





0 if t =⊥,
1 + |t1|+ |t2| otherwise (t = (•, (t1, t2))).

(1.3.17)

In other words, the size of t is the number of occurrences of • it contains. Since G{⊥}(t) =
1 and G{•}(t) = t , it follows from (1.2.2) and (1.2.7) that the generating series of BT•

satisfies the quadratic algebraic equation

1−GBT• (t) + tGBT• (t)2 = 0. (1.3.18)

The unique solution having a combinatorial meaning of (1.3.18) is

GBT• (t) = 1−
√

1− 4t
2t =

∑

n∈N

1
n + 1

(
2n
n

)
tn (1.3.19)

The integer sequence of BT• begins by

1, 1, 2, 5, 14, 42, 132, 429, 1430 (1.3.20)

and is Sequence A000108 of [Slo]. These numbers are known as Catalan numbers.

2. Posets

We consider now collections endowed with partial order relations compatible with
their indexations. Such structures are important in combinatorics since they lead, for
instance, to the construction of alternative bases of combinatorial spaces (see forthcoming
Section 1.3 of Chapter 3). We provide general definitions about posets and consider as
examples three important ones: the cube, Tamari, and right weak order posets.

2.1. Posets on collections. Let us provide the main definitions about collections
endowed with the structure of a poset.

2.1.1. Elementary definitions. An I-poset is a pair (Q,4Q) where Q is an I-collection
and 4Q is both a relation on Q (recall that relations on collections preserve the indexes)
and a partial order relation. The strict order relation of4 is the relation≺ on Q satisfying,
for all x, y ∈ Q, x ≺ y if x4y and x 6= y.

The interval between two objects x and z of Q is the set [x, z] := {y ∈ Q : x4Q y4Q z} .
When all intervals of Q are finite, Q is locally finite. Observe that when Q is combinatorial,
Q is locally finite. For any i ∈ I , an object x of Q(i) is a greatest (resp. least) element
if for all y ∈ Q(i), y4Q x (resp. x4Q y). Moreover, for any i ∈ I , an object x of Q(i)
is a maximal (resp. minimal) element if for all y ∈ Q(i), x4Q y (resp. y4Q x) implies
x = y. If x and y are two different objects of Q, y covers x if [x, y] = {x, y}. Two objects
x and y are comparable (resp. incomparable) in Q if x4Q y or y4Q x (resp. neither
x4Q y nor y4Q x holds). If for any i ∈ I and any i-objects x and y of Q, x and y are
comparable, Q is a total order. A chain of Q is a sequence (x1, . . . , xk) such that xj 4Q xj+1

http://oeis.org/A000108
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for all j ∈ [k − 1]. An antichain of Q is a subset of pairwise incomparable elements of Q.
The Hasse diagram of (Q,4Q) is the directed graph having Q as set of vertices and all
the pairs (x, y) where y covers x as set of arcs.

Besides, if (Q1,4Q1 ) and (Q2,4Q2 ) are two I-posets, a map φ : Q1 → Q2 is a poset mor-
phism if φ is a collection morphism and for all x, y ∈ Q1 such that x4Q1 y, φ(x)4Q2 φ(y).
Besides, Q2 is a subposet of Q1 if Q2 is a subcollection of Q1 and 4Q2 is the restriction of
4Q1 on Q2. For any i ∈ I , we call i-subposet of Q the subposet of Q obtained by restricting
4Q on Q(i).

We shall define posets Q by drawing Hasse diagrams, where minimal elements are
drawn uppermost and vertices are labeled by the elements of Q. For instance, the Hasse
diagram

1 2

3 4

5 6

(2.1.1)

denotes the simple (“simple” here means the property of collections stated in Section 1.1.1)
poset ([6],4) satisfying among others 34 5 and 24 6.

2.1.2. Operations over posets. If (Q1,4Q1 ) and (Q2,4Q2 ) are two I-posets, the sum
Q1 + Q2 is endowed with the relation 4 satisfying, x4y whenever x, y ∈ Q1 and x4Q1 y,
or x, y ∈ Q2 and x4Q2 y. Since 4 is an order relation, Q1 + Q2 is an I-poset, called
sum of (Q1,4Q1 ) and (Q2,4Q2 ). For any p ∈ N and any I-posets (Q1,4Q1 ), . . . ,

(
Qp,4Qp

)
, the

Hadamard product
[[[
Q1, . . . , Qp

]]]
� is endowed with the relation4 satisfying

(
x1, . . . , xp

)
4
(
y1, . . . , yp

)

for any
(
x1, . . . , xp

)
,
(
y1, . . . , yp

)
∈
[[[
Q1, . . . , Qp

]]]
� such that xk4Qk yk for all k ∈ [p]. Since

4 is an order relation,
[[[
Q1, . . . , Qp

]]]
� is an I-poset, called Hadamard product of (Q1,4Q1 ),

. . . ,
(
Qp,4Qp

)
. Let (Q,4Q) be an I-poset. Let Com(Q) be the subcollection of [[[Q,Q ]]]� re-

strained on the ordered pairs (x, y) such that x4Q y, called pairs of comparable objects.
By definition, Com(Q) is endowed with the restriction of the order relation of [[[Q,Q ]]]�
on Com(Q). We call Com(Q) the poset of pairs of comparable objects of Q. Finally, the
dual of Q is the I-poset

(
Q, 4̄Q

)
such that x 4̄Q y holds whenever y4Q x for any x, y ∈ Q.

2.2. Examples. We consider here three well-known combinatorial posets.

2.2.1. The cube poset. Let 4 be the partial order relation on the combinatorial col-
lection Com of compositions generated by the covering relation l defined, for any com-
position λ of length k, by

(λ1, . . . ,λi−1,λi,λi+1,λi+2, . . . ,λk) l (λ1, . . . ,λi−1,λi + λi+1,λi+2, . . . ,λk) . (2.2.1)

For instance, 2123l215 and 21234 8. This order is the refinement order of compositions.
The Hasse diagram of (Com,4) restricted on Com(4) is shown in Figure 1.1.



3. REWRITE SYSTEMS 25

FIGURE 1.1. The Hasse diagram of the refinement order of compositions of size 4, where
each composition is represented through its ribbon diagram.

Observe that for all compositions λ and µ, λ4µ if and only if Des(µ) ⊆ Des(λ).
Each n-subposet of the refinement order of compositions is known as the cube poset
of dimension n − 1. Moreover, the cube poset of dimension n − 1 is isomorphic to the
dual of the poset of all subsets of [n − 1] ordered by set inclusion. An isomorphism is
provided by the map Des sending a composition of size n to a subset of [n − 1].

2.2.2. The Tamari order on binary trees. Let 4 be the partial order relation on the
combinatorial collection BT• of binary trees generated by the covering relation l defined
by

(. . . (•, ((•, (r1, r2)) , r3)) . . . ) l (. . . (•, (r1, (•, (r2, r3)))) . . . ) , (2.2.2)
where r1, r2, and r3 are any binary trees. We call l the right rotation relation. At this
moment, the definition of this relation on binary trees is informal but, in Section 2.3 of
Chapter 2, we shall develop precise tools to define and handle such operations on binary
trees and more generally on syntax trees. The order 4 is the Tamari order on binary
trees. The Hasse diagram of (BT•,4) restricted on BT•(4) is shown in Figure 1.2.

2.2.3. The right weak order on permutations. Let 4 be the partial order relation
on the combinatorial collection S of permutations generated by the covering relation l
defined by

u ab v l u ba v, (2.2.3)
where u and v are words on N>1, and a and b are letters such that a < b. This order is
the right weak order of permutations. The Hasse diagram of (S,4) restricted on S(4)
is shown in Figure 1.3.

3. Rewrite systems

A rewrite system describes a process whose goal is to transform iteratively an object
into another one. We consider rewrite systems on I-collections, so that an i-object, i ∈ I ,
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FIGURE 1.2. The Hasse diagram of the Tamari poset of binary trees of size 4.

can be transformed only into i-objects. As we shall see, rewrite systems and posets have
some close connections because it is possible, in some cases, to construct posets from
rewrite systems.

3.1. Rewrite systems on collections. Let us provide the main definitions about col-
lections endowed with the structure of a rewrite system. Two properties of rewrite
systems are fundamental: the termination and the confluence. We provide strategies to
prove that a given rewrite system satisfies one or the other.

3.1.1. Elementary definitions. Let C be an I-collection. An I-rewrite system is a pair
(C,→) where C is an I-collection and → is a relation on C. We call → a rewrite rule.
When x0, x1, . . . , xk are objects of C such that k ∈ N and

x0→x1→· · ·→xk, (3.1.1)

we say that x0 is rewritable by → into xk in k steps. The reflexive and transitive closure
of → is denoted by ∗→. The directed graph (C,→) consisting in C as set of vertices and
→ as set of arcs is the rewriting graph of (C,→).
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1234

2134 12431324

2314 21433124 14231342

2341 3214 2413 3142 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

FIGURE 1.3. The Hasse diagram of the right weak poset of permutations of size 4.

3.1.2. Termination. When there is no infinite chain

x0→x1→x2→· · · (3.1.2)

where all xj ∈ C, j ∈ N, (C,→) is terminating. Observe that, if C is combinatorial, due to
the fact that for any i ∈ I , each set C(i) is finite and the fact that the rewriting relation
preserves the indexes, if such an infinite chain (3.1.2) exists, then it is of the form

x0→· · ·→xr→· · ·→xr→· · · , (3.1.3)

for a certain r ∈ N. A normal form of (C,→) is an object x of C such that for all x′ ∈ C,
x ∗→x′ imply x′ = x. In other words, a normal form of (C,→) is an object which is not
rewritable by →. This set of objects, which is a subcollection of C, is denoted by N(C,→).
The following result provides a tool in the aim to show that a combinatorial rewrite
system is terminating.

THEOREM 3.1.1. Let (C,→) be a combinatorial rewrite system. Then, (C,→) is ter-
minating if and only if the binary relation ∗→ is an order relation and endows C with
a structure of a combinatorial poset.

When C is combinatorial and (C,→) is terminating, by Theorem 3.1.1,
(
C, ∗→

)
is a

combinatorial poset and we call it the poset induced by →.

In practice, Theorem 3.1.1 is used as follows. To show that a combinatorial I-rewrite
system (C,→) is terminating, we construct a map θ : C → Q where (Q,4) is an I-poset
such that for any x, x′ ∈ C, x→x′ implies θ(x) ≺ θ(x′). Such a map θ is a termination
invariant. Indeed, since each C(i), i ∈ I , is finite, this property leads to the fact that there
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is no infinite chain of the form (3.1.3). In most cases, Q is a set of tuples of integers of a
fixed length, and 4 is the lexicographic order on these tuples.

3.1.3. Confluence. When for any objects x, y1, and y2 of C such that x ∗→y1 and
x ∗→y2, there exists an object x′ of C such that y1

∗→x′ and y2
∗→x′, the rewrite system

(C,→) is confluent. When → is both terminating and confluent, → is convergent.

An object x of C is a branching object if there exist two different objects y1 and y2

satisfying x→y1 and x→y2. In this case, the pair {y1, y2} is a branching pair for x. We
say that a branching pair {y1, y2} is joinable if there exists an object z of C such that
y1

∗→z and y2
∗→z. In practice, showing that a terminating rewrite system is confluent is

made simple, thank to the following result.

THEOREM 3.1.2. Let (C,→) be a rewrite system. If (C,→) is terminating and all its
branching pairs are joinable, (C,→) is confluent.

3.1.4. Closures. Let (C,→) be an I-rewrite system such that C is endowed with a
set P of concentrated products. Then, let (C,→P) be the rewrite system such that →P
contains → (as a binary relation) and satisfies moreover

?
(
x1, . . . , xj−1, y, xj+1, . . . , xp

)
→P ?

(
x1, . . . , xj−1, y ′, xj+1, . . . , xp

)
(3.1.4)

for any product ? of arity p of P, such that the left and right members of (3.1.4) are
valid inputs for ? and y→y ′. The fact that all products ? of P are concentrated ensures
that the left and the right members of (3.1.4) have the same index, so that (C,→P) is
an I-rewrite system. We call (C,→P) the P-closure of (C,→). Such closures provide
convenient and concise ways to define rewrite systems.

3.2. Examples. Let us review some examples of rewrite systems on various combi-
natorial collections.

3.2.1. A first rewrite system on words. Let A := {a,b} be an alphabet, and consider
the graded rewrite system (A∗,→) defined by

ux→xu (3.2.1)

for any u ∈ A∗ and x ∈ A. We have, for instance,

aaba→ aaab→baaa→ abaa→ aaba. (3.2.2)

This rewrite system is not terminating but, since for each word u ∈ A∗ there is at most
a word v ∈ A∗ satisfying u→v, (A∗,→) is confluent.
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3.2.2. A second rewrite system on words. Let us now study the graded rewrite sys-
tem (A∗,→) defined by aba→bab where A is the alphabet of the previous example. Con-
sider the graded complete ternary product ? : A∗ × A∗ × A∗ → A∗ on A∗ defined for any
u, v,w ∈ A∗ by ?(u, v,w) := u · v · w where · is the concatenation product of words. Let
P := {?} and (A∗,→P) be the P-closure of (A∗,→). By definition of closures,→P satisfies

aba→P bab (3.2.3)

and

aba · v · w→P bab · v · w, u · aba · w→P u · bab · w, u · v · aba→P u · v · bab, (3.2.4)

for any words u, v, and w on A. All this is equivalent to the fact that →P is the rewrite
rule satisfying

u · aba · w→P u · bab · w, (3.2.5)
for any words u and w on A. The rewrite system (A∗,→P) is terminating since, for any
words u and v on A, if u→P v, then |v|b = |u|b + 1. Hence, the map θ : An → [0, n]
defined for any n ∈ N and u ∈ An by θ(u) := |u|b is a termination invariant. The normal
forms of (A∗,→P) are the words that do not admit aba as factor. Moreover, (A∗,→P)
is not confluent since ababa→P babba and ababa→P abbab, and {babba, abbab} is a non-
joinable branching pair for ababa (because these two elements are normal forms).

3.2.3. A rewrite system on compositions. Let the graded rewrite system (Com,→)
defined, by seeing compositions through their ribbon diagrams, by

λ · · µ→λ · · µ, (3.2.6)

where · is the concatenation of the compositions (seen as words of integers) and λ and
µ are any compositions. We have, for instance,

→ → . (3.2.7)

The rewrite system (Com,→) is terminating since, for any compositions λ and µ, if λ→µ,
then µ ≺ λ where 4 is the refinement order of compositions (see Section 2.2.1).

Bibliographic notes

About collections. Our exposition about combinatorial objects through combinato-
rial collections is very elementary in the sense that it requires a very small amount of
mathematical knowledge. However, combinatorial collections form a general and power-
ful tool to work with algebraic structures involving combinatorial objects. For instance,
graded collections appear in the context of operads (see Section 1.2 of Chapter 4) or
graded associative algebras (see Section 3.1 of Chapter 3), colored collections appear in
the context of colored operads (see Section 2.1 of Chapter 5), cyclic collections appear in
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the context of cyclic operads (see Section 2.2 of Chapter 5), symmetric collections appear
in the context of symmetric operads (see Section 2.3 of Chapter 5), and 2-graded collec-
tions appear in the context of pros (see Section 3 of Chapter 5). There are other sensible
tools to encode combinatorial sets. Flajolet and Sedgewick provided a complete descrip-
tion of what we call combinatorial graded collections under the name of combinatorial
classes in [FS09], as a prelude for a conspectus of the field of analytic combinatorics.
The proofs of most of the properties about generating series of Section 1.2 can be found
here. The nice translations of most of the combinatorial operations involving combina-
torial sets as algebraic operations on their generating series, together with its simplicity,
are one of the main pros of this theory. By shifting in the world of labeled objects, it
is relevant to work with species of structures, that are roughly speaking combinatorial
graded collections C with an action of the symmetric group S(n) on each C(n) which
can be thought as a relabeling action. In this context, it is more accurate to work with
exponential generating series, instead of ordinary ones when we consider such combina-
torial graded collections. This theory has been introduced by Joyal [Joy81] and developed
afterwards by the Quebec school of combinatorics [BLL98,BLL13]. Species of structures
are very good candidates to work with symmetric operads [Mén15] since the action of
the symmetric group of a symmetric operad is encapsulated into the action of the sym-
metric group of an underlying species of structure. In this book, to work with symmetric
operads, we shall consider symmetric collections. An other interesting way to describe
combinatorial objects passes through polynomial functors [Koc09].

About the Tamari poset. The Tamari poset is a combinatorial poset on binary trees
introduced in the study of nonassociative operations [Tam62]. Indeed, the covering re-
lation generating this poset can be thought as a way to move brackets in expressions
where a nonassociative product intervenes. Moreover, seen on binary trees, this op-
eration translates as a right rotation, a fundamental operation on binary search trees,
used in an algorithmic context [Knu98]. This operation is used to maintain binary trees
with a small height in order to access efficiently, from the roots, to their internal nodes.
Some of these trees are known as balanced binary trees [AVL62] and form efficient
structures to represent dynamic sets (sets supporting the addition and the suppression of
elements). A lot of properties of the Tamari poset are known, like the number of intervals
of each of its n-subposets [Cha06] (equivalently, this is the number of pairs of compa-
rable trees enumerated by their size), and the fact that these posets are lattices [HT72],
for all n ∈ N. Generalizations of this poset have been introduced by Bergeron and
Préville-Ratelle [BPR12] under the name of m-Tamari poset. This poset is defined on
the combinatorial collection of all m+1-ary trees (see Section 1.2.2 of Chapter 2). The
number of intervals of each of its n-subposets, and the fact that these posets are lattices
are known from [BMFPR11], for all n ∈ N.
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About the right weak poset. The right weak poset of permutations is, like the
Tamari poset, also a lattice [GR63,YO69]. In a surprising way, despite its apparent simplic-
ity, there is no known description of the number of intervals of each n-subposet, n ∈ N,
of the right weak poset. Some other combinatorial poset structures exist on S like the
Bruhat order, whose generating relation is similar to the one of the right weak poset.
The definition of the Bruhat order on permutations comes from the general notion of
Bruhat order [Bjö84] in Coxeter groups [Cox34]. As a last noteworthy fact, the cube, the
Tamari, and the right weak posets are linked through surjective morphisms of combina-
torial posets [LR02]. Indeed, a map between the right weak poset to the Tamari poset is
based upon the binary search tree insertion algorithm [Knu98,HNT05]. This algorithm
consists in inserting the letters of a permutation to form step by step a binary tree. More-
over, a map between the Tamari poset to the cube poset uses the canopies [LR98] of the
binary trees. The canopy of a binary tree is a binary word encoding the orientations (to
the left or to the right) of its leaves.

About rewrite systems. A general reference about rewrite rules and rewrite systems
is [BN98]. In this text, a general method using maps called measure functions to show that
(not necessarily combinatorial) rewrite systems are terminating is presented. Besides,
Theorem 3.1.2 is a highly important result in the theory of rewrite systems, known as the
diamond lemma, and is due to Newman [New42]. There are some additional useful tools
in this theory like the Knuth-Bendix completion algorithm [KB70]. This semi-algorithm
takes as input a non-confluent rewrite system and outputs, if possible, a confluent one
having the same reflexive, symmetric, and transitive closures. In an algebraic context, the
Knuth-Bendix completion algorithm leads to the Buchberger algorithm [Buc76]. This
algorithm computes Gröbner bases from polynomial ideals.





CHAPTER 2

Treelike structures

This second chapter is devoted to present general notions about treelike structures.
We present more precisely the ones appearing in the algebraic and combinatorial con-
text of nonsymmetric operads. Rewrite systems of syntax trees are exposed, as well as
methods to prove their termination and their confluence.

1. Planar rooted trees

Let us start with our prototypical treelike structures, the planar rooted trees. Most
of the treelike structures we shall consider in this book are variants or enrichments of
planar rooted trees.

1.1. Collection of planar rooted trees. The combinatorial graded collection of the
planar rooted trees can be defined concisely in a recursive way by using some operations
over combinatorial graded collections (see Section 1.2 of Chapter 1). However, to define
rigorously the usual notions of internal node, leaf, child, father, path, subtree, etc., we
need the notion of language associated with a tree. Indeed, a planar rooted tree is in fact
a finite language satisfying some properties. Therefore, in this section, we shall adopt
the point of view of defining most of the properties of a planar rooted tree through its
language.

1.1.1. First definitions. Let PRT be the graded collection satisfying the relation

PRT =
[[[
{•},List+ (PRT)

]]]+
× (1.1.1)

where • is an atomic object called node. Since PRT(0) = ∅, this collection is combina-
torial. We call planar rooted tree each object of PRT. By definition, a planar rooted
tree t is an ordered pair (•, (t1, . . . , tk)), k ∈ N, where (t1, . . . , tk) is a (possibly empty) tuple
of planar rooted trees. This definition is recursive. By convention, the planar rooted
tree (•, ()) is denoted by ⊥ and is called the leaf. Observe that the leaf is of size 1. For
instance,

⊥, (•, (⊥)), (•, (⊥,⊥)), (•, (⊥, (•, (⊥)))), (•, ((•, ((•, (⊥,⊥)))), ⊥, (•, (⊥,⊥)))) (1.1.2)

are planar rooted trees. The root arity of a planar rooted tree t := (•, (t1, . . . , tk)) is k.
If t is a planar rooted tree different from the leaf, by definition, t can be expressed as
t = (•, (t1, . . . , tk)) where k ∈ N>1 and all ti , i ∈ [k], are planar rooted trees. In this case,
for any i ∈ [k], ti is the ith suffix subtree of t. Planar rooted trees are depicted by

33
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drawing each leaf by and each planar rooted tree different from the leaf by a node
attached below it, from left to right, to its suffix subtrees t1, . . . , tk by means of edges .
For instance, the planar rooted trees of (1.1.2) are depicted by

, , , , . (1.1.3)

By definition of the Cartesian product and the list collection operations over graded
collections (see Sections 1.2.3 and 1.2.5 of Chapter 1), the size of a planar rooted tree t

having a root arity of k ssatisfies

|t| = 1 +
∑

i∈[k]
|ti|. (1.1.4)

In other words, the size of t is the number of occurrences of • it contains. We also
deduce from (1.1.1) that the generating series of PRT satisfies

GPRT(t) = t
1−GPRT(t) (1.1.5)

so that it satisfies the quadratic algebraic equation

t −GPRT(t) + GPRT(t)2 = 0. (1.1.6)

1.1.2. Induction and structural induction. One among the most obvious techniques
to prove that all the planar rooted trees of a subcollection C of PRT satisfy a predicate
P(t) (that is, a statement involving a variable t taking value in C) consists in performing
a proof by induction on the size of the trees of C.

There is another method which is in some cases much more elegant than this ap-
proach, called structural induction on trees. A subcollection C of PRT is inductive if
C is nonempty and, if t ∈ C, all suffix subtrees ti of t belong to C. Observe in particular
that ⊥ belongs to any inductive subcollection of PRT.

THEOREM 1.1.1. Let C be an inductive subcollection of PRT and P(t) be a predicate
on C. If

(i) the statement P(⊥) holds;
(ii) for any t1, . . . , tk ∈ C such that t := (•, (t1, . . . , tk)) belongs to C, the fact that all

P (ti), i ∈ [k], hold implies that P(t) holds;
then, all the planar rooted trees s of C satisfy P(s).

Theorem 1.1.1 provides a powerful tool to prove properties P(t) of planar rooted
trees belonging to inductive combinatorial subsets C. In practice, to perform a structural
induction in order to show that all the objects t of C satisfy P(t), we check that C is
inductive and that Properties (i) and (ii) of Theorem 1.1.1 hold.
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1.1.3. Tree languages. To rigorously specify nodes in planar rooted trees, we shall
use a useful interpretation of planar rooted trees as special languages on the alphabet
N>1. Recall that a partial right monoid action of a monoid A∗ of words (endowed with
the concatenation product ·) on a set S is a map • : S × A∗ → S satisfying x • ε = x, and
for any x ∈ S, u ∈ A∗, and a ∈ A, x •ua is defined if and only if (x •u) •a is defined, and
these two elements are the same when they are defined. Let

• : PRT× N∗>1 → PRT (1.1.7)

be the right partial monoid action defined recursively by

(•, (t1, . . . , tk)) •u :=





(•, (t1, . . . , tk)) if u = ε,
ti • v otherwise (u = iv where v ∈ N∗>1 and i ∈ N>1),

(1.1.8)
for any (•, (t1, . . . , tk)) ∈ PRT and u ∈ N∗>1. Observe that this action is partial since each ti

in (1.1.8) is well-defined only if i is no greater than the root arity of t. The tree language
N(t) of t is the finite language on N>1 of all the words u such that t •u is a well-defined
planar rooted tree.

For instance, by setting

t := , (1.1.9)

we have

t • 1 = , t • 231 = , t • 3 = , t • 21 = , t • 23 = , (1.1.10)

and, among others, the actions of the words 11, 24, and 2321 on t are all undefined.
Moreover, the tree language of t is

N(t) = {ε, 1, 2, 21, 211, 2111, 2112, 22, 23, 231, 232, 3}. (1.1.11)

Let LPRT be the combinatorial graded collection of all finite and nonempty prefix
languages L on N>1 such that if ui ∈ L where u ∈ N∗>1 and i ∈ N>2, ui′ ∈ L where
i′ := i − 1. The size of such a language is its cardinality. For instance, the set N(t)
of (1.1.11) is an object of size 12 of LPRT, and {ε, 1, 11, 12, 2} is an object of size 5.

PROPOSITION 1.1.2. The combinatorial graded collections PRT and LPRT are iso-
morphic. Seen as a morphism of combinatorial collections N : PRT → LPRT, N is
an isomorphism between these two collections.

Proposition 1.1.2 is used in practice to define planar rooted trees through their lan-
guages. This will be useful later when operations on planar rooted trees will be described.



36 2. TREELIKE STRUCTURES

1.1.4. Additional definitions. Let t be a planar rooted tree. We say that each word
of N(t) is a node of t. A node u of t is an internal node if there is an i ∈ N>1 such
that ui is a node of t. A node u of t which is not an internal node is a leaf. The set of
all internal nodes (resp. leaves) of t is denoted by N•(t) (resp. N⊥(t)). The root of t is
the node ε (which can be either an internal node or a leaf). The degree deg(t) of t is
#N•(t) and the arity ari(t) of t is #N⊥(t). A node u of t is an ancestor of a node v of t
if u 6= v and u 4p v. Moreover, for any i ∈ N>1, a node v is the ith child of a node u if
v = ui. In this case, u is the (unique) father of v. The arity of a node is the number of
children it has. The lexicographic order on the words of N(t) induces a total order on
the nodes of t called depth-first order. The ith leaf of t is the ith leaf encountered by
considering the nodes of t according to the depth-first order. A path in t is a sequence
(u1, . . . , uk) of nodes of t such that for any j ∈ [k−1], uj is the father of uj+1. Such a path
is maximal if u1 is the root of t and uk is a leaf. The length of a path is the number of
nodes it contains. The height ht(t) of t is the maximal length of its maximal paths minus
1. This is also the length of a longest word of N(t) minus 1. For any node u of t, the
planar rooted tree t •u is the suffix subtree of t rooted at u. By extension, the ith suffix
subtree of u is the planar rooted tree t •ui when i is no greater than the arity of u. A
planar rooted tree s is a prefix subtree of t if N(s) ⊆ N(t). A planar rooted tree s is
a factor subtree of t rooted at a node u if s is a prefix subtree of a suffix subtree of t

rooted at u.

Let us provide some examples for these notions. Consider the planar rooted tree t

of (1.1.9). Then,
N•(t) = {ε, 2, 21, 211, 23}, (1.1.12a)

N⊥(t) = {1, 2111, 2112, 22, 231, 232, 3}, (1.1.12b)

so that deg(t) = 5 and ari(t) = 7. The 3rd leaf of t is 2112, and the 2nd child of the internal
node 23 of t is 232 and is a leaf. Besides, the sequences (ε, 2, 21) and (ε, 2, 23) are non-
maximal paths in t, and on the contrary, the paths (ε, 1), (ε, 2, 21, 211, 2112), and (ε, 2, 22)
are maximal. The maximal path (ε, 2, 21, 211, 2112) have a maximal length among all
maximal paths of t and thus, the height of t is 4. Finally, the planar rooted tree

s := (1.1.13)

is a prefix subtree of t, and, the planar rooted tree

r := , (1.1.14)

being a suffix subtree of s rooted at the node 2, is a factor subtree of t rooted at the
node 2.
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1.2. Subcollections of planar rooted trees. By basically restraining the possible
arities of the internal nodes of planar rooted trees, we obtain several subcollections of
PRT. We review here the families formed by ladders, corollas, k-ary trees, and Schröder
trees. Besides, among these families, some admit alternative size functions (and form
therefore different combinatorial graded collections).

1.2.1. Ladders and corollas. A ladder is a planar rooted tree of arity 1. The first
ladders are

, , , , . (1.2.1)

This set of ladders forms a subcollection Lad of PRT. Besides, a corolla is a planar
rooted tree of degree 1. The first corollas are

, , , . (1.2.2)

This set of corollas forms a subcollection Cor of PRT. Observe that (•, (⊥)) is the only
planar rooted that is both a ladder and a corolla.

1.2.2. k-ary trees. Let k ∈ N>1. A k-ary tree is a planar rooted tree t such that all
internal nodes are of arity k. For instance, the first 3-ary trees are

, , , , . (1.2.3)

This set of k-ary trees forms a subcollection Ary(k) of PRT expressing recursively as

Ary(k) = {⊥}+
[[[
{•},List+{k}

(
Ary(k)

) ]]]
+
×, (1.2.4)

where ⊥ and • are both atomic. One can immediately observe that Ary(1) = Lad.

By structural induction (see Theorem 1.1.1) on Ary(k) (which is an inductive subcol-
lection of PRT), it follows that for any k-ary tree t, the arity and the degree of t are
related by

ari(t)− deg(t)(k − 1) = 1. (1.2.5)

This implies that a k-ary tree of a given arity has an imposed degree and conversely, a
k-ary tree of a given degree has an imposed arity. Hence, since the size of a k-ary tree
t is ari(t) + deg(t) and there are finitely many planar rooted trees of a fixed size, there
are finitely many k-ary trees of a fixed arity, and there are finitely many k-ary trees of
a fixed degree. As a consequence, the graded collections Ary

(k)
⊥ and Ary(k)

• of all k-ary
trees such that the size of a tree of Ary(k)

⊥ is its arity and the size of a tree of Ary(k)
• is its

degree are combinatorial. On the one hand, the generating series of Ary
(k)
⊥ satisfies the

algebraic equation
t −G

Ary
(k)
⊥

(t) + G
Ary

(k)
⊥

(t)k = 0. (1.2.6)
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On the other hand, the generating series of Ary(k)
• satisfies the algebraic equation

1−GAry(k)
•

(t) + tGAry(k)
•

(t)k = 0 (1.2.7)

and one can deduce that

#Ary(k)
• (n) = 1

(k − 1)n + 1

(
kn
n

)
. (1.2.8)

For instance, the integer sequences of Ary(k)
• begin with

1, 1, 1, 1, 1, 1, 1, 1, k = 1, (1.2.9a)

1, 1, 2, 5, 14, 42, 132, 429, 1430, k = 2, (1.2.9b)

1, 1, 3, 12, 55, 273, 1428, 7752, 43263, k = 3, (1.2.9c)

1, 1, 4, 22, 140, 969, 7084, 53820, 420732, k = 4. (1.2.9d)

The second, third, and fourth sequences above are, respectively, Sequences A000108,
A001764, and A002293 of [Slo]. These are known as the Fuss-Catalan numbers.

From now on, we call binary tree any 2-ary tree. Recall that these objects have been
introduced in Section 1.3.6 of Chapter 1. If t is a binary tree and u is an internal node
of t, u1 and u2 are nodes of t. We call u1 (resp. u2) the left (resp. right) child of u, and
t •u1 (resp. t •u2) the left (resp. right) subtree of u in t. The left (resp. right) subtree
of t is the left (resp. right) subtree of the root of t. Besides, a left (resp. right) comb
tree is a binary tree t such that for all internal nodes u of t, all right (resp. left) subtrees
of u are leaves. The infix order induced by t is the total order on the set of its internal
nodes defined recursively by setting that all the internal nodes of t • 1 are smaller than
the root of t, and that the root of t is smaller than all the internal nodes of t • 2.

Let us denote by BT⊥ the combinatorial graded collection Ary
(2)
⊥ of binary trees

where the size of a tree is its arity. As a consequence of (1.1.6) and (1.2.6), we observe
that the generating series of PRT satisfies the same algebraic relation as the one of
BT⊥. Therefore, PRT and BT⊥ are isomorphic as graded collections. Let us describe
an explicit isomorphism between these two collections. Let φ : PRT→ BT⊥ be the map
recursively defined, for any planar rooted tree t, by

φ(t) :=





⊥∈ BT⊥ if t =⊥,
(•, (φ(t1), φ ((•, (t2, . . . , tk))))) otherwise (t = (•, (t1, t2, . . . , tk)) with k ∈ N>1).

(1.2.10)
One has, for instance,

φ
( )

= , (1.2.11a)

http://oeis.org/A000108
http://oeis.org/A001764
http://oeis.org/A002293


1. PLANAR ROOTED TREES 39

φ







 = . (1.2.11b)

PROPOSITION 1.2.1. The combinatorial graded collections PRT and BT⊥ are isomor-
phic. The map φ defined by (1.2.10) is an isomorphism between these two collections.

1.2.3. Schröder trees. A Schröder tree is a planar rooted tree such that all internal
nodes are of arities 2 or more. Some among the first Schröder trees are

, , , , , , , , . (1.2.12)

This set of Schröder trees forms a subcollection Sch of PRT expressing recursively as

Sch = {⊥}+
[[[
{•},List+N>2 (Sch)

]]]
+
×, (1.2.13)

where ⊥ and • are both atomic.

By structural induction on Sch (which is an inductive subcollection of PRT), it follows
that there are finitely many Schröder trees of a given arity n. For this reason, the graded
collection Sch⊥ of all the Schröder trees such that the size of a tree of Sch⊥ is its arity is
combinatorial. Conversely, considering the degrees of the trees for their sizes does not
form a combinatorial graded collection since there are infinitely many Schröder trees of
degree 1 (the corollas). The generating series of Sch⊥ satisfies the algebraic quadratic
equation

t − (1 + t)GSch⊥ (t) + 2GSch⊥ (t)
2 = 0. (1.2.14)

Let nar(n, k) be the number of binary trees of arity n having exactly k internal nodes
having an internal node as a left child. Then, for all 0 6 k 6 n − 2, it is known that

nar(n, k) = 1
k + 1

(
n − 2
k

)(
n − 1
k

)
. (1.2.15)

These are Narayana numbers. The cardinalities of the sets Sch⊥(n) express by

#Sch⊥(n) =
∑

k∈[0,n−2]
2k nar(n, k), (1.2.16)

for all n ∈ N>2. The integer sequence of Sch⊥ begins by

1, 1, 3, 11, 45, 197, 903, 4279, 20793 (1.2.17)

and forms Sequence A001003 of [Slo].

http://oeis.org/A001003
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2. Syntax trees

We are now in position to introduce syntax trees and rewrite systems on syntax
trees. These objects are central in the theory of operads since the elements of free
nonsymmetric operads can be seen as syntax trees. Rewrite systems on syntax trees
provide tools to establish presentations by generators and relations of operads.

2.1. Collections of syntax trees. Syntax trees are, roughly speaking, planar rooted
trees where internal nodes are labeled by objects of a fixed graded collection. These
trees can be endowed with two size functions (where the size is the degree or the arity),
leading to the definition of two distinct graded collections of syntax trees.

2.1.1. Main definitions. Let C be an augmented graded collection. A syntax tree on
C (or, for short, a C-syntax tree) is a planar rooted tree t endowed with a map

ωt :N•(t)→ C (2.1.1)

sending each internal node u of t of arity k to an object of size k of C. This map ωt is the
labeling map of t. We say that an internal node u of t is labeled by x ∈ C if ωt(u) = x.
The collection C is the labeling collection of t. The underlying planar rooted tree of t

is the planar rooted tree obtained by forgetting the map ωt. For any x ∈ C, the corolla
labeled by x is the C-syntax tree c(x) having exactly one internal node labeled by x and
with |x| leaves as children. All the notions about planar rooted trees defined in Section 1
apply to C-syntax trees as well. More precisely, for any property P(s) on a planar rooted
tree s, we say that P(t) holds if the underlying planar rooted tree s of t is such that P(s)
holds. Moreover, the notions of suffix, prefix, and factor subtrees of planar rooted trees
naturally extend on C-syntax trees by taking into account the labeling maps. In graphical
representations of a C-syntax tree t, instead of drawing each internal node u of t by ,
we draw u by its label ωt(u).

For instance, consider the labeling collection C := C(1) t C(2) t C(3) where C(1) :=
{a,b}, C(2) := {c}, and C(3) := {d, e}, and the planar rooted tree

t := . (2.1.2)

By endowing t with the labeling map defined by ωt(ε) := e, ωt(2) := d, ωt(21) := a,
ωt(211) := c, and ωt(23) := c, t is a C-syntax tree. This C-syntax tree is depicted more
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concisely as

e

a
c

d
c . (2.1.3)

We denote by STC the graded collection of all the C-syntax trees, where the size
of a C-syntax tree t is the size of its underlying planar rooted tree in PRT. When C
is additionally combinatorial, by structural induction on planar rooted trees, it follows
that for any t ∈ PRT, there are finitely many labeling maps ωt for t. For this reason,
STC is in this case combinatorial. Besides, let LadC , CorC , Ary(k),C , and SchC be, re-
spectively, the subcollections of STC consisting in the C-syntax trees whose underlying
planar rooted trees are ladders, corollas, k-ary trees, and Schröder trees. The concepts
of inductive subcollections of STC and of structural induction presented in Section 1.1.2
extend obviously on C-syntax trees.

2.1.2. Alternative definition and generating series. The graded collection STC can
be described as follows. Let SC be the graded collection satisfying the relation

SC = {⊥}+
[[[
{•},C � SC

]]]+
× (2.1.4)

where both ⊥ and • are atomic, and � is the composition product over graded collections
defined in Section 1.2.9 of Chapter 1. Then, the combinatorial collections STC and SC are
isomorphic through the morphism φ : STC → SC of combinatorial collections recursively
defined, for any t ∈ STC of root arity k, by

φ(t) :=





⊥∈ SC if t =⊥,
(•, (ωt(ε), (φ (t1) , . . . , (tk)))) otherwise.

(2.1.5)

From this equivalence and (2.1.4), we obtain, when C is combinatorial, that the generating
series of STC satisfies

GSTC (t) = t + tGC (GSTC (t)) , (2.1.6)

where GC(t) is the generating series of C. For instance, by considering the combinatorial
collection C defined above, we have GC(t) = 2t + t2 + 2t3, so that

t + (2t − 1)GSTC (t) + tGSTC (t)2 + 2tGSTC (t)3 = 0. (2.1.7)

2.1.3. Subcollections of syntax trees. For well-chosen combinatorial augmented graded
collections C, it is possible to recover a large part of the families of planar rooted trees
described in Section 1.2. Indeed, one has STN>1 ' PRT, STN>2 ' Sch, and, when •k is
an object of size k ∈ N>1, ST{•k} ' Ary(k).
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2.1.4. Alternative sizes. Let STC⊥ be the graded collection of all the C-syntax trees
such that the size of a tree is its arity. One has STC⊥ ' SC where SC is the graded
collection defined in (2.1.4) wherein ⊥ is atomic and • is of size 0. When C is graded,
combinatorial, augmented, and has no object of size 1, we can show by structural induc-
tion on STC⊥ that there are finitely many C-syntax trees of a given arity n ∈ N>1. For
this reason, STC⊥ is combinatorial. In this case, the generating series of STC⊥ satisfies

GSTC
⊥
(t) = t + GC

(
GSTC

⊥
(t)
)
. (2.1.8)

Let also STC• be the graded collection of all the C-syntax trees such that the size of a
tree is its degree. One has STC• ' SC where SC is the graded collection defined in (2.1.4)
wherein • is atomic and ⊥ is of size 0. When C is graded, augmented, and finite, we
can show by structural induction on STC• that there are finitely many C-syntax trees of
a given degree n. For this reason, STC• is combinatorial. In this case, the generating
series of STC• satisfies

GSTC
•
(t) = 1 + tGC

(
GSTC

•
(t)
)
. (2.1.9)

Observe that STC• is not an augmented graded collection.

2.2. Grafting operations. Three fundamental grafting operations on syntax trees
are presented here. These operations turn STC⊥ into a collection with concentrated prod-
ucts in the sense of Section 1.1.7 of Chapter 1.

2.2.1. Partial grafting. Let for any n,m ∈ N>1 and i ∈ [n] the product

◦(n,m)
i : STC⊥(n)×STC⊥(m)→ STC⊥ (2.2.1)

where for any t ∈ STC⊥(n), s ∈ STC⊥(m), and i ∈ [n], the syntax tree r := t◦(n,m)
i s is defined

as follows. The underlying planar rooted tree of r admits the tree language

N(r)s := (N(t) \ {u}) ∪ {uv : v ∈ N(s)} , (2.2.2)

and the labeling map of r satisfies, for any w ∈ N•(r),

ωr(w) :=





ωt(w) if w ∈ N•(t),
ωs(v) otherwise (w = uv and v ∈ N•(s)).

(2.2.3)

Observe that by Proposition 1.1.2, r is wholly specified by its tree language N(r) defined
in (2.2.2). In more intuitive terms, the tree r is obtained by connecting the root of s onto
the ith leaf of t. For instance, by considering the same labeling collection C as above,

a
c
◦(4,5)

3 a
b

c = a

c

a
b

c
. (2.2.4)

We call each ◦(n,m)
i a partial grafting operation.
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Observe that since
ari
(
t ◦(n,m)

i s
)

= ari(t) + ari(s)− 1, (2.2.5)

the product ◦(n,m)
i is concentrated and is not graded. Besides, by a slight abuse of notation,

we shall sometimes omit the (n,m) in the notation of ◦(n,m)
i in order to denote it in a more

concise way by ◦i.

2.2.2. Complete grafting. Let for any n,m1, . . . ,mn ∈ N>1 the product

◦(m1,...,mn) : STC⊥(n)×STC⊥ (m1)× · · · ×STC⊥ (mn)→ STC⊥ (2.2.6)

where for any t ∈ STC⊥(n), s1 ∈ STC⊥ (m1), . . . , sn ∈ STC⊥ (mn),

◦(m1,...,mn) (t, s1, . . . , sn) := (. . . ((t ◦n sn) ◦n−1 sn−1) . . . ) ◦1 s1. (2.2.7)

In more intuitive terms, the syntax tree expressed by (2.2.7) is obtained by connecting
the root of each si onto the ith leaf of t. For instance, by considering the same labeling
collection C as before,

◦(2,1,4,2)



 a
c

, a , ,
c
a , b



 =
a

ba
c
c
a

. (2.2.8)

We call each ◦(m1,...,mn) a complete grafting operation.

Observe that since

ari
(
◦(m1,...,mn) (t, s1, . . . , sn)

)
= ari(s1) + · · ·+ ari(sn), (2.2.9)

the product ◦(m1,...,mn) is concentrated and is not graded (because the size of the first
operand t does not intervene in the size of the result). Besides, by a slight abuse of
notation, we shall sometimes omit the (m1, . . . ,mn) in the notation of ◦(m1,...,mn) in order
to denote it in a more concise way by ◦. Moreover, we shall denote by t ◦ [s1, . . . , sn] the
C-syntax tree ◦ (t, s1, . . . , sn).

2.2.3. Context grafting. Let for any n,m, k1, . . . , km ∈ N>1 and i ∈ [n] the product

}(n,k1,...,km)
i : STC⊥(n)×STC⊥(m)×STC⊥ (k1)× · · · ×STC⊥ (km)→ STC⊥ (2.2.10)

where for any t ∈ STC⊥(n), s ∈ STC⊥(m), r1 ∈ STC⊥(k1), . . . , rm ∈ STC⊥(km),

}i (t, s, r1, . . . , rm) := t ◦i (s ◦ [r1, . . . , rm]) . (2.2.11)

For instance, by considering the same labeling collection C as before,

}(3,1,2,2)
3




b

a
, c , , a , a



 = b
a

a
c
a

. (2.2.12)

We call each }(n,k1,...,km)
i a context grafting operation.
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Observe that since

ari
(
}(n,k1,...,km)
i (t, s, r1, . . . , rm)

)
= ari(t)− 1 + ari(r1) + · · ·+ ari(rm), (2.2.13)

the product }(n,k1,...,km)
i is concentrated and is not graded. Besides, by a slight abuse of

notation, we shall sometimes omit the (n, k1, . . . , km) in the notation of }(n,k1,...,km)
i in order

to denote it in a more concise way by }i.

2.3. Patterns and rewrite systems. We focus now on the theory of rewrite systems
exposed in Section 3 of Chapter 1 on the particular case of syntax trees. Intuitively, a
rewrite rule on syntax trees works by replacing factor subtrees in a syntax tree by other
ones. We explain techniques to prove termination and confluence of these particular
rewrite systems.

2.3.1. Occurrence and avoidance of patterns. Let C be an augmented graded col-
lection, and s and t be two C-syntax trees. For any node u of t, s occurs at position u in t

if s is a factor subtree of t rooted at u. In this case, we say that t admits an occurrence
of the pattern s. Conversely, t avoids s if there is no occurrence of s in t.

This property can be rephrased as follows by using the context grafting operations.
A syntax tree t admits an occurrence of s if there exists syntax trees t′, r1, . . . , r|s| and
i ∈ [|t′|] such that

t = }i
(
t′, s, r1, . . . , r|s|

)
. (2.3.1)

By extension, t avoids a set P of C-syntax trees if t avoids all the patterns of P.
For instance, consider the graded collection C := C(2) t C(3) where C(2) := {a,b} and
C(3) := {c}, and the C-syntax tree

t := a

b

a

b

c

c

b

b
. (2.3.2)

Then, t admits an occurrence of

c

b
(2.3.3)

at position 1 and two occurrences of

a (2.3.4)

at positions 11 and 21.
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2.3.2. Rewrite systems. Let
(
STC⊥,→

)
be a rewrite system on syntax trees and

P :=
{
}(n,k1,...,km)
i : n,m, k1, . . . , km ∈ N>1, i ∈ [n]

}
(2.3.5)

the set of all the context grafting operations. Since, as we observed in Section 2.2.3, all
products of P are concentrated, we can consider the P-closure of

(
STC⊥,→

)
. Therefore,

let us denote by
(
STC⊥,Ñ

)
theP-closure of

(
STC⊥,→

)
, called simply closure of

(
STC⊥,→

)
.

In other terms, Ñ is the rewrite rule satisfying

}i (t, s, r1, . . . , rm)Ñ}i
(
t, s′, r1, . . . , rm

)
(2.3.6)

for any C-syntax trees t, s, s′, r1, . . . , rm where t is of arity n, s is of arity m, i ∈ [n], and
s→ s′. In intuitive terms, one has qÑ q′ for two C-syntax trees q and q′ if there are two
C-syntax trees s and s′ such that s→ s′ and, by replacing an occurrence of s by s′ in q, we
obtain q′. For instance, by considering the same labeling set C as before, let

(
STC⊥,→

)

be the rewrite system defined by

c → a
a ,

a
b → a

b
. (2.3.7)

One has the following chain of rewritings

c a

b c

b

Ñ a

b
a

b

a

c Ñ a b

ab

a

c
Ñ

a b
ab

a

a
a . (2.3.8)

Observe by the way that the right rotation operation on binary trees considered in
Section 2.2.2 of Chapter 1 can be expressed as the closure of the rewrite system (STB⊥,→)
such that B := B(2) := {b} defined by

b
b → b

b
. (2.3.9)

In this text, we shall mainly consider rewrite systems
(
STC⊥,Ñ

)
defined as closures

of rewrite systems
(
STC⊥,→

)
such that the number of pairs (t, t′) satisfying t→ t′ is finite.

We say in this case that
(
STC⊥,Ñ

)
is of finite type. In this context, the degree of

(
STC⊥,Ñ

)

is the maximal degree among the C-syntax trees appearing as left members of →. The
arity of

(
STC⊥,Ñ

)
is the maximal arity among the C-syntax trees appearing as left (or,

equivalently, as right) members of →.
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2.3.3. Proving termination. We have observed in Section 3.1.2 of Chapter 1 that
termination invariants provide tools to show that a combinatorial rewrite system is ter-
minating. This idea extends on rewrite systems on syntax trees defined as closures of
other ones in the following way.

Let
(
STC⊥,→

)
be a combinatorial rewrite system and

(
STC⊥,Ñ

)
be its closure. Assume

that θ : STC⊥ → Q is a termination invariant for
(
STC⊥,→

)
, where (Q,4) is a poset. We say

that θ is compatible with the closure if, for any C-syntax trees s and s′ such that s→ s′,
the inequality

θ (}i (t, s, r1, . . . , rm)) ≺ θ
(
}i
(
t, s′, r1, . . . , rm

))
(2.3.10)

holds for all C-syntax trees t, r1, . . . , rm , and all i ∈ [ari(t)] where m := ari(s) = ari(s′).
Now, as a consequence of (2.3.6) and Theorem 3.1.1 of Chapter 1, one has the following
result.

PROPOSITION 2.3.1. Let C be a combinatorial augmented graded collection with-
out object of size 1,

(
STC⊥,→

)
be a rewrite system, and

(
STC⊥,Ñ

)
be the closure of(

STC⊥,→
)
. If

(i) there exists a poset Q and a termination invariant θ : STC⊥ → Q for
(
STC⊥,→

)
;

(ii) the map θ is compatible with the closure;
then,

(
STC⊥,Ñ

)
is terminating.

Consider, for instance, the rewrite system
(
STC⊥,→

)
defined by (2.3.7). By setting

Q := N2 and 4 as the lexicographic order on N2, let us define the map θ : STC⊥ → Q, for
any C-syntax tree t, by θ(t) := (deg(t), tam(t)), where

tam(t) :=
∑

u∈N•(t)
u of arity 2

deg(t •u2). (2.3.11)

In other words, tam(t) is the sum, for all binary nodes u of t, of the number of internal
nodes appearing in the 2nd suffix subtrees of u. One can check that θ(t) ≺ θ(t′) for all
the C-syntax trees r and r′ such that r→ r′. Indeed,

θ
(

c

)
= (1, 0) ≺ (2, 0) = θ



 a
a



 , (2.3.12a)

and

θ



 a
b



 = (2, 0) ≺ (2, 1) = θ




a

b



 . (2.3.12b)

Moreover, the fact that θ is compatible with the closure is a straightforward verification.
Therefore, the closure

(
STC⊥,Ñ

)
of
(
STC⊥,→

)
is terminating.
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2.3.4. Proving confluence. In the same way as the tool to show that a rewrite system
onC-syntax trees is terminating presented in Section 2.3.3, we present here a tool to prove
that rewrite systems on syntax trees defined as closures of other ones are confluent. This
criterion requires now some precise properties.

PROPOSITION 2.3.2. Let C be a combinatorial augmented graded collection with-
out object of size 1,

(
STC⊥,→

)
be a rewrite system, and

(
STC⊥,Ñ

)
be the closure of(

STC⊥,→
)
. If

(
STC⊥,Ñ

)
is

(i) of finite type;
(ii) terminating;

(iii) such that all its branching pairs consisting in trees with 2` −1 internal nodes
or less are joinable, where ` is its degree;

then,
(
STC⊥,Ñ

)
is confluent.

Proposition 2.3.2 yields an algorithmic way to check if a terminating rewrite system(
STC⊥,Ñ

)
defined as the closure of an other one

(
STC⊥,→

)
is confluent by enumerating

all the C-syntax trees t of degrees at most 2` −1 (where ` is the degree of
(
STC⊥,Ñ

)
) and

by computing the parts Gt of the rewriting graphs of
(
STC⊥,Ñ

)
consisting in the trees

reachable from t. If each Gt contains exactly one normal form (which correspond to a
vertex with no outgoing edge in Gt),

(
STC⊥,Ñ

)
is confluent.

For instance, by considering the same labeling set C as above, let
(
STC⊥,→

)
be the

rewrite system defined by

b
a → b

a ,
a

a →
b

b . (2.3.13)

The degree of the closure
(
STC⊥,Ñ

)
of
(
STC⊥,→

)
is ` := 2 and it is possible to show that(

STC⊥,Ñ
)

is terminating. Consider

t :=
b

a
a
, (2.3.14)
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which is a C-syntax tree of degree 2` − 1 = 3. The graph Gt associated with t is of the
form

b
a

a
b

b
b

b
a

a b

a
a

b

b
b

, (2.3.15)

and shows that
(
STC⊥,Ñ

)
is not confluent. Indeed, t is a non-joinable branching tree. On

the other hand, consider the rewrite system
(
STC⊥,→

)
defined by

a
a → a

a ,
a

b → a
b

,
b

b → b
a . (2.3.16)

The degree of the closure
(
STC⊥,Ñ

)
of
(
STC⊥,→

)
is ` := 2 and here also, it is possible to

show that
(
STC⊥,Ñ

)
is terminating. Consider

t :=
a

b
b

, (2.3.17)

a C-syntax tree of degree 2` − 1 = 3. The graph Gt associated with t is of the form

a
b

b

a
b

a

a
b

b a

b
b

a
b

a
, (2.3.18)

This graph satisfies the required property stated above, and, as a systematic study of cases
shows, all other graphs Gs where s is a C-syntax tree of degree 3 or less, also. For this
reason,

(
STC⊥,Ñ

)
is confluent.

3. Treelike structures

We expose here two additional variants of trees. The first one are rooted trees
and are structures intervening in the study of free pre-Lie algebras (see forthcoming
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Section 3.3 of Chapter 3). The second ones are colored syntax trees and can be seen as
objects of free colored operads (see forthcoming Section 2.1 of Chapter 5).

3.1. Rooted trees. Let RT be the graded collection satisfying the relation

RT =
[[[
{•},MSet+(RT)

]]]+
×. (3.1.1)

where • is an atomic object called node and MSet is the multiset collection operation over
graded collections defined in Section 1.2.6 of Chapter 1. We call rooted tree each object
of RT. By definition, a rooted tree t is an ordered pair (•, *t1, . . . , tk+) where *t1, . . . , tk+ is
a multiset of rooted trees. Like the case of planar rooted trees, this definition is recursive.
For instance,

(•, ∅), (•, *(•, ∅)+), (•, *(•, ∅), (•, ∅)+), (•, *(•, ∅), (•, ∅), (•, ∅)+), (•, *(•, *(•, ∅), (•, ∅)+)+),
(3.1.2)

are rooted trees. If t = (•, *t1, . . . , tk+) is a rooted tree, each ti , i ∈ [k], is a suffix subtree
of t.

Rooted trees are different kinds of trees than planar rooted trees presented in Sec-
tion 1. The difference is due to the fact that rooted trees are defined by using multisets
of rooted trees, while planar rooted trees are defined by using tuples of planar rooted
trees. Hence, the order of the suffix subtrees of a rooted tree is not significant.

By drawing each rooted tree by a node attached below it to its subtrees by means
of edges , the rooted trees of (3.1.2) are depicted by

, , , , . (3.1.3)

By definition of the product and multiset operations over combinatorial collections, the
size of a rooted tree t satisfies

|t| := 1 +
∑

i∈[k]
|ti|. (3.1.4)

The integer sequence of RT begins by

1, 1, 2, 4, 9, 20, 48, 115, 286 (3.1.5)

and forms Sequence A000081 of [Slo].

3.2. Colored syntax trees. Let C be a set of colors and C be a C-colored collection
(see Section 1.1.4 of Chapter 1) such that the graduation of C is augmented. A C-colored
C-syntax tree is a triple (a, t, u) where t is a C-syntax tree of arity n ∈ N>1, a ∈ C, u ∈ Cn ,
and for any internal nodes u and v of t such that v is the ith child of u, out(y) = ini(x)
where x (resp. y) is the label of u (resp. v). The set of all C-colored C-syntax trees is
denoted by CSTC . This set is a C-colored collection by setting that out((a, t, u)) := a and
in((a, t, u)) := u for all (a, t, u) ∈ CSTC . By a slight abuse of notation, if u is an internal
node of t, we denote by out(u) (resp. in(u)) the color out(x) (resp. word of colors in(x))

http://oeis.org/A000081
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where x is the label of u. We say that a C-colored C-syntax tree t is monochrome if C is
a monochrome colored collection. In graphical representations of a C-colored C-syntax
tree (a, t, u), we draw t together with its output color above its root and its input color
u(i) below its ith leaf for any i ∈ [|u|].

For instance, consider the set of colors C := {1, 2} and the C-colored collection C
defined by C := C(2) t C(3) with C(2) := {a,b}, C(3) := {c}, out(a) := 1, out(b) := 2,
out(c) := 1, in(a) := 11, in(b) := 21, and in(c) := 221. The tree

b
a

c

c
a

1

2 1

2

2 2 1 1 1

(3.2.1)

is a C-colored C-syntax tree. Its output color is 1 and its word of input colors is 21222111.
Besides, (1, ⊥, 1) and (1, ⊥, 2) are two C-colored C-syntax trees of degree 0 and arity 1.

The partial grafting operation of syntax trees (see Section 2.2.1) admits a generaliza-
tion on colored syntax trees. Let for any (a, u) ∈ C× Cn , (b, v) ∈ C× Cm , and i ∈ [n] such
that b = u(i) the product

◦((a,u),(b,v))
i : CSTC(a, u)× CSTC(b, v)→ CSTC (3.2.2)

defined, for any (a, t, u) ∈ CSTC(a, u) and (b, s, v) ∈ CSTC(b, v) by

(a, t, u) ◦((a,u),(b,v))
i (b, s, v) :=

(
a, t ◦(n,m)

i s, u Î [i v
)
, (3.2.3)

where u Î [i v is the word obtained by replacing the ith letter of u by v, and ◦(n,m)
i is the

partial grafting of syntax trees. For instance, by considering the same labeling C-colored
collection as above,

a
a

c

1

1 1 2 2 1

◦3 b
a

2

2
1 1

=
a

a

b
a

c

1

1 1

2

1 1

2 1
. (3.2.4)

We call each ◦(n,m)
i a partial grafting operation.

Observe that since

ind
(
(a, t, u) ◦(n,m)

i (b, s, v)
)

= (a, u Î [i v) (3.2.5)

where ind denotes the index of an object of a colored collection (see Section 1.1.1 of
Chapter 1), the product ◦(n,m)

i is concentrated. Besides, by a slight abuse of notation, we
shall sometimes omit the (n,m) in the notation of ◦(n,m)

i in order to denote it in a more
concise way by ◦i.
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The generalizations of the complete and context grafting products of syntax trees
(see Sections 2.2.2 and 2.2.3) on colored syntax trees follow from the definition of the
partial grafting operation of colored syntax trees just given. These two products are also
concentrated.

Most of the notions exposed in Section 2.3 about syntax trees and rewrite systems
on syntax trees naturally extend on colored syntax trees like, among others, the notions
of occurrences of patterns, the complete grafting operations, and the criteria offered by
Propositions 2.3.1 and 2.3.2 to, respectively, prove the termination and the confluence of
rewrite system on syntax trees.

Bibliographic notes

About trees. The concept of tree encompasses a large range of quite different com-
binatorial objects. For instance, in graph theory, trees are connected acyclic graphs
while in combinatorics, one encounters mostly rooted trees. Among rooted trees, some
of these can be planar (the order of the children of a node is relevant) or not. In addi-
tion to this, the internal nodes, the leaves, or the edges of the trees can be labeled, and
some conditions for the arities of their nodes can be imposed. One of the first occur-
rences of the concept of tree came from the work of Cayley [Cay57]. Nowadays, trees
appear among others in computer science as data structures [Knu98,CLRS09], in com-
binatorics in relation with enumerating questions and Lagrange inversion [Lab81,FS09],
and in algebraic combinatorics, where several families of trees are endowed with alge-
braic structures [LR98,HNT05,Cha08]. Besides, the bijection between the combinatorial
collections of the planar rooted trees and the one of binary trees appearing in Proposi-
tion 1.2.1 is known as the rotation correspondence and is due to Knuth [Knu97]. This
bijection, offering a means of encoding a planar rooted tree by a binary tree, admits
applications in algebraic combinatorics [NT13,EFM14].

About enumerating properties. Formula (1.2.8) for the Fuss-Catalan numbers, enu-
merating the combinatorial collection of the k-ary trees with respect to their number of
internal nodes has been established in [DM47]. Besides, Formula (1.2.16) enumerating
the combinatorial set of the Schröder trees with respect to their number of leaves uses
the Narayana numbers [Nar55]. These numbers admit the following combinatorial in-
terpretation: the 2-graded collection C of binary trees, where the index of a binary tree
t is the pair (n, k) where n is the arity of t and k is the number of internal nodes of t

having an internal node as a left child satisfies #C(n, k) = nar(n, k).

About rewrite rules on trees. The Buchberger algorithm, which is a completion
algorithm (see the end of Chapter 1), admits adaptations in the context of rewrite systems
of trees and operads [DK10, BD16]. Several works use rewrite systems on trees to
provide presentations of operads (see, for instance, [Hof10,LV12,Gir16b,CCG18]).





CHAPTER 3

Algebraic structures

This chapter deals with vector spaces obtained from graded collections. A general
framework for algebraic structures having products and coproducts is presented. Most
of the algebraic structures encountered in algebraic combinatorics like associative, den-
driform, pre-Lie algebras, and Hopf bialgebras fit into this framework. This chapter
contains classical examples of such structures.

1. Polynomials spaces

We introduce here the notion of polynomial spaces. All the algebraic structures
considered in this book are polynomial spaces endowed with some operations or co-
operations. A set of operations, analogous to the operations on graded collections of
Section 1.2 of Chapter 1, over graded polynomial spaces are considered. We also re-
view some links between changes of bases of polynomial spaces, posets, and incidence
algebras.

1.1. Polynomials on collections. Intuitively, a polynomial on an I-collection C is a
finite formal sum of objects of C with coefficients in a field K. In what follows, K can be
any field of characteristic 0.

1.1.1. Polynomials. Let C be an I-collection. A polynomial on C (or, for short, a
C-polynomial) is a map

f : C → K (1.1.1)

such that the set
Supp(f ) := {x ∈ C : f (x) 6= 0} (1.1.2)

is finite, where the symbol 0 appearing in (1.1.2) is the zero of K. We call Supp(f ) the
support of f . The coefficient f (x) of x ∈ C in f is denoted by 〈x, f〉. An object x of C
appears in f if 〈x, f〉 6= 0. A C-polynomial f is a C-monomial if Supp(f ) is a singleton.
We say that f is homogeneous if there is an index i ∈ I such that Supp(f ) ⊆ C(i). For
any finite subcollection X of C, the characteristic polynomial of X is the C-polynomial
ch(X) defined, for any x ∈ C, by

〈x, ch(X)〉 :=





1 ∈ K if x ∈ X,
0 ∈ K otherwise.

(1.1.3)

53
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Given two C-polynomials f1 and f2, the scalar product of f1 and f2 is the scalar

〈f1, f2〉 :=
∑

x∈C
〈x, f1〉 〈x, f2〉 (1.1.4)

of K. This notation for the scalar product of C-polynomials is consistent with the notation
〈x, f〉 for the coefficient of x in f because by (1.1.4), the coefficient 〈x, f〉 and the scalar
product 〈ch({x}), f〉 are equal.

In the particular case where C is a graded collection, the degree deg(f ) of f is unde-
fined if Supp(f ) = ∅ and is otherwise the greatest size of an object appearing in Supp(f ).

1.1.2. Polynomial spaces. The set of all C-polynomials is denoted by K 〈C〉. The
underlying collection of K 〈C〉 is C. For any property P of collections (see Section 1 of
Chapter 1), we say by extension that K 〈C〉 satisfies the property P if C satisfies P.

This set K 〈C〉 is endowed with the following two operations. First, the addition

+ : K 〈C〉 ×K 〈C〉 → K 〈C〉 (1.1.5)

is defined, for any f1, f2 ∈ K 〈C〉 and x ∈ C, by

〈x, f1 + f2〉 := 〈x, f1〉+ 〈x, f2〉 . (1.1.6)

Second, the scalar multiplication

· : K×K 〈C〉 → K 〈C〉 (1.1.7)

is defined, for any f ∈ K 〈C〉, λ ∈ K, and x ∈ C, by

〈x, λ · f〉 := λ 〈x, f〉 . (1.1.8)

Endowed with these two operations, K 〈C〉 is a K-vector space, named polynomial space
on C (or, for short, C-polynomial space). Moreover, K 〈C〉 decomposes as a direct sum

K 〈C〉 =
⊕

i∈I
K 〈C(i)〉 . (1.1.9)

We call each K 〈C(i)〉 the i-homogeneous component of K 〈C〉. In the sequel, we shall
also write K 〈C〉 (i) for K 〈C(i)〉.

By using now the linear structure of K 〈C〉, any C-polynomial f can be expressed as
the finite sum of C-monomials

f =
∑

x∈C
〈x, f〉 · ch({x}), (1.1.10)

which is denoted, by a slight abuse of notation, by

f =
∑

x∈C
〈x, f〉 x. (1.1.11)

The notation (1.1.11) for f as a linear combination of objects of C is the sum notation of
C-polynomials.
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Since for any C-polynomial f , there is unique way to express f as a finite sum of the
form (1.1.11), the set

{ch({x}) : x ∈ C} (1.1.12)

forms a basis of K 〈C〉. This basis is called fundamental basis of K 〈C〉, and, by a slight
but convenient abuse of notation, each basis element ch({x}), x ∈ C, is simply denoted
by x. Observe that each basis of K 〈C〉 is indexed by C. Moreover, Let us emphasize the
fact any polynomial space K 〈C〉 is always seen through its explicit basis C (contrarily
when working abstractly with a vector space V without explicit basis). In the sequel,
we shall define products on C which extend by linearity on K 〈C〉. Properties of such
products (like associativity or commutativity) can be defined and checked only on C.

Besides, we are sometimes led to consider several bases of K 〈C〉 and work with many
of them at the same time. In this case, to distinguish elements expressed on different
bases, we denote them by putting elements of C as indexes of a letter naming the basis.
For instance, the elements of the B-basis of K 〈C〉 are denoted by Bx , x ∈ C.

Let C1 and C2 be two I-collections. A morphism between K 〈C1〉 and K 〈C2〉 is a
linear map

φ : K 〈C1〉 → K 〈C2〉 (1.1.13)

such that for any x ∈ C1, φ(x) ∈ K 〈C2〉 (ind(x)). Observe that any combinatorial collection
morphism ψ : C1 → C2 gives rise to a polynomial space morphism ψ̄ : K 〈C1〉 → K 〈C2〉
obtained by extending ψ linearly. Besides, K 〈C2〉 is a subspace of K 〈C1〉 if there exists
an injective morphism from K 〈C2〉 to K 〈C1〉. For any subset J of I , we denote by K 〈C〉 (J)
the polynomial space K 〈C(J)〉. Since C(J) is by definition a subcollection of C, K 〈C〉 (J)
is a subspace of K 〈C〉.

1.1.3. Combinatorial graded polynomial spaces. When C is a combinatorial graded
collection, as a particular case of (1.1.9), K 〈C〉 decomposes as a direct sum

K 〈C〉 =
⊕

n∈N
K 〈C〉 (n). (1.1.14)

Moreover, since C is combinatorial, each K 〈C(n)〉, n ∈ N, is finite dimensional. For this
reason, the Hilbert series of K 〈C〉, defined by

HK〈C〉(t) =
∑

n∈N
dimK 〈C〉 (n) tn, (1.1.15)

is a well-defined series. We can observe that the Hilbert series HK〈C〉(t) of K 〈C〉 and the
generating series GC(t) of C are the same power series.
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1.1.4. Rewrite systems and quotient spaces. For any I-collection C, any rewrite sys-
tem (C,→) gives rise to a subspace R(C,→) of K 〈C〉 generated by all the homogeneous
C-polynomials x′ − x whenever x and x′ are two objects of C such that x→x′. We call
R(C,→) the space induced by (C,→). Conversely, when R is a subspace of K 〈C〉 such
that there exists a rewrite system (C,→) such that R and R(C,→) are isomorphic, we say
that (C,→) is an orientation of R. When (C,→) is convergent, one has a concrete de-
scription of the quotient space K 〈C〉 /R(C,→) involving the normal forms N(C,→) of (C,→)
provided by the following result.

PROPOSITION 1.1.1. Let (C,→) be a convergent rewrite system. Then, as spaces

K 〈C〉 /R(C,→) ' K
〈
N(C,→)

〉
. (1.1.16)

1.2. Operations over polynomial spaces. In the same way as operations over col-
lections allow to create new collections from already existing ones (see Section 1.2 of
Chapter 1), there exist analogous operations over polynomial spaces. Some of these are
consequences of the definitions of operations over collections. We present here the main
ones. Alternatively, one of the aims of this section is to show that the usual operations
over spaces (direct sum, quotient, and tensor product) produce polynomial spaces.

1.2.1. Direct sum. The sum of two collections translates as the direct sum of the
associated polynomial spaces. Indeed, for any I-collections C1 and C2,

K 〈C1 +C2〉 ' K 〈C1〉 ⊕K 〈C2〉 . (1.2.1)

An isomorphism between the two spaces of (1.2.1) is provided by the map

φ : K 〈C1 +C2〉 → K 〈C1〉 ⊕K 〈C2〉 , (1.2.2)

linearly defined for any x ∈ C1 +C2 by

φ(x) :=





x ∈ K 〈C1〉 if x ∈ C1,
x ∈ K 〈C2〉 otherwise (x ∈ C2).

(1.2.3)

For this reason, we shall identify the two spaces of (1.2.1).

1.2.2. Quotient space. If C is an I-collection and V is a space included in K 〈C〉, the
quotient space of K 〈C〉 by V is the space K 〈C〉 /V of all the equivalence classes

[f ]V := {f + g : g ∈ V} , (1.2.4)

for all f ∈ K 〈C〉, endowed with its natural vector space structure. We call canonical
surjection map the linear map θ : K 〈C〉 → K 〈C〉 /V defined linearly by θ(x) := [x]V
for any object x of C. It is always possible to see K 〈C〉 /V as a D-polynomial space by
providing an adequate I-collection D so that

K 〈C〉 /V ' K 〈D〉 . (1.2.5)

For this reason, we shall identify any quotient space with a polynomial space.
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1.2.3. Tensor product. The Cartesian product of collections translates as the tensor
product of the associated polynomial spaces. Indeed, for any p ∈ N, any index sets I1, . . . ,
Ip , and any I1-collection C1, . . . , any Ip-collection Cp ,

K
〈[[[
C1, . . . , Cp

]]]
×
〉
' K 〈C1〉 ⊗ · · · ⊗K 〈Cp〉 . (1.2.6)

An isomorphism between the two spaces of (1.2.6) is provided by the map

φ : K
〈[[[
C1, . . . , Cp

]]]
×
〉
→ K 〈C1〉 ⊗ · · · ⊗K 〈Cp〉 , (1.2.7)

linearly defined for any
(
x1, . . . , xp

)
∈
[[[
C1, . . . , Cp

]]]
× by

φ
((
x1, . . . , xp

))
:= x1 ⊗ · · · ⊗ xp. (1.2.8)

For this reason, we shall identify the two spaces of (1.2.6). Moreover, as a consequence,
the tuple notation for tensors is linear. That is, for any f1 ∈ K 〈C1〉, . . . , fp ∈ K 〈Cp〉,

(
f1, . . . , fp

)
=

∑

(x1,...,xp)∈[[[C1,...,Cp ]]]×




∏

k∈[p]
〈xk, fk〉



 (
x1, . . . , xp

)
. (1.2.9)

1.2.4. Tensor algebras. If V is a K-vector space, the tensor algebra of V is the space
TV defined by

TV :=
⊕

p∈N
V⊗p (1.2.10)

where V⊗p , p ∈ N, denotes the space of all tensors on V of order p ∈ N. A basis of TV is
formed by all tensors on any basis of V. As a special case of the one of tensor products
discussed in the above section, the list collection operation applied to a graded collection
translates as the tensor algebra of the associated graded polynomial space. Indeed, for
any p ∈ N and I-collection C,

K
〈
List{p}(C)

〉
' K 〈C〉⊗p. (1.2.11)

so that, by using the correspondence between direct sums of spaces and sums of collec-
tions, we obtain

K 〈List(C)〉 ' TK 〈C〉 . (1.2.12)

An isomorphism between the two spaces of (1.2.12) is provided by the map

φ : K 〈List(C)〉 → TK 〈C〉 , (1.2.13)

linearly defined for any
(
x1, . . . , xp

)
∈ List(C) by

φ
((
x1, . . . , xp

))
:= x1 ⊗ · · · ⊗ xp. (1.2.14)

For this reason, we shall identify the two spaces of (1.2.12).
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1.2.5. Symmetric algebras. If V is a K-vector space, the symmetric algebra of V is
the space SV defined by

SV := TV/VS , (1.2.15)

where VS is the subspace of TK 〈C〉 consisting in all the tensors

u ⊗ x1 ⊗ x2 ⊗ v − u ⊗ x2 ⊗ x1 ⊗ v, (1.2.16)

where u, v ∈ TV and x1, x2 ∈ V. A basis of SV is formed by all monomials on any
basis of V. The multiset collection operation applied to a graded collection translates
as the symmetric algebra of the associated graded polynomial space. Indeed, for any
I-collection C,

K 〈MSet(C)〉 ' SK 〈C〉 . (1.2.17)

An isomorphism between the two spaces of (1.2.17) is provided by the map

φ : K 〈MSet(C)〉 → SK 〈C〉 , (1.2.18)

linearly defined for any *x1, . . . , xp+ ∈MSet(C) by

φ
(
*x1, . . . , xp+

)
:= yα1

1 . . . yα`` , (1.2.19)

where ` is the number of distinct elements of *x1, . . . , xp+ and each αi , i ∈ [`], denotes
the multiplicity of yi in *x1, . . . , xp+. For this reason, we shall identify the two spaces
of (1.2.17).

1.2.6. Exterior algebras. If V is a K-vector space, the exterior algebra of V is the
space EV defined by

EV := TV/VE , (1.2.20)

where VE is the subspace of TV consisting in all the tensors

u ⊗ x1 ⊗ x2 ⊗ v + u ⊗ x2 ⊗ x1 ⊗ v, (1.2.21)

where u, v ∈ TV and x1, x2 ∈ V. A basis of EV is formed by all monomials on a basis
of V without repeated letters. The set collection operation applied to a graded collection
translates as the exterior algebra of the associated graded polynomial space. Indeed, for
any I-collection C,

K 〈Set(C)〉 ' EK 〈C〉 . (1.2.22)

An isomorphism between the two spaces of (1.2.22) is provided by the map

φ : K 〈Set(C)〉 → EK 〈C〉 , (1.2.23)

linearly defined for any {x1, . . . , xp} ∈ Set(C) by

φ
(
{x1, . . . , xp}

)
:= x1 . . . xp. (1.2.24)

For this reason, we shall identify the two spaces of (1.2.22).
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1.2.7. Duality for combinatorial polynomial spaces. Assume in this section that C
is combinatorial. The dual of K 〈C〉 is the K-vector space K 〈C〉? defined by

K 〈C〉? :=
⊕

i∈I
K 〈C〉 (i)?, (1.2.25)

where for any i ∈ I , K 〈C〉 (i)? is the dual space of K 〈C〉 (i). Since C is combinatorial, all
the K 〈C〉 (i) are finite dimensional spaces, so that K 〈C〉 (i)? ' K 〈C〉 (i), and thus,

K 〈C〉? ' K 〈C〉 . (1.2.26)

For this reason, we shall identify K 〈C〉 and K 〈C〉? in this book once C is combinatorial.

The duality bracket between K 〈C〉 and K 〈C〉? is the linear map

〈−〉 : K 〈C〉 ⊗K 〈C〉? ' K 〈[[[C,C ]]]×〉 → K (1.2.27)

defined linearly, for all (x, x′) ∈ [[[C,C ]]]×, by

〈(
x, x′

)〉
:=





1 if x = x′,
0 otherwise.

(1.2.28)

To not overload the notation, we write 〈x, x′〉 instead of 〈(x, x′)〉. Observe that for any
f1 ∈ K 〈C〉 and f2 ∈ K 〈C〉?, 〈f1, f2〉 is equal to the scalar product (1.1.4) of f1 and f2.
Moreover, the duality bracket extends for any p ∈ N on K

〈[[[
List{p}(C),List{p}(C)

]]]
×
〉

linearly by
〈(
x1, . . . , xp

)
,
(
x′1, . . . , x′p

)〉
:=
∏

k∈[p]
〈xk, x′k〉 (1.2.29)

for any objects
(
x1, . . . , xp

)
and

(
x′1, . . . , x′p

)
of List{p}(C).

1.3. Changes of basis and posets. It is very usual, given a polynomial space K 〈C〉,
to consider a poset structure on C to define new bases of K 〈C〉. Indeed, such new bases
are defined by considering sums of elements greater (or smaller) than other ones. In
this context, incidence algebras of posets and their Möbius functions play an important
role. We expose here these concepts.

1.3.1. Incidence algebras. Let (Q,4) be a locally finite I-poset. The incidence alge-
bra of (Q,4) is the polynomial space K 〈Com(Q)〉 (Com(Q) is defined in Section 2.1.2 of
Chapter 1) endowed with the linear binary product ? (the notion of products in polyno-
mial spaces is presented in the following Section 2 but here, only elementary notions
about these are needed) defined, for any objects (x, y) and (x′, y ′) of Com(Q) by

(x, y) ?
(
x′, y ′

)
:=





(x, y ′) if y = x′,
0 otherwise.

(1.3.1)
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This product is obviously associative. Moreover, for each i ∈ I , on the i-homogeneous
component of K 〈Com(Q)〉, the Com(Q)-polynomial

1i :=
∑

x∈C(i)

(x, x) (1.3.2)

plays the role of a unit, that is, f ? 1i = f = 1i ? f for all f ∈ K 〈Com(C)〉 (i). Let for any
i ∈ I the Com(Q)-polynomial ζi , called i-zeta polynomial of (Q,4), defined by

ζi :=
∑

x,y∈C(i)
x4y

(x, y). (1.3.3)

This Com(Q)-polynomial encodes some properties of the order 4. For instance, the
coefficient in ζi ? ζi of each (x, y) ∈ Com(Q(i)) is the cardinality of the interval [x, y] in
(Q,4). The i-Möbius polynomial of (Q,4) is the Com(Q)-polynomial µi satisfying

µi ? ζi = 1i = ζi ? µi. (1.3.4)

In other words, µi is the inverse of ζi with respect to the product ?. Recall that, as exposed
in Section 1.1.1, polynomials on collections are functions associating a coefficient with any
object. For this reason, ζi and µi are functions associating a coefficient with any pair of
comparable objects of Q.

THEOREM 1.3.1. Let (Q,4) be a locally finite I-poset. Then, the i-Möbius polyno-
mial µi , i ∈ I, of (Q,4) is a well-defined element of K 〈Com(Q)〉 and its coefficients
satisfy 〈(x, x), µi〉 = 1 for all x ∈ Q(i), and

〈(x, z), µi〉 = −
∑

y∈Q(i)
x4y≺z

〈(x, y), µi〉 (1.3.5)

for all x, z ∈ C(i) such that x 6= z.

Theorem 1.3.1 provides a recursive way to compute the coefficients of µi , i ∈ I , as a
consequence of the finiteness of each interval of Q(i).

1.3.2. Changes of basis. Let C be a combinatorial I-collection and 4 be a partial
order relation on C such that (C,4) is an I-poset. Consider the family

{
B4x , x ∈ C

}
(1.3.6)

of elements of K 〈C〉 defined, from the fundamental basis of K 〈C〉, by

B4x :=
∑

y∈C
x4y

y. (1.3.7)

Observe that since C is combinatorial and 4 preserves the indexes of the objects of
C, each B4x is a homogeneous C-polynomial. We call the family (1.3.6) the B4-family
of K 〈C〉.
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PROPOSITION 1.3.2. Let (C,4) be a combinatorial I-poset. The B4-family forms a
basis of K 〈C〉 and

x =
∑

y∈C
x4y

〈(x, y), µi〉B4y (1.3.8)

for all x ∈ C(i), i ∈ I, where µi is the i-Möbius polynomial of (C,4).

2. Bialgebras

Bialgebras are polynomial spaces endowed with operations. These operations are
very general in the sense that they can have several inputs and outputs. These structures
encompass all the algebraic structures seen in this work.

2.1. Biproducts on polynomial spaces. Polynomial spaces are rather poor alge-
braic structures. It is usual in combinatorics to handle spaces endowed with several
products. When a polynomial space is graded and its products are compatible with the
sizes of the underlying combinatorial objects, all this form a graded algebra. This no-
tion is detailed here, as well as the concepts of coproduct, duality, and coalgebras and
bialgebras.

2.1.1. Biproducts. Let C be an I-collection and K 〈C〉 be a polynomial space. A
biproduct on K 〈C〉 is a linear map

� : K
〈[[[
C (J1) , . . . , C

(
Jp
) ]]]
×
〉
→ K

〈
List{q}(C)

〉
(2.1.1)

where p, q ∈ N, and J1, . . . , Jp are nonempty subsets of I . Equivalently, by using the
interpretation of the tensor product and of tensor algebras shown in Section 1.2, (2.1.1)
is equivalent to

� : K 〈C〉 (J1)⊗ · · · ⊗K 〈C〉
(
Jp
)
→ K 〈C〉⊗q . (2.1.2)

The arity (resp. coarity) of � is p (resp. q) and the index domain of � is the set
J1 × · · · × Jp . A tuple

(
x1, . . . , xp

)
is a valid input for � if �

((
x1, . . . , xp

))
is defined,

that is,
(
ind (x1) , . . . , ind

(
xp
))

belongs to the index domain of �. The image Im(�) of
� is the usual image of � as a linear map. To not overload the notation, we shall write
�
(
x1, . . . , xp

)
instead of �

((
x1, . . . , xp

))
for any valid input

(
x1, . . . , xp

)
for �.

The biproduct � can be seen as an operation taking a valid input consisting in a
bunch of p objects of C and outputting bunches of q objects of C. This biproduct is
depicted by a rectangle labeled by its name, with p incoming edges (below the rectangle)
and q outgoing edges (above the rectangle) as

�

. . .

. . .

f ∈ K
〈[[[
C (J1) , . . . , C

(
Jp
) ]]]
×
〉

�(f ) ∈ K
〈
List{q}(C)

〉

. (2.1.3)
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2.1.2. Completion. Let � a biproduct on K 〈C〉 of the form (2.1.1). In the case where
the index domain of � is Ip , we say that � is complete. Otherwise, the completion of �
is the complete biproduct

�̇ : K
〈
List{p}(C)

〉
→ K

〈
List{q}(C)

〉
(2.1.4)

defined linearly, for any object
(
x1, . . . , xp

)
of List{p}(C), by

�̇
(
x1, . . . , xp

)
:=





�
(
x1, . . . , xp

)
if
(
x1, . . . , xp

)
is a valid input for �,

0 otherwise.
(2.1.5)

In the sequel, we shall provide properties and constructions involving complete biprod-
ucts. Nevertheless, all these apply also on general biproducts since one can always work
with the completion of a noncomplete biproduct.

2.1.3. Spaces of complete biproducts. The set of all the complete biproducts of arity
p and coarity q on K 〈C〉 has a structure of a K-vector space. Indeed, if �1 and �2 are
two such biproducts, the addition of �1 and �2 is the biproduct �1 +�2 defined by

(�1 +�2)
(
x1, . . . , xp

)
:= �1

(
x1, . . . , xp

)
+�2

(
x1, . . . , xp

)
(2.1.6)

for any object
(
x1, . . . , xp

)
of List{p}(C). Moreover, for any coefficient λ ∈ K, if � is such

a biproduct, the scalar multiplication of � by λ is the biproduct λ� defined by

(λ�)
(
x1, . . . , xp

)
:= λ�

(
x1, . . . , xp

)
(2.1.7)

for any object
(
x1, . . . , xp

)
of List{p}(C).

2.1.4. Structure coefficient maps. Let

ξ : List{p}(C)× List{q}(C)→ K (2.1.8)

be a map such for any object
(
x1, . . . , xp

)
of List{p}(C), there are finitely many objects(

y1, . . . yq
)

of List{q}(C) such that ξ
((
x1, . . . , xp

)
,
(
y1, . . . , yq

))
6= 0. From this map ξ , let

the complete biproduct

� : K
〈
List{p}(C)

〉
→ K

〈
List{q}(C)

〉
(2.1.9)

satisfying, for any objects x1, . . . , xp of C,

�
(
x1, . . . , xp

)
=

∑

(y1,...,yq)∈List{q}(C)

ξ
((
x1, . . . , xp

)
,
(
y1, . . . , yq

)) (
y1, . . . , yq

)
. (2.1.10)

Due to the condition satisfied by ξ , there is a finite number of tuples
(
y1, . . . , yq

)
appearing

in the right member of (2.1.10). Hence, all the �
(
x1, . . . , xp

)
are C-polynomials, so that

� is a well-defined complete biproduct on K 〈C〉.

Conversely, from any complete biproduct � on K 〈C〉 of arity p and coarity q , one
can recover a map ξ of the form (2.1.8) such that (2.1.10) holds. We call ξ the structure
coefficient map of �. Beside, we say that � is degenerate if all its structure coefficients
are zero.
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2.1.5. Dual biproducts. Assume here that C is combinatorial so that we can identify
K 〈C〉 with its dual K 〈C〉? as mentioned in Section 1.2.7. Given a complete biproduct �
on K 〈C〉 of arity p and coarity q , let

�? : K
〈
List{q}(C)

〉? → K
〈
List{p}(C)

〉? (2.1.11)

be the map linearly defined, for all objects
(
y1, . . . , yq

)
of List{q}(C), by

�?
(
y1, . . . , yq

)
:=

∑

(x1,...,xp)∈List{p}(C)

〈
�
(
x1, . . . , xp

)
,
(
y1, . . . , yq

)〉 (
x1, . . . , xp

)
. (2.1.12)

In the case where (2.1.12) is a finite sum for any object
(
y1, . . . , yq

)
of List{q}(C), its right

member is a C-polynomial so that �? is a biproduct on K 〈C〉?, called dual biproduct of
�.

Observe that �? is of arity q and coarity p, and is complete. Observe also that
in (2.1.12), the coefficient

〈
�
(
x1, . . . , xp

)
,
(
y1, . . . , yq

)〉
is in fact equal to ξ

((
x1, . . . , xp

)
,
(
y1, . . . , yq

))

where ξ is the structure coefficient map of �. Hence, if one sees the map ξ as a ma-
trix whose rows are indexed by the

(
x1, . . . , xp

)
and the columns by the

(
y1, . . . , yq

)
, the

structure coefficient map of �? is the transpose of this matrix.

2.2. Products on polynomial spaces. We focus here on products, that are particular
biproducts on polynomial spaces. In all this section, K 〈C〉 is a polynomial space.

2.2.1. Products. A product is a biproduct of coarity 1. Let

? : K
〈[[[
C (J1) , . . . , C

(
Jp
) ]]]
×
〉
→ K 〈C〉 (2.2.1)

be a product of arity p ∈ N, where J1, . . . , Jp are nonempty subsets of I . When there is a
map ω : J1 × · · · × Jp → I satisfying, for any valid input

(
x1, . . . , xp

)
for ?,

?
(
x1, . . . , xp

)
∈ K 〈C〉

(
ω
(
ind (x1) , . . . , ind

(
xp
)))

, (2.2.2)

we say that ? is ω-concentrated (or simply concentrated when it is not useful specify ω).
In intuitive terms, this means that the indexes of the monomials appearing in a product
depend only on the indexes of their operands.

There is a close connection between products on collections (see Section 1.1.7 of
Chapter 1) and products on polynomial spaces. Indeed, when C is an I-collection with a
product

? : C (J1)× · · · × C
(
Jp
)
→ C (2.2.3)

of arity p, ? gives rise to a product

?̄ : K
〈[[[
C (J1) , . . . , C

(
Jp
) ]]]
×
〉
→ K 〈C〉 (2.2.4)

on K 〈C〉 defined by extending ? by linearity. This product ?̄ is called the linearization
of ?. When ? is a ω-concentrated product on C (see the aforementioned section), its
linearization ?̄ is an ω-concentrated product on K 〈C〉.
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2.2.2. Tensor powers. By considering that ? is a product on K 〈C〉 of the form (2.2.1),
let us introduce for any ` ∈ N>1, the biproduct

T` (?) : K
〈[[[

List{`}(C (J1)), . . . ,List{`}(C
(
Jp
)
)
]]]
×
〉
→ K

〈
List{`}(C)

〉
(2.2.5)

defined linearly by

T` (?)
(
(x1,1, . . . , x`,1) , (x1,2, . . . , x`,2) , . . . ,

(
x1,p, . . . , x`,p

))

:=
(
?
(
x1,1, . . . , x1,p

)
, ?
(
x2,1, . . . , x2,p

)
, . . . , ?

(
x`,1, . . . , x`,p

))
, (2.2.6)

for all (x1,k, . . . , x`,k) ∈ List{`} (C (Jk)) , k ∈ [p]. Graphically, T` (?) is the biproduct

? ?

x1,1 x`,1 x1,2 x`,2 x1,p x`,p

. . .

. . . . . .

. . .

. . .

. . .`

. . .

?
(
x1,1, x1,2, . . . , x1,p

)
?
(
x`,1, x`,2, . . . , x`,p

)

. (2.2.7)

This product T` (?) can be seen as the `th-tensor power of ? seen as a linear map. For
this reason, T` (?) is called the `th tensor power of ?.

Let us provide an example. When ? is a complete binary product on K 〈C〉, T2(?) is
of the form

T2(?) : K
〈[[[

List{2}(C),List{2}(C)
]]]
×
〉
→ K

〈
List{2}(C)

〉
(2.2.8)

and it satisfies
(x1,1, x2,1) T2(?) (x1,2, x2,2) = (x1,1 ? x1,2, x2,1 ? x2,2) (2.2.9)

for all objects (x1,1, x2,1) and (x1,2, x2,2) of List{2}(C). In (2.2.9), since ? and T2(?) are
binary products, we denote them in infix way. We follow this convention in all this text.
Graphically, T2(?) is the biproduct

? ?

x1,1 x2,1 x1,2 x2,2

x1,1 ? x1,2 x2,1 ? x2,2

(2.2.10)

2.2.3. Products of arity zero. A product η of arity 0 on K 〈C〉 is of the form

η : K 〈[[[ ]]]×〉 ' K→ K 〈C〉 (2.2.11)

where, as explained in Section 1.2.3 of Chapter 1, the empty Cartesian product [[[ ]]]× of
collections contains exactly one element, namely the empty tuple. Hence, η is totally de-
termined by the image η(1) ∈ K 〈C〉 where 1 ∈ K. In this way, there is a correspondence
between products of arity zero and elements of K 〈C〉. By a slight abuse of notation, we
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shall write sometimes η instead of η(1). In this way, η is no longer a map but an element
of K 〈C〉.

2.2.4. Product properties. We now list some properties a product ? on K 〈C〉 of the
form (2.2.1) can satisfy.

In the particular case where K 〈C〉 is a graded polynomial space, ? is graded if ? is
ω-concentrated for the map ω : Np → N defined by ω

((
n1, . . . , np

))
:= n1 + · · ·+ np . This

notion is analogous to the one of the same name for collections with products exposed
in Section 1.1.7 of Chapter 1. Observe that when C is a graded collection with a graded
product ?, its linearization ?̄ is a graded product on K 〈C〉.

We now assume that K 〈C〉 is any polynomial space. If {Bx : x ∈ C} is a basis of
K 〈C〉 such that, for any valid input

(
x1, . . . , xp

)
for ? there is an object x of C satisfying

?
(
Bx1 , . . . ,Bxp

)
= Bx , (2.2.12)

we say that the B-basis of K 〈C〉 is a set-basis with respect to ?.

Assume now that ? is of arity 2 so that ? is of the form

? : K 〈[[[C (J1) , C (J2) ]]]×〉 → K 〈C〉 (2.2.13)

where J1 and J2 are two nonempty subsets of I . In the case where Im(?) is contained in
K 〈C (J1 ∩ J2)〉, the associator of ? is the ternary product

(−,−,−)? : K 〈[[[C (J1) , C (J1 ∩ J2) , C (J2) ]]]×〉 → K 〈C〉 (2.2.14)

defined linearly for all valid inputs (x1, x2, x3) for (−,−,−)? by

(x1, x2, x3)? := (x1 ? x2) ? x3 − x1 ? (x2 ? x3) . (2.2.15)

When, for all valid inputs (x1, x2, x3) for (−,−,−)?, one has

(x1, x2, x3)? = 0, (2.2.16)

we say that ? is associative. The commutator of ? is the binary product

[−,−]? : K 〈[[[C (J1 ∩ J2) , C (J2 ∩ J1) ]]]×〉 → K 〈C〉 (2.2.17)

defined linearly for all valid inputs (x1, x2) for [−,−]? by

[x1, x2]? := x1 ? x2 − x2 ? x1. (2.2.18)

When, for all valid inputs (x1, x2) for [x1, x2]?, one has

[x1, x2]? = 0, (2.2.19)

the product ? is commutative. When there is a product 1? of arity 0 such that, for all
x ∈ C (J1 ∩ J2),

x ? 1?(1) = x = 1?(1) ? x, (2.2.20)
we say that ? is unitary and that 1? is the unit of ?. Observe that if K 〈C〉 is graded and
? is a graded product, 1?(1) is necessarily of degree 0.
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2.2.5. Coproducts. A coproduct is a biproduct of arity 1. Observe that when K 〈C〉
is combinatorial and that ? is a concentrated complete product, its dual ?? is a coproduct.
This is not true in general when K 〈C〉 is not combinatorial or not concentrated since the
conditions exposed in Section 2.1.5 for the well definition of ?? could not be satisfied.

A coproduct υ of coarity 0 on K 〈C〉 is of the form

υ : K 〈C〉 → K 〈[[[ ]]]×〉 ' K (2.2.21)

and can therefore be seen as a linear form on K 〈C〉.

All the properties of products defined in Sections 2.2.1 and 2.2.4 hold for coproducts
which admit dual products in the following way. For any property P on products, we
say that a coproduct ∆ admitting a product ∆? as dual satisfies the property “coP” if ∆?

satisfies P. For instance, ∆ is cograded if ∆? is graded, and ∆ is coassociative if ∆? is
associative. Moreover, ∆ is counitary if there exists a normal form 1∆ on K 〈C〉 called
counit such that its dual 1?∆ is the unit of ∆?.

2.3. Polynomial bialgebras. We now consider polynomial spaces endowed with a
set of biproducts. The main definitions and properties of these structures are listed.

2.3.1. Elementary definitions. A polynomial bialgebra is a pair (K 〈C〉 ,B) where
K 〈C〉 is a polynomial space endowed with a (possibly infinite) set B of biproducts. When
B contains only products (resp. coproducts), (K 〈C〉 ,B) is a polynomial algebra (resp.
polynomial coalgebra). To not overload the notation, we shall simply write K 〈C〉 instead
of (K 〈C〉 ,B) when the context is clear.

Let (K 〈C1〉 ,B1) and (K 〈C2〉 ,B2) be polynomial bialgebras. These bialgebras are µ-
compatible if there exists a bijective map µ : B1 →B2 that sends any biproduct of B1 to
a biproduct of B2 of the same arity, the same coarity, and the same index domain. When
(K 〈C1〉 ,B1) and (K 〈C2〉 ,B2) are µ-compatible, a µ-polynomial bialgebra morphism (or
simply a polynomial bialgebra morphism when there is no ambiguity) from K 〈C1〉 to
K 〈C2〉 is a polynomial space morphism φ : K 〈C1〉 → K 〈C2〉 such that

(
φ⊗q

) (
�
(
x1, . . . , xp

))
= (µ (�))

(
φ (x1) , . . . , φ

(
xp
))

(2.3.1)
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for all biproducts � or arity p and coarity q of B1, and valid inputs
(
x1, . . . , xp

)
for �,

where φ⊗q is the qth tensor power Tq(φ) of φ. Graphically, (2.3.1) reads as

�

. . .

. . .

q

x1 xp

φ φ

(φ⊗q )
(
�
(
x1, . . . , xp

))

=
µ(�)

. . .

. . .

q

φ φ

x1 xp

(µ (�))
(
φ (x1) , . . . , φ

(
xp
))

. (2.3.2)

In the special case where � is a product η of arity 0 (see Section 2.2.3) of B1, (2.3.1)
implies that the morphism φ satisfies φ (η) = µ(η).

Besides, when (K 〈C1〉 ,B1) and (K 〈C2〉 ,B2) are µ-compatible, (K 〈C2〉 ,B2) is a sub-
bialgebra of (K 〈C1〉 ,B1) if there is an injective µ-polynomial bialgebra morphism from
K 〈C2〉 to K 〈C1〉. Let (K 〈C〉 ,B) be a polynomial bialgebra. For any subset G of K 〈C〉, the
bialgebra generated by G is the smallest sub-bialgebra K 〈C〉G of K 〈C〉 containing G.
When K 〈C〉G = K 〈C〉 and G is minimal with respect to the inclusion among the subsets
of G satisfying this property, G is a minimal generating set of K 〈C〉. A bialgebra K 〈C〉
can have several minimal generating sets.

A polynomial bialgebra ideal of K 〈C〉 is a space V included in K 〈C〉 such that

�
(
x1, . . . , xi−1, f , xi+1, . . . , xp

)
∈
⊕

j∈[q]
K
〈
List{j−1}(C)

〉
⊗V ⊗K

〈
List{q−j}(C)

〉
(2.3.3)

for all biproducts � on K 〈C〉 of B of arity p and coarity q , and all i ∈ [p], f ∈ V, xk ∈ C,
k ∈ [p] \ {i} such that the left member of (2.3.3) is well-defined. Note that in (2.3.3), we
use the identification (1.2.11) between the space of all the tensors on K 〈C〉 of a given
order ` ∈ N and the polynomial space on List{`}(C). Given a polynomial bialgebra ideal
V of K 〈C〉, the quotient bialgebra K 〈C〉 /V of K 〈C〉 by V is defined as follows. Let
θ : K 〈C〉 → K 〈C〉 /V be the canonical surjection map from K 〈C〉 to its quotient space
K 〈C〉 /V. Any biproduct � on K 〈C〉 of B of arity p and coarity q gives rise to a biproduct
�V on K 〈C〉 /V of arity p and coarity q , and with the same index domain as the one of
�. This biproduct �V is defined linearly, for any valid input

(
x1, . . . , xp

)
for �, by

�V
(
θ (x1) , . . . , θ

(
xp
))

:= Tq(θ)
(
�
(
x1, . . . , xp

))
. (2.3.4)

Condition (2.3.3) ensures that (2.3.4) is well-defined.

2.3.2. Combinatorial polynomial bialgebras. In practice, and even more so in this
book, most of the encountered polynomial bialgebras are of the form (K 〈C〉 ,B) where
B contains only products and coproducts. We say in this case that K 〈C〉 is uniform.
Moreover, in most practical cases, C is a graded, a bigraded, or a colored combinatorial
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collection. When (K 〈C〉 ,B) is combinatorial, uniform, and all the products and coprod-
ucts of B are complete and concentrated, the dual bialgebra of K 〈C〉 is the bialgebra(
K 〈C〉? ,B?) where B? is the set of the dual biproducts of the biproducts of B. Note that

this bialgebra is also uniform.

It is very common, given a uniform combinatorial bialgebra (K 〈C〉 ,B), to endow C
with a structure of a combinatorial poset (C,4) in order to construct B4-families (see
Section 1.3.2). For instance, when a biproduct � has a complicated structure coefficient
map, considering an adequate partial order relation 4 on C such that the B4-family is a
set-basis with respect to � allows to infer properties of � (such as minimal generating
sets of K 〈C〉, a description of the nontrivial relations satisfied by these generators, or
even freeness properties).

2.3.3. Set-theoretic algebras. Let (K 〈C〉 ,P) be a polynomial algebra and {Bx : x ∈ C}
be one of its bases which is additionally a set-basis for all products of P at the same time.
In this case, it is possible to forget the linear structure of K 〈C〉. Indeed, each product ?̄
of arity p on K 〈C〉 gives rise to a product ? on C defined, for any valid input

(
x1, . . . , xp

)

for ?̄, by

?
(
x1, . . . , xp

)
:= y (2.3.5)

whenever

?̄
(
Bx1 , . . . ,Bxp

)
= By (2.3.6)

for an y ∈ C. This endows the collection C with products in the sense of Section 1.1.7
of Chapter 1. We say in this case that C is a set-theoretic algebra.

A large part of the concepts presented above about bialgebras work for the particular
case of set-theoretic algebras with some adjustments. For instance, to define quotients
of a set-theoretic algebra (C,P′), we do not work with polynomial algebra ideals but
with congruences of set-theoretic algebras. To be a little more precise, a set-theoretic
algebra congruence is a relation ≡ on C which is an equivalence relation satisfying

?
(
x1, . . . , xi−1, xi, xi+1, . . . , xp

)
≡ ?

(
x1, . . . , xi−1, x′i, xi+1, . . . , xp

)
(2.3.7)

for all products ? of arities p, all i ∈ [p] such that xi and x′i are objects of C satisfying
xi ≡ x′i , and all valid inputs

(
x1, . . . , xi−1, xi, xi+1, . . . , xp

)
and

(
x1, . . . , xi−1, x′i, xi+1, . . . , xp

)

for ?.

In the sequel, if “N” is the name of an algebraic structure, we call “set-N” the corre-
sponding set-theoretic structure. For instance, a set-theoretic unitary associative algebra
is a monoid. We shall further encounter in this way set-operads, colored set-operads,
and set-pros.
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3. Types of polynomial bialgebras

A type of polynomial bialgebra is specified by biproduct symbols together with their
arities and coarities, and the possible relations between them (like, for instance, associa-
tivity, commutativity, cocommutativity, or distributivity). In this section, we list some of
the very ordinary types of uniform polynomial bialgebras in combinatorics like associa-
tive, dendriform and pre-Lie algebras, and Hopf bialgebras. We give concrete examples
for each of these.

3.1. Associative and coassociative algebras. An associative algebra is a polyno-
mial space endowed with a complete associative binary product. An associative algebra
is unitary if its product is unitary. Besides, an associative algebra is commutative if its
product is commutative. To perfectly fit to the definition of types of bialgebras given
above, the type of unitary associative and commutative algebras is made of a prod-
uct symbol ? of arity 2 and a product symbol 1 of arity 0 together with the relations
(f1, f2, f3)? = 0, [f1, f2]? = 0, f ? 1(1) = f = 1(1) ? f , where and f1, f2, and f3 are any
elements of the space. Moreover, by following the definitions of Section 2.3.1, a polyno-
mial space morphism φ : K 〈C1〉 → K 〈C2〉 is a unitary commutative algebra morphism
between two unitary commutative algebras K 〈C1〉 and K 〈C2〉 if for any f1, f2 ∈ K 〈C1〉,
φ (f1 ?1 f2) = φ (f1) ?2 φ (f2) and φ (11) = 12, where ?1 (resp. ?2) is the binary product of
K 〈C1〉 (resp. K 〈C2〉) and 11 (resp. 12) is the unit of K 〈C1〉 (resp. K 〈C2〉).

A coassociative coalgebra is a polynomial space endowed with a coassociative co-
product. A coassociative coalgebra is counitary if its coproduct is counitary. Besides, a
coassociative coalgebra is cocommutative if its coproduct is cocommutative.

In all this section, A := {a1, . . . , a`} is a finite alphabet.

3.1.1. Concatenation algebra. The concatenation product is the complete binary
product · on K 〈A∗〉 defined as the concatenation product of A∗ extended by linearity.
Since · is graded and all K 〈An〉 are finite dimensional for all n ∈ N, (K 〈A∗〉 , ·) is a
combinatorial graded algebra. Moreover, · is associative, noncommutative, and admits
the product of arity zero ε , where ε is the empty word, as unit so that (K 〈A∗〉 , ·, ε) is a
unitary noncommutative associative algebra called concatenation algebra on A.

3.1.2. Shuffle algebra. The shuffle product is the binary product� on K 〈A∗〉 linearly
and recursively defined by

u� ε := u =: ε � u, (3.1.1a)

ua� vb := (u� vb) · a + (ua� v) · b (3.1.1b)

for any u, v ∈ A∗ and a, b ∈ A, where · is the concatenation product of the concatenation
algebra on A. Intuitively, � consists in summing in all the ways of interlacing the letters
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of the two words as input. For instance,
a1a2 � a2a1a1 = a1a2a2a1a1 + a1a2a2a1a1 + a1a2a1a2a1 + a1a2a1a1a2

+ a2a1a2a1a1 + a2a1a1a2a1 + a2a1a1a1a2 + a2a1a1a2a1

+ a2a1a1a1a2 + a2a1a1a1a2

= 2a1a2a2a1a1 + a1a2a1a2a1 + a1a2a1a1a2 + a2a1a2a1a1

+ 2a2a1a1a2a1 + 3a2a1a1a1a2.

(3.1.2)

Since � is graded and all K 〈An〉 are finite dimensional for all n ∈ N, (K 〈A∗〉 ,�) is a
combinatorial graded algebra. Moreover, � is associative, commutative, and admits ε
as unit so that (K 〈A∗〉 ,�, ε) is a unitary commutative associative algebra called shuffle
algebra on A.

3.1.3. Deconcatenation coalgebra. Let ∆· be the dual coproduct of the concatenation
product · of K 〈A∗〉 considered in Section 3.1.1. By (2.1.12), for all u ∈ A∗,

∆·(u) =
∑

v,w∈A∗
〈v · w, u〉 (v,w) =

∑

v,w∈A∗
v·w=u

(v,w). (3.1.3)

This coproduct is known as the deconcatenation coproduct. For instance,

∆·(a1a1a2) = (ε, a1a1a2) + (a1, a1a2) + (a1a1, a2) + (a1a1a2, ε) . (3.1.4)

Let also υ be the dual coproduct of the unit ε for the concatenation product considered
in Section 3.1.1. This coproduct υ satisfies υ(ε) = 1 and υ(u) = 0 for all nonempty words
u. The coalgebra (K 〈A∗〉 ,∆, υ) is a counitary noncocommutative coassociative coalgebra
called deconcatenation coalgebra on A.

3.1.4. Unshuffle coalgebra. Let ∆� be the dual coproduct of the shuffle product �
of K 〈A∗〉. Again by (2.1.12), for all u ∈ A∗,

∆�(u) =
∑

v,w∈A∗
〈v �w,u〉 (v,w). (3.1.5)

The coefficient 〈v �w,u〉 counts the number of ways to decompose u as two disjoint
subwords v and w, and thus,

∆�(u) =
∑

J1,J2⊆[|u|]
J1tJ2=[|u|]

(
u|J1 , u|J2

)
. (3.1.6)

This coproduct can alternatively be expressed by

∆�(a) = (ε, a) + (a, ε) (3.1.7)

for any a ∈ A, and
∆�(u) =

∏

i∈[|u|]
∆ (u(i)) (3.1.8)

for any u ∈ A∗, where the product of (3.1.8) denotes the iterated version of the 2nd
tensor power T2(·) of the concatenation product · (see Section 2.2.2). This product T2(·) is
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associative due to the fact that · is associative, and thus, its iterated version is well-defined.
This coproduct is known as the unshuffling coproduct. For instance,

∆� (a1a1a2) = ((ε, a1) + (a1, ε)) T2(·) ((ε, a1) + (a1, ε)) T2(·) ((ε, a2) + (a2, ε))

= (ε, a1a1a2) + (a2, a1a1) + (a1, a1a2) + (a1a2, a1)

+ (a1, a1a2) + (a1a2, a1) + (a1a1, a2) + (a1a1a2, ε)

= (ε, a1a1a2) + (a2, a1a1) + 2 (a1, a1a2)

+ 2 (a1a2, a1) + (a1a1, a2) + (a1a1a2, ε) .

(3.1.9)

The coalgebra (K 〈A∗〉 ,�, υ), where υ is the counit considered in Section 3.1.3, is a couni-
tary cocommutative coassociative coalgebra called unshuffle coalgebra on A.

3.2. Dendriform algebras. A dendriform algebra is a polynomial space K 〈C〉 en-
dowed with two complete binary products ≺ and � satisfying

(x1 ≺ x2) ≺ x3 = x1 ≺ (x2 ≺ x3) + x1 ≺ (x2 � x3) , (3.2.1a)

(x1 � x2) ≺ x3 = x1 � (x2 ≺ x3) , (3.2.1b)

(x1 ≺ x2) � x3 + (x1 � x2) � x3 = x1 � (x2 � x3) , (3.2.1c)

for all objects x1, x2, and x3 of C.

A polynomial algebra (K 〈C〉 , ?), where ? is a binary product, admits a dendriform
algebra structure if its product can be split into two operations

? =≺ + �, (3.2.2)

where ≺ and � are two non-degenerate binary products such that (K 〈C〉 ,≺,�) is a
dendriform algebra. Expression (3.2.2) uses the addition of biproducts exposed in Sec-
tion 2.1.3. Observe that if (K 〈C〉 , ?) admits a dendriform algebra structure, ? is associa-
tive. The associativity of ≺ + � is a consequence of Relations (3.2.1a), (3.2.1b), and (3.2.1c)
of dendriform algebras.

In all this section, A := {a1, . . . , a`} is a finite alphabet.

3.2.1. Shuffle dendriform algebra. Consider on K 〈A∗〉 the binary products ≺ and �
defined linearly and recursively by

u ≺ ε := u =: ε � u, (3.2.3a)

w � ε =: 0 := ε ≺ w, (3.2.3b)

ua ≺ v := (u� v) · a, (3.2.3c) u � vb := (u� v) · b (3.2.3d)



72 3. ALGEBRAIC STRUCTURES

for any u, v ∈ A∗, w ∈ A+, and a, b ∈ A, where · is the concatenation product of words.
In other words, u ≺ v (resp. u � v) is the sum of all the words w obtained by shuffling
u and v such that the last letter of w comes from u (resp. v). For example,

a1a2 ≺ a2a1a1 = a1a2a1a1a2 + a2a1a1a1a2 + a2a1a1a1a2 + a2a1a1a1a2

= a1a2a1a1a2 + 3a2a1a1a1a2,
(3.2.4a)

a1a2 � a2a1a1 = a1a2a2a1a1 + a1a2a2a1a1 + a1a2a1a2a1 + a2a1a2a1a1

+ a2a1a1a2a1 + a2a1a1a2a1

= 2a1a2a2a1a1 + a1a2a1a2a1 + a2a1a2a1a1 + 2a2a1a1a2a1.
(3.2.4b)

These two products endow K 〈A∗〉 with a structure of a dendriform algebra called shuffle
dendriform algebra on A. This shows moreover that the shuffle algebra (K 〈A∗〉 ,�)
admits a dendriform algebra structure since

u� v = u ≺ v + u � v (3.2.5)

for all u, v ∈ A∗. This offers also a way to recover the recursive definition (see (3.1.1a)
and (3.1.1b)) of �.

3.2.2. Max dendriform algebra. Assume here that A is a totally ordered alphabet by
ai 6 aj if i 6 j . Consider on K 〈A+〉 the binary products ≺ and � defined linearly by

u ≺ v :=





u · v if max6(u) > max6(v)
0 otherwise,

(3.2.6a)

u � v :=





u · v if max6(u) < max6(v)
0 otherwise,

(3.2.6b)

for all u, v ∈ A+, where · is the concatenation product of words. These two products
endow K 〈A+〉 with a structure of a dendriform algebra called max dendriform alge-
bra. Moreover, we have here · =≺ + � where · is the associative algebra product of
concatenation of K 〈A+〉 so that (K 〈A+〉 , ·) admits a dendriform algebra structure.

3.3. Pre-Lie algebras. A pre-Lie algebra is a polynomial space K 〈C〉 endowed with
a binary product x satisfying

(x1 x x2) x x3 − x1 x (x2 x x3) = (x1 x x3) x x2 − x1 x (x3 x x2) (3.3.1)

for all objects x1, x2, and x3 of C. This relation (3.3.1) of pre-Lie algebras says that the as-
sociator (−,−,−)x is symmetric in its two last entries, that is (x1, x2, x3)x = (x1, x3, x2)x .

3.3.1. Pre-Lie algebras from associative algebras. When (K 〈C〉 , ?) is an associative
algebra, ? satisfies in particular (3.3.1) since both left and right members are equal to
zero. For this reason, (K 〈C〉 , ?) is a pre-Lie algebra.
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3.3.2. Pre-Lie algebra of rooted trees. Recall that RT is the combinatorial graded
collection of all rooted trees (see Section 3.1 of Chapter 2). Consider now on K 〈RT〉 the
products

f(p) : K
〈
List{p} (RT)

〉
→ K 〈RT〉 (3.3.2)

defined linearly for all p ∈ N>1 and all rooted trees t1, . . . , tp by

f(p) (t1, . . . , tp
)

:=
(
•, *t1, . . . , tp+

)
. (3.3.3)

Intuitively, f(p) consists in grafting all the trees t1, . . . , tp onto a common root. This
product is symmetric with respect to all its inputs. Now, let x be the binary product on
K 〈RT〉 defined linearly and recursively by

s x t := f(p+1) (s1, . . . , sp, t
)

+
∑

i∈[p]
f(p)(s1, . . . , si−1, (si x t) , si+1, . . . , sp) (3.3.4)

for any s, t ∈ RT where s =
(
•, *s1, . . . , sp+

)
. Intuitively, x consists in summing all the

ways of connecting the root of the second operand on a node of the first. For example,

x = + + + 2 . (3.3.5)

This product endows K 〈RT〉 with a structure of a pre-Lie algebra, called the pre-Lie
algebra of rooted trees.

3.4. Hopf bialgebras. A Hopf bialgebra is a polynomial space K 〈C〉 endowed with
a complete binary product ? and a complete binary coproduct ∆ such that (K 〈C〉 , ?,1)
is a unitary associative algebra, (K 〈C〉 ,∆, υ) is a counitary coassociative coalgebra, and

∆ (x1 ? x2) = ∆ (x1) T2(?) ∆ (x2) , (3.4.1a)

υ (x1 ? x2) = υ (x1) υ (x2) , (3.4.1b)

∆(1) = (1,1), (3.4.1c)

υ(1) = 1, (3.4.1d)

for all objects x1 and x2 of C. When (K 〈C〉 , ?,1,∆, υ) is combinatorial and all its (co)-
products are concentrated, its dual is well-defined and is still a Hopf bialgebra.

Let us now provide some classical definitions about Hopf bialgebras.

3.4.1. Primitive and group-like elements. Let (K 〈C〉 , ?,1,∆, υ) be a Hopf bialgebra.
An element f of K 〈C〉 is primitive if ∆(f ) = (1, f ) + (f,1). The set PK〈C〉 of all primitive
elements of K 〈C〉 forms a subspace of K 〈C〉 and the commutator [−,−]? endows PK〈C〉

with a structure of a Lie algebra. Besides, an element f of K 〈C〉 is group-like if ∆(f ) =
(f, f ).
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3.4.2. Convolution product and antipode. Given two Hopf bialgebras (K 〈C1〉 , ?1,11,∆1, υ1)
and (K 〈C2〉 , ?2,12,∆2, υ2), if ω and ω′ are two Hopf bialgebra morphisms from K 〈C1〉 to
K 〈C2〉, the convolution of ω and ω′ is the map

ω ∗ ω′ : K 〈C1〉 → K 〈C2〉 (3.4.2)

defined linearly, for any object x of C1, by
(
ω ∗ ω′

)
(x) :=

∑

y1,y2∈C1

ξ∆1 ((x), (y1, y2)) ω (y1) ?2 ω′ (y2) , (3.4.3)

where ξ∆1 is the structure coefficient map of ∆1. This convolution product is associative,
as a consequence of the fact that ∆1 is coassociative and ?2 is associative.

Now, let (K 〈C〉 , ?,1,∆, υ) be a Hopf bialgebra. Let ν : K 〈C〉 → K 〈C〉 be the linear
map defined as the inverse of the identity map IdK〈C〉 on K 〈C〉. This map ν is the antipode
of K 〈C〉 and it can be undefined in certain cases.

3.4.3. Combinatorial connected graded Hopf bialgebras. In algebraic combinatorics,
one encounters very particular Hopf bialgebras. Most of these are combinatorial con-
nected graded Hopf bialgebras (K 〈C〉 , ?,1,∆, υ). These structures have hence a graded
product (that is, x1 ? x2 is homogeneous and of degree |x1| + |x2| for all objects x1 and
x2 of C), a cograded coproduct (that is, the sum of the sizes of each (y1, y2) appearing in
∆ (x) is |x| for all objects x of C). Moreover, each K 〈C〉 (n), n ∈ N, is finite dimensional
and, since #C(0) = 1, K 〈C〉 (0) can be identified with K. Additionally, since ? is graded,
this implies that the unit 1 is the unique element of C(0). Finally, the counit υ is the
linear map behaving as the identity map on K 〈C〉 (0) and sending all the elements of
K 〈C〉 (N>1) to 0.

PROPOSITION 3.4.1. Let (K 〈C〉 , ?,1,∆, υ) be a combinatorial connected graded Hopf
bialgebra. Then, K 〈C〉 admits a unique antipode and it satisfies, for any x ∈ C, the
recurrence

ν(x) = δ1,x −
∑

y1,y2∈C
y2 6=1

ξ∆ ((x) , (y1, y2)) ν(y1) ? y2, (3.4.4)

where δ−,− is the Kronecker symbol and ξ∆ is the structure coefficient map of ∆.

Therefore, (3.4.4) implies that the antipode of K 〈C〉 can be computed by induction
on the sizes of the objects.

3.4.4. Shuffle deconcatenation Hopf bialgebra. Let A := {a1, . . . , a`} be a finite al-
phabet. The concatenation product · (see Section 3.1.1), the unit ε (see Section 3.1.1),
the unshuffling coproduct ∆� (see Section 3.1.4), and the counit υ (see Section 3.1.3)
endow K 〈A∗〉 with a structure of a combinatorial connected graded Hopf bialgebra
(K 〈A∗〉 , ·, ε,∆�, υ). Its dual bialgebra is the Hopf bialgebra (K 〈A∗〉 ,�, ε,∆·, υ) where
� is the shuffle product (see Section 3.1.2) and ∆· is the deconcatenation coproduct (see
again Section 3.1.3).
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3.4.5. Noncommutative symmetric functions. Consider the combinatorial graded
polynomial space NCSym := K 〈Com〉 of the compositions (see Section 1.3.3 of Chap-
ter 1). Let {Sλ : λ ∈ Com} be the basis of the complete noncommutative symmetric
functions of NCSym and ? be the binary product defined linearly, for any λ,µ ∈ Com,
by

Sλ ? Sµ := Sλ·µ, (3.4.5)

where λ · µ is the concatenation of the compositions (seen as words of integers). More-
over, let ∆ be the binary coproduct defined linearly, for any λ ∈ Com, by

∆ (Sλ) :=
∏

j∈[`(λ)]




∑

n,m∈N
n+m=λj

(
S(n),S(m)

)



 , (3.4.6)

where the product of (3.4.6) denotes the iterated version of 2nd tensor power T2(?) of ?,
and for any n ∈ N>1, S(n) is the basis element indexed by the composition of length 1
whose only part is n, and S(0) is identified with the unit 1 of K. For instance,

∆ (S121) = ((1,S1) + (S1, 1)) T2(?) ((1,S2) + (S1,S1) + (S2, 1)) T2(?) ((1,S1) + (S1, 1))

= (1,S121) + (S1,S111) + (S1,S12) + (S1,S21) + 2 (S11,S11) + (S11,S2)

+ (S2,S11) + (S111,S1) + (S12,S1) + (S21,S1) + (S121, 1) .
(3.4.7)

The product ? and the coproduct ∆ endow NCSym with a structure of a combinatorial
connected graded Hopf bialgebra.

Moreover, let {Rλ : λ ∈ Com} be the family defined by

Rλ :=
∑

µ∈Com
λ4µ

(−1)`(λ)−`(µ) Sµ, (3.4.8)

where 4 is the refinement order of compositions (see Section 2.2.1 of Chapter 1). For
instance,

R212 = S212 − S23 − S32 + S5. (3.4.9)

By triangularity, this family forms a basis of NCSym and is known as the basis of ribbon
noncommutative symmetric functions. On this basis, one has, for any λ,µ ∈ Com,

Rλ ? Rµ := Rλ·µ + Rλ .µ, (3.4.10)

for any λ,µ ∈ Com, where λ · µ is the concatenation of the compositions and

λ .µ :=
(
λ1, . . . ,λ`(λ)−1,λ`(λ) + µ1,µ2, . . . ,µ`(µ)

)
. (3.4.11)

For instance,

R3112 ? R142 = R3112142 + R311342. (3.4.12)
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This Hopf bialgebra NCSym is usually known as the Hopf bialgebra of noncommu-
tative symmetric functions. To explain this name, consider an alphabet A := {a1, a2, . . . }
equipped with a total order 4 where 1 6 i 6 j implies ai4 aj . Now, let the noncommuta-
tive series

Rλ(A) :=
∑

u∈A∗
cmp(u)=λ

u, (3.4.13)

of K 〈〈A∗〉〉 defined for all λ ∈ Com, where cmp is defined in Section 1.3.3 of Chapter 1.
Observe that all Rλ(A) are polynomials when A is finite, but are series in the other case.
For instance,

R31({a1, a2}) = a1a1a2a1 + a1a2a2a1 + a2a2a2a1, (3.4.14a)
R21({a1, a2, a3}) = a1a2a1 + a1a3a1 + a1a3a2 + a2a2a1

+ a2a3a1 + a2a3a2 + a3a3a1 + a3a3a2,
(3.4.14b)

R121({a1, a2, a3}) = a2a1a2a1 + a2a1a3a1 + a2a1a3a2 + a3a1a2a1 + a3a1a3a1

+ a3a1a3a2 + a3a2a2a1 + a3a2a3a1 + a3a2a3a2.
(3.4.14c)

The linear span of all the Rλ(A), λ ∈ Com, is the space of the noncommutative symmetric
functions on A. The associative algebra structure of NCSym is compatible with these
series in the sense that

Rλ(A) · Rµ(A) = (Rλ ? Rµ) (A) (3.4.15)
for all λ,µ ∈ Com, where the product · of the left member of (3.4.15) is the usual product
of noncommutative series of K 〈〈A∗〉〉.

3.4.6. Free quasi-symmetric noncommutative symmetric functions. Let the graded
combinatorial polynomial space FQSym := K 〈S〉 of the permutations. Let {Fσ : σ ∈ S}
be the basis of the fundamental free quasi-symmetric functions of FQSym and ? be
the binary product defined linearly, for any σ, ν ∈ S, by

Fσ ? Fν :=
∑

π∈S
〈π, σ � ν̄〉Fπ , (3.4.16)

where ν̄ is the word obtained by incrementing each letter of ν by |σ|, and � is the shuffle
product of words defined in Section 3.1.2. For instance

F21 ? F12 = F2134 + F2314 + F2341 + F3214 + F3241 + F3421. (3.4.17)

This product is known as the shifted shuffle product and is sometimes denoted also as
�. Let moreover ∆ be the binary coproduct defined linearly, for any π ∈ S, by

∆ (Fπ) :=
∑

06i6|π|

(
Fstd(π(1)...π(i)),Fstd(π(i+1)...π(|π|))

)
, (3.4.18)

where std is defined in Section 1.3.5 of Chapter 1. For instance

∆ (F42513) = (1,F42513)+ (F1,F2413)+ (F21,F312)+ (F213,F12)+ (F3241,F1)+ (F42513, 1) . (3.4.19)

The product ? and the coproduct ∆ endow FQSym with a structure of a combinatorial
connected graded Hopf bialgebra.
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This Hopf bialgebra FQSym is usually known as the Hopf bialgebra of free quasi-
symmetric functions. Indeed, as for NCSym, there is a way to see the elements of
FQSym as noncommutative series. For this, consider an alphabet A := {a1, a2, . . . }
equipped with a total order 4 where 1 6 i 6 j implies ai4 aj . Let the noncommuta-
tive series

Fσ (A) :=
∑

u∈A∗
std(u)=σ−1

u, (3.4.20)

of K 〈〈A∗〉〉 defined for all σ ∈ S. For instance

F312({a1, a2, a3}) = a2a2a1 + a2a3a1 + a3a3a1 + a3a3a2, (3.4.21a)

F132({a1, a2, a3}) = a1a2a1 + a1a3a1 + a1a3a2 + a2a3a2. (3.4.21b)
The linear span of all the Fσ (A), σ ∈ S, is the space of the free quasi-symmetric functions
on A. The associative algebra structure on FQSym is compatible with these series in the
sense that

Fσ (A) · Fν(A) = (Fσ ? Fν) (A) (3.4.22)
for all σ, ν ∈ S, where the product · of the left member of (3.4.22) is the usual product
of noncommutative series of K 〈〈A∗〉〉.

Furthermore, the Hopf bialgebras FQSym and NCSym are related through the
injective morphism of Hopf bialgebras φ : NCSym→ FQSym defined linearly by

φ (Rλ) :=
∑

σ∈S
Des(σ−1)=Des(λ)

Fσ (3.4.23)

for all λ ∈ Com. For instance,
φ(R21) = F312 + F132. (3.4.24)

Observe, with the help of (3.4.14b), (3.4.21a), and (3.4.21b), in particular that (3.4.24) holds
on the noncommutative series associated with the elements of NCSym and FQSym, that
is, R21(A) = F312(A) + F132(A).

Bibliographic notes

About Incidence algebras. One of the first apparitions of incidence algebras in
combinatorics is due to Rota [Rot64]. These structures, associated with any locally fi-
nite poset, provide an abstraction of the principle of inclusion-exclusion [Sta11] through
their Möbius functions. Indeed, the usual inclusion-exclusion principle comes from the
Möbius function of the cube poset. Besides, in our exposition, we have presented the
elements of incidence algebras as polynomials of pairs of comparable elements, but in
the literature [Sta11], it is most common to see these elements as maps associating a co-
efficient with each pair of comparable elements. These two points of view are therefore
equivalent but the definition of the product of incidence algebras in terms of polynomials
is simpler.
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Dendriform algebras. Dendriform algebras are types of polynomial algebras in-
troduced by Loday [Lod01]. These structures can be used as devices to split the prod-
uct of an associative algebra into two parts by putting a dendriform algebra structure
onto it. For instance, the dendriform algebra structure put onto the shuffle algebra
(see Section 3.1.2 and 3.2.1) leads to a recursive expression for the shuffle product
(see (3.1.1a) and (3.1.1b)) known since Ree [Ree58]. We invite the reader to take a look
at [LR98, Agu00, Lod02, Foi07, EFMP08, EFM09, LV12] for a supplementary review of
properties of dendriform algebras. Besides, in the recent years, a lot of generalizations
of dendriform algebras and their dual notions were introduced, each of them splitting
an associative product in different ways and in more than two pieces. Tridendriform
algebras [LR04], quadri-algebras [AL04], ennea-algebras [Ler04], m-dendriform alge-
bras of Leroux [Ler07], m-dendriform algebras of Novelli [Nov14], and polydendriform
algebras [Gir16c,Gir16d] are examples of such structures.

About pre-Lie algebras. Pre-Lie algebras were introduced by Vinberg [Vin63] and
Gerstenhaber [Ger63] independently. These structures appear under different names in
the literature, for instance as Vinberg algebras, left-symmetric algebras, or chronological
algebras. The appellation pre-Lie algebra is now very natural since, given a pre-Lie
algebra (K 〈C〉 ,x), the commutator of x endows K 〈C〉 with a structure of a Lie algebra.
In the context of combinatorics, several pre-Lie products are defined on combinatorial
spaces by summing over all the ways to compose (in a certain sense) two combinatorial
objects. For this reason, in an intuitive way, pre-Lie algebras encode the combinatorics
of the composition of combinatorial objects in all possible ways [Cha08]. Besides, the
free objects in the category of pre-Lie algebras have been described by Chapoton and
Livernet [CL01]. They have shown that the free pre-Lie algebra generated by a set G

is the combinatorial space of all rooted trees whose nodes are labeled on G, and the
product of two such rooted trees is the sum of all the ways to connect the root of the
second tree to a node of the first. Thereby, the pre-Lie algebra (K 〈RT〉 ,x) of rooted
trees (see Section 3.3.2) is the free pre-Lie algebra generated by a singleton. For more
details on pre-Lie algebras, see [Man11].

About bialgebras. In the field of algebraic combinatorics, many types of bialgebras
have emerged recently. In [Lod08], Loday defined the notion of triples of operads, lead-
ing to the constructions of various kinds of bialgebras. This leads also to the discovery of
analogs of the Poincaré-Birkhoff-Witt and Cartier-Milnor-Moore theorems and rigidity
theorems (see as well [Cha02] and [BDO18]). Loday defined among others infinitesimal
bialgebras, forming an example of bialgebras having an associative binary product and
a coassociative binary coproduct satisfying a compatibility relation. Let us describe some
other types of bialgebras that play a role in combinatorics. Bidendriform bialgebras,
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introduced by Foissy [Foi07] are one of these. These bialgebras have two products sat-
isfying the dendriform relations and two coproducts satisfying the dual relations of den-
driform products, and all of these together satisfy some compatibility relations. There
is a notion of bidendriform bialgebra structure onto a Hopf bialgebra which leads to a
rigidity theorem in the sense that a Hopf bialgebra admitting a bidendriform bialgebra
structure is self-dual, free as an associative algebra, and free as a coassociative coalge-
bra. Moreover, in [Foi12], Foissy considered algebraic structures, named Dup-Dendr
bialgebras, having two binary products satisfying the duplicial relations [BF03, Lod08],
two binary coproducts such that their dual products satisfy the dendriform relations, and
such that these four (co)products satisfy several compatibility relations. These structures
lead to rigidity theorems in the sense that any Dup-Dendr bialgebra is free as a duplicial
algebra. In the same way, Foissy introduced also in [Foi15] structures named Com-PLie
bialgebras, that are spaces with an associative and commutative binary product, a pre-Lie
product, and a binary coproduct that satisfy compatibility relations. Another interesting
example has been brought by Livernet [Liv06] wherein bialgebra structures having a pre-
Lie product and a coproduct satisfying the dual relation of the so-called nonassociative
permutative relation have been considered to construct here again a rigidity theorem.

About Hopf bialgebras. The Hopf bialgebra NCSym of noncommutative symmetric
functions has been introduced in [GKL+95] as a generalization of the usual symmetric
functions [Mac15]. This generalization is a consequence of the fact that there is a sur-
jective morphism from NCSym to the algebra of symmetric functions. The Hopf bial-
gebra FQSym of free quasi-symmetric functions has been introduced by Malvenuto and
Reutenauer [MR95] and is sometimes called the Malvenuto-Reutenauer algebra. Due to
its interpretation [DHT02] as an algebra of noncommutative series Fσ (A), each element of
FQSym can be seen as a particular function, whence its name. Other classical examples
of Hopf bialgebras include the Poirier-Reutenauer Hopf bialgebra of tableaux [PR95],
also known as the Hopf bialgebra of free symmetric functions FSym [DHT02,HNT05].
This Hopf bialgebra is defined on the combinatorial space of all standard Young tableaux.
The Loday-Ronco Hopf bialgebra [LR98], also known as the Hopf bialgebra of binary
search trees PBT [HNT05] is defined on the combinatorial space of all binary trees. As
other modern examples of combinatorial spaces endowed with a Hopf bialgebra struc-
ture, one can cite WQSym [Hiv99] involving packed words, PQSym [NT07] involving
parking functions, Bell [Rey07] involving set partitions, Baxter [LR12, Gir12] involving
ordered pairs of twin binary trees, and Camb [CP17] involving Cambrian trees. The
study of all these structures uses a large set of tools. Indeed, it relies on algorithms
transforming words into combinatorial objects, congruences of free monoids, partials
orders structures and lattices, and polytopes and their geometric realizations. Besides, a
polynomial realization of a combinatorial Hopf bialgebra K 〈C〉 consists in seeing K 〈C〉
as an algebra of noncommutative series so that its product is the usual product of series
and its coproduct is obtained by alphabet doubling (see, for instance, [Hiv03]). In this
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text, only the polynomial realizations of NCSym and FQSym have been detailed, but all
the Hopf bialgebras discussed here have polynomial realizations.



CHAPTER 4

Nonsymmetric operads

This chapter introduces nonsymmetric operads. Our presentation relies on the
framework of graded collections and graded spaces introduced in the previous chapters.
We consider here also set-operads, algebras over operads, free operads, presentations
by generators and relations, Koszul duality and Koszulity of operads. At the end of the
chapter, several examples of operads on a large family of combinatorial collections are
provided.

1. Operads as polynomial spaces

Let us start by posing the main definitions about operads. We first present the notion
of partial composition maps on abstract operators and then focus on operads and algebras
over operads.

1.1. Composition maps. Intuitively, the elements of an operad are operations with
several inputs and one output that can be composed. We introduce here the notion of
abstract operator and two ways to compose them by the so-called partial or full composi-
tions. To consider operads, we shall expect that partial and full compositions satisfy some
relations. One of the aims of this section is to give an intuition about these relations. In
all this section, K 〈C〉 is an augmented graded polynomial space.

1.1.1. Abstract operators. From now, we shall see any homogeneous element f of
K 〈C〉 of degree n as an operator with n inputs and a single output, called abstract
operator. We will use in the context the term arity instead of size or degree, so that the
arity of f is n. Any abstract operator is depicted by following the drawing conventions
of biproducts exposed in Section 2.1.1 of Chapter 3. Therefore, f is depicted by

f

1 n. . .

. (1.1.1)

The reason to see the elements of K 〈C〉 in this way is based on the fact that we shall con-
sider compositions operations on K 〈C〉 subjected to relations that are easy to understand
through this formalism.

81
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1.1.2. Partial composition maps. Let for all n,m ∈ N>1 and i ∈ [n] binary products
of the form

◦(n,m)
i : K 〈[[[C(n), C(m)]]]×〉 → K 〈C〉 (n +m− 1). (1.1.2)

On abstract operators, these products ◦(n,m)
i behave in the following way. For any f ∈

K 〈C〉 (n) and g ∈ K 〈C〉 (m), f ◦(n,m)
i g is the abstract operator

f

1 ni. . . . . .

◦(n,m)
i

g

1 m. . .

=

f

1 n +m− 1. . . . . .g

i i +m− 1. . .

= f ◦(n,m)
i g

1 n +m− 1. . .

.

(1.1.3)
In words, f ◦(n,m)

i g is obtained by plugging the output of g onto the ith input of f . Observe
that since one input of f is used to make the connection with the output of g , the right
member of (1.1.3) is of arity n +m− 1. Moreover, observe also that the products ◦(n,m)

i
are concentrated. By a slight abuse of notation, we shall sometimes omit the (n,m) in
the notation of ◦(n,m)

i in order to denote it in a more concise way by ◦i.

When for any objects x ∈ C(n), y ∈ C(m), z ∈ C(k), and any integers i ∈ [n] and
j ∈ [m], the relations

(x ◦i y) ◦i+j−1 z = x ◦i
(
y ◦j z

)
(1.1.4)

hold, we say that the products ◦i are series associative. To understand this relation, let
us consider the abstract operators expressed by the left and right members of (1.1.4).
On the one hand, we have



x

1 ni. . . . . .

◦i y

1 mj. . . . . .



 ◦i+j−1 z

1 k. . .

=

x

1 n +m− 1. . . . . .y

i i +m− 1i + j − 1. . . . . .

◦i+j−1 z

1 k. . .

=

x

1 n +m + k − 2. . . . . .y

i i +m + k − 2. . . . . .z

i + j − 1 i + j + k − 2. . .

, (1.1.5)

and on the other,

x

1 ni. . . . . .

◦i




y

1 mj. . . . . .

◦j z

1 k. . .




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= x

1 ni. . . . . .

◦i

y

1 m + k − 1. . . . . .z

j j + k − 1. . .

=

x

1 n +m + k − 2. . . . . .y

i i +m + k − 2. . . . . .z

i + j − 1 i + j + k − 2. . .

. (1.1.6)

We observe that the two obtained abstract operators are the same, as expressed by (1.1.4).

Besides, when for any objects x ∈ C(n), y ∈ C(m), z ∈ C(k), and any integers i, j ∈ [n]
such that i < j , the relations

(x ◦i y) ◦j+m−1 z =
(
x ◦j z

)
◦i y (1.1.7)

hold, we say that the products ◦i are parallel associative. To understand this relation,
let us consider the abstract operators expressed by the left and right members of (1.1.7).
On the one hand, we have




x

1 ni j. . . . . .. . .

◦i y

1 m. . .



 ◦j+m−1 z

1 k. . .

=

x

1 n +m− 1. . . . . .j +m− 1. . .y

i i +m− 1. . .

◦j+m−1 z

1 k. . .

=

x

1 n +m + k − 2. . . . . .. . .y

i i +m− 1. . .

z

j +m + k − 2j +m− 1 . . .

, (1.1.8)

and on the other,




x

1 ni j. . . . . .. . .

◦j z

1 k. . .



 ◦i y

1 m. . .
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=

x

1 n + k − 1. . . . . .i . . . z

j j + k − 1. . .

◦i y

1 m. . .

=

x

1 n +m + k − 2. . . . . .. . .y

i i +m− 1. . .

z

j +m + k − 2j +m− 1 . . .

. (1.1.9)

We observe that the two obtained abstract operators are the same, as expressed by (1.1.7).

Finally, when there exists a product of arity 0 (see Section 2.2.3 of Chapter 3) of the
form

1 : K 〈[[[ ]]]×〉 → K 〈C〉 (1), (1.1.10)

such that for any object x ∈ C(n) and any integer i ∈ [n] the relations

1 ◦1 x = x = x ◦i 1 (1.1.11)

hold, we say that the products ◦i are unital and that 1 is the unit. To understand this
relation, let us consider the abstract operators associated with each member of (1.1.11).
This leads to the relation

1

1

◦1 x

1 n. . .

=
1

x

1 n. . .

= x

1 n. . .

(1.1.12)

for the left part of (1.1.11) and

x

1 ni. . . . . .

◦i 1

1

=
x

1 n. . . . . .1

i

= x

1 n. . .

(1.1.13)

for its right part, saying that 1 is an operator of arity 1 behaving as the identity map.

When the products ◦i are series associative, parallel associative, and unital, the ◦i are
called partial composition maps.
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1.1.3. Full composition maps. Let for all n,m1, . . . ,mn ∈ N>1 products of the form

◦(m1,...,mn) : K 〈[[[C(n), C (m1) , . . . , C (mn) ]]]×〉 → K 〈C〉 (m1 + · · ·+mn) . (1.1.14)

On abstract operators, these products ◦(m1,...,mn) behave in the following way. For any
f ∈ K 〈C〉 (n) and gi ∈ K 〈C〉 (mi), i ∈ [n], ◦(m1,...,mn) (f, g1, . . . , gn) is the abstract operator

◦(m1,...,mn)



 f

1 n. . .

, g1

1 m1. . .

, . . . , gn

1 mn. . .



 =
f

. . .g1

1 . . .

gn

m1 + · · ·+mn. . .

.

(1.1.15)

In words, ◦(m1,...,mn) (f, g1, . . . , gn) is obtained by plugging the outputs of the gi , i ∈ [n], onto
the ith inputs of f simultaneously. Observe that since each input of f is connected to a gi ,
the inputs of the right member of (1.1.15) are the ones of the gi , i ∈ [n], so that its arity
is m1 + · · · + mn. Moreover, observe also that the products ◦(m1,...,mn) are concentrated.
By a slight abuse of notation, we shall sometimes omit the (m1, . . . ,mn) in the notation
of ◦(m1,...,mn) in order to denote it in a more concise way by ◦. Moreover, we shall write
f ◦ [g1, . . . , gn] instead of ◦ (f, g1, . . . , gn).

When for any objects x ∈ C(n), yi ∈ C(mi), i ∈ [n], zi,j ∈ C(ki,j ), i ∈ [n], j ∈ [mi], the
relations

(x ◦ [y1, . . . , yn]) ◦
[
z1,1, . . . , z1,m1 , . . . , zn,1, . . . , zn,mn

]

= x ◦
[
y1 ◦

[
z1,1, . . . , z1,m1

]
, . . . yn ◦

[
zn,1, . . . , zn,mn

]]
(1.1.16)

hold, we say that the product ◦ is associative. To understand this relation, let us consider
the abstract operators expressed by the left and right members of (1.1.16). On the one
hand, we have


 x

1 n. . .

◦



 y1

1 m1. . .

, . . . , yn

1 mn. . .







◦




z1,1

1 k1,1. . .

, . . . , z1,m1

1 k1,m1. . .

, . . . , zn,1

1 kn,1. . .

, . . . , zn,mn

1 kn,mn. . .





=
x

. . .y1

1 . . .

yn

m1 + · · ·+mn. . .

◦




z1,1

1 k1,1. . .

, . . . , z1,m1

1 k1,m1. . .

, . . . , zn,1

1 kn,1. . .

, . . . , zn,mn

1 kn,mn. . .





=

x

. . .y1

. . .

yn

. . .z1,1

1 k1,1. . .

z1,m1

. . .

zn,1

. . .

zn,mn

. . .

, (1.1.17)
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and on the other,

x

1 n. . .

◦




y1

1 m1. . .

◦




z1,1

1 k1,1. . .

, . . . , z1,m1

1 k1,m1. . .



 , . . . ,
yn

1 mn. . .

◦




zn,1

1 kn,1. . .

, . . . , zn,mn

1 kn,mn. . .









= x

1 n. . .

◦





y1

. . .z1,1

1 . . .

z1,m1

k1,1 + · · ·+ k1,m1. . .

, . . . ,
yn

. . .zn,1

1 . . .

zn,mn

kn,1 + · · ·+ kn,m1. . .





=

x

. . .y1

. . .

yn

. . .z1,1

1 k1,1. . .

z1,m1

. . .

zn,1

. . .

zn,mn

. . .

. (1.1.18)

We observe that the two obtained abstract operators are the same, as expressed by (1.1.16).

Besides, when there exists a product 1 of arity 0 on K 〈C〉 satisfying 1 ∈ K 〈C〉 (1) and
such that for any object x ∈ C(n) the relations

1 ◦ [x] = x = x ◦



1, . . . ,1︸ ︷︷ ︸
n terms



 (1.1.19)

hold, we say that the products ◦ are unital and that 1 is the unit. To understand this
relation, let us consider the abstract operators associated with each member of (1.1.19).
This leads to the relation

1

1

◦



 x

1 n. . .



 =
1

x

1 n. . .

= x

1 n. . .

(1.1.20)

for the left part of (1.1.19) and

x

1 n. . .

◦





1

1

, . . . , 1

1
︸ ︷︷ ︸

n terms





=
x

. . .1

1

1

n

= x

1 n. . .

(1.1.21)

for its right part, saying that 1 is an operator of arity 1 behaving as the identity map.

When the products ◦ are associative and unital, the ◦ are called full composition
maps.
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1.1.4. Equivalence between partial and full composition maps. Let ◦i be partial
composition maps on K 〈C〉. We construct from the ◦i the products ◦(m1,...,mn), n,m1, . . . ,mn ∈
N>1, on K 〈C〉 defined linearly in the following way. For any x ∈ C(n), yi ∈ C(mi), i ∈ [n],
let us set

◦(m1,...,mn) (x, y1, . . . , yn) := (. . . ((x ◦n yn) ◦n−1 yn−1) . . . ) ◦1 y1. (1.1.22)

PROPOSITION 1.1.1. Let K 〈C〉 be an augmented graded polynomial space endowed
with partial composition maps ◦i. Then, the products ◦ on K 〈C〉 defined by (1.1.22)
are full composition maps.

Conversely, let ◦ be full composition maps on K 〈C〉 and 1 their unit. We construct
from the ◦ and 1 the products ◦(n,m)

i , n,m ∈ N>1, i ∈ [n], on K 〈C〉 defined linearly in the
following way. For any x ∈ C(n) and y ∈ C(m), let us set

x ◦(n,m)
i y := x ◦



1, . . . ,1︸ ︷︷ ︸
i−1 terms

, y, 1, . . . ,1︸ ︷︷ ︸
n−i terms



 , (1.1.23)

where 1 is the unit of the ◦.

PROPOSITION 1.1.2. Let K 〈C〉 be an augmented graded polynomial space endowed
with full composition maps ◦ and their unit 1. Then, the products ◦i on K 〈C〉 defined
by (1.1.23) are partial composition maps.

1.2. Operads. Operads are algebraic structures furnishing a formalization of the no-
tion of abstract operators and their partial and full compositions. They allow, for instance,
to mimic the composition of abstract operators for various collections of combinatorial
objects (words, trees, graphs, etc.) and make them behave like operators. We provide
here definitions about these algebraic structures and present set-operads.

1.2.1. First definitions. A nonsymmetric operad (or an operad for short) is a triple
(
K 〈C〉 ,

{
◦(n,m)
i : n,m ∈ N>1, i ∈ [n]

}
,1
)

(1.2.1)

where K 〈C〉 is an augmented graded polynomial space, the ◦i are partial composition
maps, and 1 is their unit. Equivalently, by Propositions 1.1.1 and 1.1.2, an operad is a
triple (

K 〈C〉 ,
{
◦(m1,...,mn) : n ∈ N>1,mi ∈ N>1, i ∈ [n]

}
,1
)

(1.2.2)

where K 〈C〉 is an augmented graded polynomial space, the ◦ are full composition maps,
and 1 is their unit. For this reason, in the sequel, we shall consider operads through
partial or full composition maps indifferently. Moreover, given an operad K 〈C〉 defined
through partial composition maps ◦i , we call full composition maps of K 〈C〉 the full
composition maps ◦ defined in (1.1.22). Conversely, if K 〈C〉 is defined through full
composition maps ◦, we call partial composition maps of K 〈C〉 the partial composition
maps ◦i defined in (1.1.23).
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Since an operad is a particular polynomial algebra, all the properties, definitions,
and notations about polynomial algebras exposed in Section 2 of Chapter 3 remain valid
for operads (like operad morphisms, suboperads, generating sets, operad ideals and
quotients, etc.). In particular, to be more precise, if K 〈C1〉 and K 〈C2〉 are two operads,
a map φ : K 〈C1〉 → K 〈C2〉 is an operad morphism if φ is a graded polynomial space
morphism, it sends the unit of K 〈C1〉 to the unit of K 〈C2〉, and

φ (x ◦i y) = φ(x) ◦i φ(y) (1.2.3)

for all x ∈ C1(n), y ∈ C1, and i ∈ [n]. If K 〈C〉 is an operad and G is a subset of K 〈C〉,
the operad generated by G is the smallest suboperad K 〈C〉G of K 〈C〉 containing G. A
space V included in K 〈C〉 is an operad ideal of K 〈C〉 if x ◦i f ∈ V and f ◦j y ∈ V for all
homogeneous element f of V of degree m, x ∈ C(n), y ∈ C, i ∈ [n], and j ∈ [m]. The
quotient operad K 〈C〉 /V of K 〈C〉 by V is defined as follows. Let θ : K 〈C〉 → K 〈C〉 /V
be the canonical surjection map from K 〈C〉 to K 〈C〉 /V. The space K 〈C〉 /V is endowed
with the structure of an operad through the partial composition maps defined by

θ(x) ◦i θ(y) := θ (x ◦i y) (1.2.4)

for any x ∈ C(n), y ∈ C, and i ∈ [n], where the second occurrence of ◦i in (1.2.4) is the
partial composition map of K 〈C〉.

1.2.2. Additional definitions. Let K 〈C〉 be an operad. An element f of arity 2 of
K 〈C〉 is associative if f ◦1 f − f ◦2 f = 0. If K 〈C1〉 and K 〈C2〉 are two operads, an operad
antimorphism is a graded polynomial space morphism φ : K 〈C1〉 → K 〈C2〉 sending the
unit of K 〈C1〉 to the unit of K 〈C2〉 and satisfying

φ (x ◦i y) = φ(x) ◦n−i+1 φ(y) (1.2.5)

for any x ∈ C1(n), y ∈ C1, and i ∈ [n]. A symmetry of K 〈C〉 is either an operad
automorphism or an operad antiautomorphism of K 〈C〉. The set of all symmetries of
K 〈C〉 forms a group for the map composition, called group of symmetries of K 〈C〉.

The Hadamard product of a sequence K 〈C1〉, . . . , K 〈Cp〉, p ∈ N, of operads is the
operad on the graded polynomial space K

〈[[[
C1, . . . , Cp

]]]
�
〉

where
[[[
C1, . . . , Cp

]]]
� is the

Hadamard product on collections (see Section 1.2.4 of Chapter 1). The partial composition
maps ◦i of this operad are defined linearly by

(
x1, . . . , xp

)
◦i
(
y1, . . . , yp

)
:=
(
x1 ◦i y1, . . . , yp ◦i yp

)
, (1.2.6)

for any objects
(
x1, . . . , xp

)
and

(
y1, . . . , yp

)
of
[[[
C1, . . . , Cp

]]]
�, where the occurrences of

◦i in (1.2.6) are, from left to right, the partial composition maps of K 〈C1〉, . . . , K 〈Cp〉.
The unit of the operad K

〈[[[
C1, . . . , Cp

]]]
�
〉

is
(
11, . . . ,1p

)
where 1k is the unit of K 〈Ck〉

for any k ∈ [p].
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1.2.3. Set-operads. An operad K 〈C〉 is a set-operad if C is a set-basis (see Sec-
tion 2.2.4 of Chapter 3) with respect to all the partial composition maps of K 〈C〉, and the
unit 1 is an object of C. This implies in particular that for all x ∈ C(n), y ∈ C(m), and
i ∈ [n], x◦i y is an object of C. To study a set-operad K 〈C〉, it is in some cases convenient
to forget about its linear structure and see its partial composition maps ◦i as set-theoretic
maps (see Section 2.3.3 of Chapter 3). Let us consider now that K 〈C〉 is a set-operad and
let us review some properties that operads of this kind of operad can satisfy.

A collection of maps
τn : C(n)→ [n] (1.2.7)

where n ∈ N>1 are root maps of K 〈C〉 if, for any x ∈ C(n), y ∈ C(m), and i ∈ [n],

τn+m−1 (x ◦i y) =






τn(x) +m− 1 if i 6 τn(x)− 1,
τn(x) + τm(y)− 1 if i = τn(x),
τn(x) otherwise (i > τn(x)).

(1.2.8)

In this case, we say that K 〈C〉 is a rooted operad with respect to the maps τn , n ∈ N>1.
More intuitively, this property says that in a rooted operad, each object x of C(n) has a
particular input τn(x) which is preserved by the partial composition maps.

Besides, let for any y ∈ C(m), n ∈ N>1, and i ∈ [n] the maps

•(n,y)
i : C(n)→ C(n +m− 1), (1.2.9)

defined for any x ∈ C(n) by
•(n,y)
i (x) := x ◦i y. (1.2.10)

When for all y ∈ C(m), n ∈ N>1, and i ∈ [n], all the maps •(n,y)
i are injective, K 〈C〉 is a

basic operad. More intuitively, this property says that in a basic operad, one can recover
the object x from x ◦i y with the knowledge of i and y.

1.3. Algebras over operads. One of the main interests of the theory of operads is
that each operad encodes a category of type of algebras. In this way, by studying a single
operad, it is possible to get general results about all the algebras of the encoded category.
Moreover, morphisms between operads offer general constructions to, given an algebra
of one type, obtain an algebra of another type. We explain here all these notions and
expose also the concept of free algebras over operads.

1.3.1. From operads to types of algebras. Any operad K 〈C〉 encodes a type of poly-
nomial algebras (see Section 3 of Chapter 3) called algebras over K 〈C〉 (or, for short,
K 〈C〉-algebras). A K 〈C〉-algebra is a (not necessarily graded) polynomial space K 〈D〉,
where D is a collection, which is endowed for all n ∈ N>1 with linear maps

•n : K
〈[[[
C(n),List{n}(D)

]]]
×
〉
→ K 〈D〉 (1.3.1)
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satisfying the relations imposed by the operad structure of K 〈C〉, that are, for all x ∈ C(n),
y ∈ C(m), i ∈ [n], and (a1, . . . , an+m−1) ∈ List{n+m−1}(D),

•n+m−1 (x ◦i y, (a1, . . . , an+m−1)) =

•n (x, (a1, . . . , ai−1, •m (y, (ai, . . . , ai+m−1)) , ai+m, . . . , an+m−1)) , (1.3.2a)

and for all a1 ∈ D,

•1 (1, (a1)) = a1. (1.3.2b)

In other words, any object x of C of arity n plays the role of a complete product (in the
sense of Section 2.1.1 of Chapter 3) of the form

x : K
〈
List{n}(D)

〉
→ K 〈D〉 , (1.3.3)

defined, for any (a1, . . . , an) ∈ List{n}(D) by

x (a1, . . . , an) := •n (x, (a1, . . . , an)) . (1.3.4)

Under this point of view, Relation (1.3.2a) reads as

x ◦i y

a1 an+m−1. . .

=

x

a1 an+m−1. . . . . .y

ai ai+m−1. . .

, (1.3.5)

and Relation (1.3.2b) says that 1 is the identity map on K 〈D〉. From now, to define an
algebra K 〈D〉 over an operad K 〈C〉, we shall simply describe how the objects x of C
behave as linear products on K 〈D〉.

Observe that by (1.3.2a), any associative element of K 〈C〉 gives rise to an associative
operation on K 〈D〉 (details are given in further Section 3.1.1).

1.3.2. Categories of algebras. The class of all the K 〈C〉-algebras forms a category,
called category of K 〈C〉-algebras, wherein morphisms between K 〈C〉-algebras are poly-
nomial algebra morphisms (see Section 2.3.1 of Chapter 3). More concretely, if K 〈D1〉
and K 〈D2〉 are two K 〈C〉-algebras such that D1 and D2 are two collections on a same set
of indexes, a map

φ : K 〈D1〉 → K 〈D2〉 (1.3.6)

is a K 〈C〉-algebra morphism if φ is a polynomial space morphism and satisfies

φ (x (a1, . . . , an)) = x (φ (a1) , . . . , φ (an)) (1.3.7)

for all n ∈ N>1, x ∈ C(n), and a1, . . . , an ∈ D1.
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PROPOSITION 1.3.1. Let K 〈C1〉 and K 〈C2〉 be two operads and φ : K 〈C1〉 → K 〈C2〉
be an operad morphism. Then, if K 〈D〉 is a K 〈C2〉-algebra, by setting for any n ∈ N>1,
x ∈ C1(n), and a1, . . . , an ∈ D,

x (a1, . . . , an) := (φ(x)) (a1, . . . , an) , (1.3.8)

the space K 〈D〉 becomes a K 〈C1〉-algebra.

Proposition 1.3.1 brings a way to construct K 〈C1〉-algebras from both a K 〈C2〉-
algebra and an operad morphism between K 〈C1〉 and K 〈C2〉. Some classical construc-
tions of algebras come within this framework. For instance, it is well-known that any
dendriform algebra leads to an associative algebra by considering the product obtained
by summing the two dendriform products (see Section 3.2 of Chapter 3). This construc-
tion is in fact the consequence of an operad morphism from the associative operad to
the dendriform operad (see the forthcoming Sections 3.1.1 and 3.2.3).

1.3.3. Free algebras over operads. Let us now describe particular algebras over
operads. Let S be a graded collection and let us consider the graded space

K 〈C〉(S) := K 〈C � S〉 (1.3.9)

where � is the composition product of graded collections (see Section 1.2.9 of Chapter 1).
Let us endow K 〈C〉(S) with the products x ∈ C(n), n ∈ N>1, defined linearly, for all objects(
yi,
(
si,1, . . . , si,|yi |

))
of (C � S) (mi), mi ∈ N>1, i ∈ [n], by

x
((
y1,
(
s1,1, . . . , s1,|y1|

))
, . . . ,

(
yn,
(
sn,1, . . . , sn,|yn |

)))

:=
(
x ◦ [y1, . . . , yn] ,

(
s1,1, . . . , s1,|y1|, . . . , sn,1, . . . , sn,|yn |

))
. (1.3.10)

PROPOSITION 1.3.2. Let K 〈C〉 be an operad and S be a graded collection. Then,
the space K 〈C〉(S) endowed with the linear products x ∈ C defined by (1.3.10) is a
K 〈C〉-algebra.

Let now

ι : S → K 〈C〉(S) (1.3.11)

be the map defined for any s ∈ S by ι(s) := (1, (s)), where as usual, 1 denotes the unit of
K 〈C〉. This map can be seen as an inclusion of S into K 〈C〉(S).

THEOREM 1.3.3. Let K 〈C〉 be an operad and S be a graded collection. Then, K 〈C〉(S)

is the unique K 〈C〉-algebra (up to isomorphism) such that for any graded K 〈C〉-
algebra K 〈D〉 and any map f : S → K 〈D〉 respecting the sizes, there exists a unique
K 〈C〉-algebra morphism φ : K 〈C〉(S) → K 〈D〉 such that f = φ ◦ ι.
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Theorem 1.3.3 provides the fact that K 〈C〉(S) satisfies a universality property saying
(with the notations of the statement of the theorem) that the diagram

S K 〈D〉

K 〈C〉(S)

f

ι φ (1.3.12)

commutes and therefore, that K 〈C〉(S) is a free object in the category of the K 〈C〉-
algebras. For this reason, we call K 〈C〉(S) the free K 〈C〉-algebra over S.

When • is an atom, the free K 〈C〉-algebra K 〈C〉({•}) admits the following description.
First, since • is of size 1, by Relation (1.2.26a) of Chapter 1, K 〈C〉({•}) is isomorphic (as a
polynomial space) to K 〈C〉 and each basis element

(
x, •|x|

)
of K 〈C〉({•}) can be identified

with the basis element x ∈ C of K 〈C〉. Moreover, by (1.3.10), the operations x ∈ C(n),
n ∈ N>1, of K 〈C〉 satisfy, for any y1, . . . , yn ∈ C,

x (y1, . . . yn) := x ◦ [y1, . . . yn] . (1.3.13)

2. Free operads, presentations, and Koszulity

Free operads are intuitively operads wherein partial composition maps satisfy only
the required relations. These operads can be realized as spaces of syntax trees. We
present here some general notions for operads related to free operads: presentations by
generators and relations, Koszul duality, and Koszulity for binary and quadratic operads.

2.1. Free operads. Let us start by defining free operads, exposing the universality
property they satisfy, and a notion of factorization of the elements of a operad relying
on free operads.

2.1.1. Operads of syntax trees. Let G be an augmented graded collection. The free
operad over G is the operad

FO(G) := K
〈
STG

⊥
〉
, (2.1.1)

where STG
⊥ is the graded collection of all the G-syntax trees (see Section 2.1 of Chapter 2).

The space FO(G) is endowed with the linearizations of the partial grafting operations ◦i ,
i ∈ N>1, defined in Section 2.2.1 of Chapter 2. The unit of FO(G) is the only G-syntax
tree ⊥ of arity 1 and degree 0.

Recall, as defined in Section 2.1 of Chapter 2, that for any x ∈ G, c(x) is the corolla
labeled by x. We shall from now see c as a map

c : G→ FO(G) (2.1.2)
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called inclusion map. In the sequel, if required by the context, we shall implicitly see
any element x of G as the corolla c(x) of FO(G). For instance, when x ∈ G(n) and y ∈ G,
we shall simply denote by x ◦i y the syntax tree c(x) ◦i c(y) for any i ∈ [n].

Free operads satisfy the following universality property. The free operad FO(G) is
the unique operad (up to isomorphism) such that for any operad K 〈C〉 and any map
f : G→ K 〈C〉 respecting the arities, there exists a unique operad morphism φ : FO(G)→
K 〈C〉 such that f = φ ◦ c. In other terms, the diagram

G K 〈C〉

FO(G)

f

c φ (2.1.3)

commutes.

2.1.2. Evaluations and treelike expressions. Let K 〈C〉 be an operad. Since C is an
augmented graded collection, one can consider the free operad FO(C) of the C-syntax
trees. By definition, the fundamental basis of FO(C) is the set of the syntax trees on C.
The evaluation map of K 〈C〉 is the map

ev : FO(C)→ K 〈C〉 (2.1.4)

defined linearly by induction, for any C-syntax tree t, by

ev(t) :=





1 ∈ K 〈C〉 if t =⊥,
ωt(ε) ◦ [ev (t1) , . . . , ev (tk)] otherwise,

(2.1.5)

where the ◦ are the full composition maps of K 〈C〉, ωt(ε) is the label of the root of t,
and k is the root arity of t. This map ev is the unique surjective operad morphism from
FO(C) to K 〈C〉 satisfying ev(c(x)) = x for all x ∈ C.

For any element f of K 〈C〉, a treelike expression of f is an element f ′ of FO(C) such
that ev(f ′) = f . A treelike expression can therefore be thought as a factorization in an
operad.

2.2. Presentations by generators and relations. To understand the structure of
an operad, it is in most of the cases fruitful to see it as a quotient of a free operad,
leading to the notion of presentation by generators and relations. Indeed, by comparing
the presentations of two operads, it is most of the time easy to construct injective or
surjective morphisms between them. Moreover, knowing a presentation of an operad
facilitates the description of the category of the algebras it encodes. We present here a
tool coming from the theory of rewrite systems on syntax trees to establish presentations.
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2.2.1. Presentations. A presentation of an operad K 〈C〉 consists in a pair (G,R) such
that G is an augmented graded collection, R is a subspace of FO(G) and

K 〈C〉 ' FO(G)/〈R〉 (2.2.1)

where 〈R〉 is the operad ideal of FO(G) generated by R. We call G the set of generators
and R the space of relations of K 〈C〉.

We say that a presentation (G,R) of K 〈C〉 is quadratic if R is a homogeneous
subspace of FO(G) consisting in syntax trees of degree 2. Besides, we say that (G,R) is
binary if G has only elements of size (arity) 2. By extension, we say also that K 〈C〉 is
quadratic (resp. binary) if it admits a quadratic (resp. binary) presentation.

There is a close link between operad ideals, closures of rewrite rules of syntax trees
(see Section 2.3.2 of Chapter 2), and spaces induced by rewrite rules (see Section 1.1.4 of
Chapter 3) brought by the following statement.

PROPOSITION 2.2.1. Let G be an augmented graded collection and
(
STG

⊥ ,→
)

be a
rewrite system. Then, 〈

R(STG
⊥ ,→)

〉
= R(STG

⊥ ,Ñ). (2.2.2)

In the statement of Proposition 2.2.1, recall that R(STG
⊥ ,→) denote the space induced

by
(
STG

⊥ ,→
)

and R(STG
⊥ ,Ñ) denotes the space induced by the closure of

(
STG

⊥ ,→
)
.

2.2.2. Proving presentations through rewrite systems. Rewrite systems on syntax
trees (see Section 3 of Chapter 1 and Section 2.3 of Chapter 2) are powerful tools to prove
that a given operad admits a conjectured presentation. The following result provides a
way to establish presentations of operads.

THEOREM 2.2.2. Let K 〈C〉 be an operad, G be a subcollection of C, and R be a
subspace of FO(G) of syntax trees of degrees 2 or more. If

(i) the collection G is a generating set of K 〈C〉 as an operad;
(ii) for any f ∈ R, ev(f ) = 0;

(iii) there exists a rewrite system
(
STG

⊥ ,→
)

being an orientation of R, such that
its closure

(
STG

⊥ ,Ñ
)

is convergent, and its set of normal forms N(STG
⊥ ,Ñ) is

isomorphic (as a graded collection) to C,
then (G,R) is a presentation of K 〈C〉.

In practice, there are at least two ways to use Theorem 2.2.2 to establish a presentation
of an operad K 〈C〉. The first one is the most obvious: it consists first in finding a
generating set G of K 〈C〉, then conjecturing (likely with the help of the computer) a space
of relations R and a rewrite system

(
STG

⊥ ,→
)

such that all conditions (i), (ii), and (iii)
are satisfied. This can be technical (especially to prove that the closure

(
STG

⊥ ,Ñ
)

is
convergent), and relies heavily on computer exploration. The second way requires as a
prerequisite that K 〈C〉 is combinatorial (and thus, all its homogeneous components are
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finite dimensional). In this case, we need here also to find a generating set G of K 〈C〉, a
space of relations R and a rewrite system

(
STG

⊥ ,→
)

such that (i), and (ii) hold, and that C
and N(STG

⊥ ,Ñ) are isomorphic as graded combinatorial collections. The difference with
the first way occurs for (iii): it is now sufficient to prove that

(
STG

⊥ ,Ñ
)

is terminating
(and not necessarily convergent). Indeed, if

(
STG

⊥ ,Ñ
)

is terminating, since K 〈C〉 is
combinatorial,

dimK 〈C〉 (n) = #N(STG
⊥ ,Ñ)(n) > dim FO(G)/〈R〉(n) (2.2.3)

for all n ∈ N>1. The inequality of (2.2.3) comes from the fact that, since we do not know
if
(
STG

⊥ ,Ñ
)

is confluent, it can have more normal forms of arity n than the dimension
of FO(G)/〈R〉 in arity n. It follows from (2.2.3), by using straightforward arguments, that
there is an operad isomorphism from FO(G)/〈R〉 to K 〈C〉.

2.2.3. Realizations and presentations. Defining an operad can be done in at least
two different ways. The first way consists in describing explicitly an augmented graded
polynomial space K 〈C〉 together with algorithms for the computation of the partial com-
position maps ◦i involving objects of C. This concrete manner provides a realization
of an operad. The second way consists in defining an operad through its presentation
(G,R), that is, an operad which is by definition isomorphic to FO(G)/〈R〉. This manner
provides only an abstract definition of an operad since nor the underlying space neither
the partial composition maps of the operad are known at this stage. In practice, to fully
understand an operad, it is most of the time useful to know one of its realizations and
one of its presentations.

2.2.4. From presentations to types of algebras. The knowledge of a presentation
(G,R) of an operad K 〈C〉 leads to a simple description of the category of K 〈C〉-algebras.
Indeed, the symbols of G specify the products of the algebras of the category, and the
relations of R specify the relations between these products. This relies on the fact that
since G is a generating set of K 〈C〉, any f ∈ K 〈C〉 (n) writes as an expression involving
the linear structure of K 〈C〉, its partial composition maps, and elements of G. Now, for
any K 〈C〉-algebra K 〈D〉, Relation (1.3.2a) implies that one can write any f (a1, . . . , an),
a1, . . . , an ∈ K 〈D〉, in terms of a linear combination of compositions of products of G.
Hence, the knowledge of the behavior of each product x ∈ G on K 〈D〉 is enough to know
the behavior of any product f ∈ K 〈C〉 (n), n ∈ N>1, on K 〈D〉. Moreover, the relations
between the products of G satisfied by any K 〈C〉-algebra are encoded by the elements of
R. Indeed, each element f of R is a formal sum of G-syntax trees which is, by definition,
equated with 0 (that is, ev(f ) = 0).

2.3. Koszulity. Given a presentation of a quadratic and binary operad, one can com-
pute a presentation of another operad, namely of its Koszul dual. This kind of duality has
a close connection with the concept of Koszulity of operads which is defined originally
in an algebraic way. This property on operads can be rephrased in terms of properties
of orientations of spaces of relations and rewrite systems. As a concrete consequence
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of Koszulity, given a combinatorial Koszul operad, its Hilbert series and the one of its
Koszul dual are inverse (in a certain sense) one of the other.

2.3.1. Koszul duality. Let K 〈C〉 be an operad admitting a binary and quadratic pre-
sentation (G,R) where G is finite, the Koszul dual of K 〈C〉 is the operad K 〈C〉!, isomor-
phic to the operad admitting the presentation

(
G,R⊥

)
where R⊥ is the annihilator of R

in FO(G) with respect to the linear map

〈−〉 : K
〈[[[

STG
⊥ (3),STG

⊥ (3)
]]]
×

〉
→ K (2.3.1)

linearly defined, for all x, x′, y, y ′ ∈ G(2), by

〈(
x ◦i y, x′ ◦i′ y ′

)〉
:=






1 if x = x′, y = y ′, and i = i′ = 1,
−1 if x = x′, y = y ′, and i = i′ = 2,
0 otherwise.

(2.3.2)

To not overload the notation, we write 〈t, s〉 instead of 〈(t, s)〉 for any pair (t, s) of G-syntax
trees of arity 3 and degree 2.

Then, with knowledge of a presentation of K 〈C〉, one can compute a presentation
of K 〈C〉!.

2.3.2. Koszulity. An operad K 〈C〉 admitting a quadratic presentation is Koszul if its
Koszul complex is acyclic. Furthermore, when K 〈C〉 is Koszul, combinatorial, and admits
a binary and quadratic presentation, the Hilbert series of K 〈C〉 and of its Koszul dual
K 〈C〉! are related by

HK〈C〉

(
−HK〈C〉! (−t)

)
= t = HK〈C〉!

(
−HK〈C〉(−t)

)
. (2.3.3)

Relation (2.3.3) can be used either to prove that an operad is not Koszul (it is the case when
the coefficients of the hypothetical Hilbert series of the Koszul dual admits coefficients
that are not nonnegative integers) or to compute the Hilbert series of the Koszul dual of
a Koszul operad.

The Koszulity of an operad K 〈C〉 can be proved by using rewrite systems on syntax
trees, in the following way.

PROPOSITION 2.3.1. Let K 〈C〉 be an operad admitting a quadratic presentation
(G,R). If there exists an orientation

(
STG

⊥ ,→
)

of R such that its closure
(
STG

⊥ ,Ñ
)

is
a convergent rewrite system, then K 〈C〉 is Koszul.

When
(
STG

⊥ ,Ñ
)

satisfies the conditions contained in the statement of Proposition 2.3.1,
the set of G-syntax trees that are normal forms N(STG

⊥ ,Ñ) forms a basis of FO(G)/〈R〉,
called Poincaré-Birkhoff-Witt basis.
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One of the main merits of Koszul operads with Poincaré-Birkhoff-Witt bases is that
they come with a generic way to build an associated realization. Assume that (G,R) is
a quadratic presentation and let us set the goal to find a realization of FO(G)/〈R〉. If one
can construct an orientation

(
STG

⊥ ,→
)

of R such that
(
STG

⊥ ,Ñ
)

is a convergent rewrite
system, by Proposition 2.3.1, the set of all normal forms of

(
STG

⊥ ,Ñ
)

forms a basis of
FO(G)/〈R〉. Moreover, to compute the partial composition t◦i s of two such normal forms
t and s, start with the syntax tree r := t ◦i s obtained by using the partial composition
map ◦i of FO(G), and then rewrite r using Ñ as much as possible in order to obtain a
normal form r′. This process is well-defined since

(
STG

⊥ ,Ñ
)

is convergent. We have
established the fact that the space K

〈
N(STG

⊥ ,Ñ)
〉

is isomorphic to FO(G)/〈R〉 and that the
partial composition maps just described endow this first space with an operad structure
having (G,R) as presentation.

3. Main operads

We provide here classical examples of operads. These examples are divided into
three categories depending on the general families of the involved combinatorial objects:
words, trees, or graphs. We also present two general constructions to obtain, respectively,
operads on words and operads on graphs. Table 4.1 contains an overview of these.

3.1. Operads of words. Five examples of operads are provided here. Their com-
mon point is that they are defined on graded spaces of families of words. The associative
and diassociative operads seem not, at first glance, operads of words. We shall explain
how to provide a realization of these two operads as operads of words through a general
construction of operads from monoids.

3.1.1. Associative operad. Let A := {an : n ∈ N>1} be the graded collection where
|an| := n for any n ∈ N>1. The associative operad As is the space K 〈A〉 endowed with
the partial composition maps ◦i defined linearly, for any an ∈ A(n), am ∈ A(m), and i ∈ [n],
by

an ◦i am := an+m−1. (3.1.1)

The unit of As is a1. This operad is a set-operad, is combinatorial, and its Hilbert series
satisfies

HAs(t) = t
1− t . (3.1.2)

Moreover, As admits the presentation (G,R) where G := {a2} and R is the space gener-
ated by

c (a2) ◦1 c (a2)− c (a2) ◦2 c (a2) . (3.1.3)
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Operad Objects Arity Set-operad Binary Quadratic

As Integers Value Yes Yes Yes

Per Permutations Length Yes No Yes

Dias Word on {0, 1} with one 0 Length Yes Yes Yes

TM Words on M Length Yes No No

Motz Motzkin paths Points Yes No Yes

Mag Binary trees Leaves Yes Yes Yes

Dup Binary trees Int. nodes Yes Yes Yes

Dendr Binary trees Int. nodes No Yes Yes

BS Schröder trees Leaves Yes Yes Yes

PLie Standard rooted trees Nodes No No Yes

NAP Standard rooted trees Nodes Yes No ?

NCT Noncrossing trees Sides Yes Yes Yes

BNC Bicolored noncross. config. Sides Yes Yes Yes

Grav Gravity chord config. Sides Yes No No

CM M̄-config. Sides Yes No No

NCM Noncross. M̄-config. Sides Yes No No

TABLE 4.1. Main properties of some operads. Here, M is a monoid.

Since G contains only a2, any algebra over As is a space K 〈D〉 endowed with a
binary product a2. Moreover, since R contains the element (3.1.3), we have for any
f1, f2, f3 ∈ K 〈D〉,

0 = (a2 ◦1 a2 − a2 ◦2 a2) (f1, f2, f3)

= (a2 ◦1 a2) (f1, f2, f3)− (a2 ◦2 a2) (f1, f2, f3)

= a2 (a2 (f1, f2) , f3)− a2 (f1, a2 (f2, f3)) .
(3.1.4)

This is equivalent to the relation

(f1 a2 f2) a2 f3 − f1 a2 (f2 a2 f3) = 0 (3.1.5)

written in infix way, implying that a2 is associative. Hence, any As-algebra is an associative
algebra.
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3.1.2. Operad of permutations. For any permutation σ of S(n), i ∈ [n], and k ∈ N, let
↑ki (σ ) be the word on N obtained by incrementing by k the letters of σ greater than i. The
operad of permutations Per is the space K 〈S〉 endowed with the partial composition
maps ◦i defined linearly, for any σ ∈ S(n), ν ∈ S(m), and i ∈ [n] in the following way.
First, let σ ′ :=↑m−1

σ (i) (σ ) and ν′ :=↑σ (i)−1
0 (ν). The partial composition of σ and ν is defined

as
σ ◦i ν := σ ′|[1,i−1] ν′ σ ′|[i+1,n]. (3.1.6)

For instance,
123 ◦2 12 = 1234, (3.1.7a)

7415623 ◦4 231 = 941675823 (3.1.7b)

are two partial compositions in Per. The unit of Per is the permutation 1 ∈ S(1). This
operad is a set-operad, is combinatorial, and its Hilbert series satisfies

HPer(t) =
∑

n∈N>1

n! tn. (3.1.8)

A simple permutation is a permutation σ such that for all factors u of σ , if the
letters of u form an interval of N then |u| = 1 or |u| = |σ|. For instance, the permutation
6241357 is not simple since the letters of the factor u := 2413 form an interval of N. On
the other hand, the permutation 5137462 is simple.

The operad Per admits the presentation (G,R) where G is the set of all simple
permutations of sizes 2 or more and R is the space generated by

c(12) ◦1 c(12)− c(12) ◦2 c(12), (3.1.9a)

c(21) ◦1 c(21)− c(21) ◦2 c(21). (3.1.9b)

3.1.3. Diassociative operad. Let E := {en,k : n ∈ N>1, k ∈ [n]} be the graded collec-
tion where |en,k| := n for any n ∈ N>1 and k ∈ [n]. The diassociative operad Dias is
the space K 〈E〉 endowed with the partial composition maps ◦i defined linearly, for any
en,k ∈ E(n), em,` ∈ E(m), and i ∈ [n], by

en,k ◦i em,` =






en+m−1,k+m−1 if i < k,
en+m−1,k+`−1 if i = k,
en+m−1,k otherwise (i > k).

(3.1.10)

The unit of Dias is e1,1. This operad is a set-operad, is combinatorial, and its Hilbert
series satisfies

HDias(t) = t
(1− t)2 =

∑

n∈N>1

n tn. (3.1.11)

Moreover, Dias admits the presentation (G,R) where G := {e2,1, e2,2} and R is the space
generated by, by denoting by a (resp. `) the elements e2,1 (resp. e2,2),

c(a) ◦1 c(a)− c(a) ◦2 c(a), c(a) ◦1 c(a)− c(a) ◦2 c(`), (3.1.12a)
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c(a) ◦1 c(`)− c(`) ◦2 c(a), (3.1.12b)

c(`) ◦1 c(a)− c(`) ◦2 c(`), c(`) ◦1 c(`)− c(`) ◦2 c(`). (3.1.12c)

It is possible to show that the closure
(
STG

⊥ ,Ñ
)

of the orientation
(
STG

⊥ ,→
)

of R defined
by

c(a) ◦2 c(a)→ c(a) ◦1 c(a), c(a) ◦2 c(`)→ c(a) ◦1 c(a), (3.1.13a)

c(`) ◦2 c(a)→ c(a) ◦1 c(`), (3.1.13b)

c(`) ◦1 c(a)→ c(`) ◦2 c(`), c(`) ◦1 c(`)→ c(`) ◦2 c(`). (3.1.13c)

is convergent. Its normal forms are the syntax trees that avoid the trees appearing in
the left members of (3.1.13a), (3.1.13b), and (3.1.13c). All this implies, by Proposition 2.3.1,
that Dias is Koszul.

Besides, any algebra over Dias is space K 〈D〉 endowed with two binary products a
and ` such that both a and ` are associative (as consequences of (3.1.12a) and (3.1.12c)),
and, for any x, y, z ∈ D,

x a y a z = x a (y ` z), (3.1.14a)

(x ` y) a z = x ` (y a z), (3.1.14b)

(x a y) ` z = x ` y ` z. (3.1.14c)

These structures are called diassociative algebras.

3.1.4. From monoids to operads. We describe here a general way for constructing
operads of words. Let M be a monoid with an associative product ? admitting 1 as unit.
We denote by TM the space K 〈M+〉 whereM+ is the graded collection of all nonempty
words onM seen as an alphabet. The space TM is endowed with the partial composition
maps ◦i defined linearly, for any u ∈ M(n), v ∈ M(m), and i ∈ [n], by

u ◦i v := u(1) . . . u(i − 1) (u(i) ? v(1)) . . . (u(i) ? v(m))u(i + 1) . . . u(n). (3.1.15)

PROPOSITION 3.1.1. For any monoid M, TM is an operad.

The unit of TM is the unit 1 of the monoid M, seen as a word of length 1. The
operad TM is a set-operad. Moreover, when M is finite, TM is combinatorial and its
Hilbert series satisfies

HTM(t) = t
1−mt =

∑

n∈N>1

mn tn (3.1.16)

where m := #M.

Let us consider an example. Let M := {a,b}∗ be a free monoid of words. Then,
TM is the space of all words whose letters are words on {a,b}. We call such element
multiwords. For instance, (aa,ba,b, ε, a) is a multiword of arity 5 of TM and

(aa,ba,b, ε, a) ◦3 (ab, ε, a) = (aa,ba,bab,b,ba, ε, a) (3.1.17)

is a partial composition in TM.
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PROPOSITION 3.1.2. Let M be a monoid. Then, the operad TM admits the presen-
tation (G,R) where G :=Mt {11} and R is the space generated by

c(11) ◦1 c(11)− c(11) ◦2 c(11), (3.1.18a)

c(x) ◦1 c(y)− c(x ? y), x, y ∈ M, (3.1.18b)

c(11) ◦ [c(x), c(x)]− c(x) ◦1 c(11), x ∈ M. (3.1.18c)

Observe that the presentation of TM provided by Proposition 3.1.2 is not minimal in
the sense that the exhibited generating set G may be not minimal.

The operads As and Dias can be obtained through this construction T. First, one
can check that As ' T{1} where {1} is the trivial monoid. An isomorphism between
As and T{1} is provided by the linear map φ : As → T{1} satisfying φ (an) = 1n for all
n ∈ N>1. For instance,

111111 ◦3 11 = 1111111 (3.1.19)

is a partial composition in this realization of As. Besides, Dias is isomorphic to the sub-
operad of T(N,max) generated by the words 01 and 10. An isomorphism between Dias
and T(N,max){01,10} is provided by the linear map φ : Dias → T(N,max){01,10} satisfying
φ
(
1k01`

)
= ek+1+`,k+1 for all k, ` ∈ N. For instance,

11011 ◦3 01 = 110111, (3.1.20a)

11011 ◦4 01 = 110111 (3.1.20b)

are two partial compositions in this realization of Dias.

3.1.5. Operad of Motzkin words. A Motzkin word is a nonempty word u on N start-
ing and finishing by 0 and such that |u(i) − u(i + 1)| 6 1 for all i ∈ [|u| − 1]. We denote
here by M the graded collection of all the Motzkin words where the size of a word is
its length. Let Motz be the suboperad of T(N,+) generated by the set {00, 010}. It is
possible to show by induction on the arities that Motz = K 〈M〉. From the definition of
the construction T, the partial composition maps ◦i of Motz behave as follows. Given
two Motzkin words u and v, u ◦i v is the Motzkin word obtained by replacing the letter
at position i in u by a copy of v wherein each of its letters is incremented by u(i). For
instance,

0112321010 ◦4 0122110 = 0112344332321010 (3.1.21)

is a partial composition in Motz. By representing a Motzkin word u as a path in the
quarter plane (that is, by drawing points (i − 1, u(i)) for all positions i and by connecting
all pairs of adjacent points by lines), (3.1.21) becomes

◦4 = . (3.1.22)
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The unit of Motz is , the Motzkin word 0. This operad is a set-operad, is combinatorial,
and its Hilbert series satisfies

HMotz(t) = 1− t −
√

1− 2t − 3t2
2t . (3.1.23)

The first coefficients of its Hilbert series are

1, 1, 2, 4, 9, 21, 51, 127, 323 (3.1.24)

and form Sequence A001006 of [Slo]. Moreover, Motz admits the presentation (G,R)
where

G := { , } (3.1.25)
and R is the space generated by

c ( ) ◦1 c ( )− c ( ) ◦2 c ( ) , (3.1.26a)

c
( )

◦1 c ( )− c ( ) ◦2 c
( )

, (3.1.26b)
c ( ) ◦1 c

( )
− c

( )
◦3 c ( ) , (3.1.26c)

c
( )

◦1 c
( )

− c
( )

◦3 c
( )

. (3.1.26d)

3.2. Operads of trees. Six examples of operads are provided here. Their common
point is that they are defined on augmented graded spaces of families of trees: binary
trees (seen endowed with several size functions), bicolored Schröder trees, and labeled
rooted trees.

3.2.1. Magmatic operad. The magmatic operad Mag is the space K 〈BT⊥〉 (where
BT⊥ is the combinatorial graded collection of binary trees defined in Section 1.2.2 of
Chapter 2) endowed with the partial composition maps ◦i defined as the linearizations of
the partial grafting defined in Section 2.2.1 of Chapter 2. For instance,

◦4 = (3.2.1)

is a partial composition in Mag. The unit of Mag is . This operad is a set-operad, is
combinatorial, and its Hilbert series satisfies

HMag(t) = 1−
√

1− 4t
2 =

∑

n∈N>1

(
2n − 1
n − 1

)
1
nt

n. (3.2.2)

Moreover, Mag admits the presentation (G,R) where

G :=
{ }

(3.2.3)

and R is the trivial space.

Any algebra over Mag is a space K 〈D〉 with a binary product which does satisfy any
required relation.

http://oeis.org/A001006
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3.2.2. Duplicial operad. The duplicial operad Dup is the space K 〈Aug (BT•)〉 (where
BT• is the combinatorial graded collection of binary trees defined in Section 1.3.6 of
Chapter 1) endowed with the partial composition maps ◦i defined linearly, for any t ∈
Aug (BT•) (n), s ∈ Aug (BT•) (m), and i ∈ [n], by r := t ◦i s where r is the binary tree
obtained by replacing the ith (with respect to the infix order) internal node u of t by a
copy of s, and by grafting the left subtree of u to the first leaf of the copy, and the right
subtree of u to the last leaf of the copy. For instance,

◦6 = (3.2.4)

is a partial composition in Dup. The unit of Dup is . This operad is a set-operad, is
combinatorial, and its Hilbert series satisfies

HDup(t) = 1− 2t −
√

1− 4t
2t =

∑

n∈N>1

(
2n
n

)
1

n + 1 t
n. (3.2.5)

Moreover, Dup admits the presentation (G,R) where

G :=
{

,
}

(3.2.6)

and R is the space generated by, by denoting by� (resp. �) the first (resp. second) tree
of (3.2.6),

c(�) ◦1 c(�)− c(�) ◦2 c(�), (3.2.7a)

c(�) ◦1 c(�)− c(�) ◦2 c(�), (3.2.7b)

c(�) ◦1 c(�)− c(�) ◦2 c(�). (3.2.7c)

Any algebra over Dup is a space K 〈D〉 endowed with two binary products � and �
such that both � and � are associative (as consequences of (3.2.7a) and (3.2.7b)), and,
for any x, y, z ∈ D,

(x�y)�z = x�(y�z). (3.2.8)

These structures are called duplicial algebras.

3.2.3. Dendriform operad. The dendriform operad Dendr is defined as the operad
admitting the presentation (G,R) where G := G(2) := {≺,�} andR is the space generated
by

c(≺) ◦1 c(≺)− c(≺) ◦2 c(≺)− c(≺) ◦2 c(�), (3.2.9a)

c(≺) ◦1 c(�)− c(�) ◦2 c(≺), (3.2.9b)

c(�) ◦1 c(≺) + c(�) ◦1 c(�)− c(�) ◦2 c(�). (3.2.9c)
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The dendriform operad and the diassociative operad are the Koszul duals one of
the other. This can be shown by computing a basis of R⊥ where R is the space of
relations of Dendr, and by observing that R⊥ and the space of relations of Dias shown
in Section 3.1.3 are the same (by replacing, respectively, by a and ` the generators ≺
and � appearing in it). As a consequence of this fact and the Koszulity of Dias, the
Hilbert series HDendr(t) and HDias(t) satisfy (2.3.3). It is then possible to obtain the explicit
description

HDendr(t) = 1− 2t −
√

1− 4t
2t =

∑

n∈N>1

(
2n
n

)
1

n + 1 t
n (3.2.10)

for the Hilbert series of Dendr. This shows that Dendr is, as a combinatorial polynomial
space, the space K 〈Aug (BT•)〉.

From the definition of Dendr by generators and relations, one can observe that any
algebra over Dendr is a dendriform algebra (see Section 3.2 of Chapter 3). Moreover,
the free dendriform algebra over one generator is the space Dendr, that is the linear
span of all nonempty binary trees, endowed with the linear binary products ≺ and �
defined recursively, for any nonempty tree s, and binary trees t1 and t2 by

s ≺ := s =: � s, (3.2.11a) ≺ s := 0 =: s � , (3.2.11b)

t1 t2

≺ s :=
t1 t2 ≺ s

+
t1 t2 � s

,

(3.2.11c)

s �
t1 t2

:=
s � t1 t2

+
s ≺ t1 t2

.

(3.2.11d)

Note that neither ≺ nor � need to be defined. We have for instance,

≺ = + + ,

(3.2.12a)

� = + + .

(3.2.12b)

Besides, one can check that the element ≺ + � of Dendr is associative. This implies
that the linear map φ : As → Dendr defined by φ(a2) :=≺ + � extends in a unique
way into an operad morphism. Now, by Proposition 1.3.1, we obtain that if K 〈D〉 is a
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dendriform algebra, the binary product a2 defined for any f1, f2 ∈ K 〈D〉 by

f1 a2 f2 := f1 φ(a2) f2 = f1 ≺ f2 + f1 � f2 (3.2.13)

is associative and endows K 〈D〉 with the structure of an associative algebra.

3.2.4. Bicolored Schröder tree operad. A bicolored Schröder tree is a Schröder
tree t (see Section 1.2.3 of Chapter 2) such that each internal node is assigned with an
element of the set {0, 1} and all internal nodes that have a father labeled by 0 (resp. 1)
are labeled by 1 (resp. 0). Let BSch⊥ be the graded collection of all bicolored Schröder
trees wherein the size of such trees is their number of leaves. The bicolored Schröder
tree operad BS is the space K 〈BSch⊥〉 endowed with the partial composition maps ◦i
defined linearly, for any t ∈ BSch⊥(n), s ∈ BSch⊥(m), and i ∈ [n] by r := t ◦i s where r is
the bicolored Schröder tree obtained by grafting a copy of s onto the ith leaf of t and,
in the case where the edge connecting this leaf and the copy of s have the extremities
that are internal nodes labeled by the same element a ∈ {0, 1}, by contracting this edge
to form a single internal node labeled by a. For instance,

1

0

1

0

1

1

0 ◦3
1

0 = 1 1

1

0

0

1

0

1

0

, (3.2.14a)

1

0

1

0

1

1

0 ◦5
1

0 =
1

0

0

1

0

1

1

1
(3.2.14b)

are two partial compositions in BS. The unit of BS is . This operad is a set-operad, is
combinatorial, and its Hilbert series satisfies

HBS(t) = 1− t −
√

1− 6t + t2
2 . (3.2.15)

The first coefficients of its Hilbert series are

1, 2, 6, 22, 90, 394, 1806, 8558, 41586 (3.2.16)

and form Sequence A006318 of [Slo]. Moreover, BS admits the presentation (G,R)
where

G :=
{

0 , 1

}
(3.2.17)

and R is the space generated by, by denoting by ?0 (resp. ?1) the first (resp. second) tree
of (3.2.17),

c (?0) ◦1 c (?0)− c (?0) ◦2 c (?0) , (3.2.18a)

http://oeis.org/A006318
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c (?1) ◦1 c (?1)− c (?1) ◦2 c (?1) . (3.2.18b)

Any algebra over BS is a space K 〈D〉 endowed with two binary associative products
?0 and ?1. These structures are called two-associative algebras.

3.2.5. Labeled rooted trees. A labeled rooted tree is a rooted tree t (see Section 3.1 of
Chapter 2) endowed with an injective map sending each internal node of t to an element
of N called label. Due to the injective labeling of the nodes of any labeled rooted tree
t, we shall identify each node of t with its label. The set of all labels appearing in t is
denoted by L(t). For any i ∈ L(t), we denote by t(i) the set of the suffix subtrees rooted at
the children of the node i in t. Moreover, for any k ∈ N, we denote by ↑ki (t) the labeled
rooted tree obtained from t by incrementing by k its nodes greater than i. Let t and s be
two labeled rooted trees such that i ∈ L(t) and (L(t) \ {i}) ∩ L(s) = ∅, and φ : t(i) → L(s)
be a map. We denote by tÎ↩φi s the labeled rooted tree obtained by replacing the node i
in t by the root of a copy of s, and by grafting each tree r of t(i) as a child of the node
φ(r) in the copy of s.

A standard rooted tree is a labeled rooted tree t having all its labels in the set [n]
where n is the number of nodes of t. We denote by SRT the combinatorial graded
collection of the standard rooted trees wherein the size of such trees is their number of
nodes. As usual, we draw standard rooted trees as rooted trees where the label of each
internal node is written inside it.

3.2.6. Pre-Lie operad. The pre-Lie operad PLie is the space K 〈SRT〉 endowed with
the partial composition maps ◦i defined linearly, for any t ∈ SRT(n), s ∈ SRT(m), and
i ∈ [n] in the following way. First, let t′ :=↑m−1

i (t) and s′ :=↑i−1
0 (s). The partial composition

of t and s is defined as the sum

t ◦i s :=
∑

φ : t′ (i)→L(s′)

t′Î↩φi s′. (3.2.19)

For instance,

1
2
3

◦2 2
1

= 1

2
3

4

+
1
3
2
4

, (3.2.20a)

1
3

2
◦3 1

2
=

1

3

2 4
+

4
2

3
1

+
4
1

3
2

+ 3

1
4

2

(3.2.20b)

are two partial compositions in PLie. The unit of PLie is 1 . This operad is combinatorial
and its Hilbert series satisfies

HPLie(t) =
∑

n∈N>1

nn−1 tn. (3.2.21)
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The first coefficients of its Hilbert series are

1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721 (3.2.22)

and form Sequence A000169 of [Slo].

3.2.7. Nonassociative permutative operad. The nonassociative permutative operad
NAP is the space K 〈SRT〉 endowed with the partial composition maps ◦i defined linearly,
for any t ∈ SRT(n), s ∈ SRT(m), and i ∈ [n] in the following way. By using the notations
of Section 3.2.5 about labeled rooted trees, let t′ :=↑m−1

i (t), s′ :=↑i−1
0 (s), and φ : t′(i) →L (s′)

be the map defined for any r ∈ t′(i) by φ(r) := j where j is the label of the root of s′. The
partial composition of t and s is defined as

t ◦i s := t′Î↩φi s′. (3.2.23)

Observe that t ◦i s is a particular element appearing in the partial composition t ◦i s of
the operad PLie. For instance,

1
3

2
◦3 1

2
=

1

3

2 4
, (3.2.24a)

2

5

4

3

7

1 6 ◦4 1
4

3
2

=
2

8

4

7

6

3 5

10

1 9 (3.2.24b)

are two partial compositions in NAP. The unit of NAP is 1 . This operad is a set-operad,
is combinatorial, and its Hilbert series is the same as the one of PLie.

3.3. Operads of graphs. As last examples, we expose here operads defined on
graded spaces of families of graphs. These graphs are configurations of chords in poly-
gons having labeled arcs. We shall also provide a general construction of operads of
graphs from unitary magmas.

3.3.1. Configurations of chords. A polygon of size n ∈ N>1 is a directed graph p on
the set of vertices [n+ 1]. An arc of p is a pair of integers (x, y) with 1 6 x < y 6 n+ 1,
a diagonal is an arc (x, y) different from (x, x + 1) and (1, n + 1), and an edge is an arc
of the form (x, x + 1) and different from (1, n + 1). We denote by Ap (resp. Dp, Ep) the
set of all arcs (resp. diagonals, edges) of p. For any i ∈ [n], the ith edge of p is the edge
(i, i + 1), and the arc (1, n + 1) is the base of p.

For any set S, an S-configuration of chords (or simply an S-configuration) is a poly-
gon c endowed with a partial function

φc :Ac → S. (3.3.1)

http://oeis.org/A000169
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When φc((x, y)) is defined, we say that the arc (x, y) is labeled and we denote it by c(x, y),
otherwise, (x, y) is unlabeled. When the base of c is labeled, we denote it by c0, and when
the ith edge of c is labeled, we denote it by ci. Two diagonals (x, y) and (x′, y ′) of c are
crossing if x < x′ < y < y ′ or x′ < x < y ′ < y. The S-configuration c is noncrossing
if it does not admit any pair of crossing labeled diagonals. The graded collection of all
S-configurations (resp. noncrossing S-configurations) is denoted by CCS (resp. NCCS).

In our graphical representations, each polygon is depicted so that its base is the
bottommost segment, vertices are implicitly numbered from 1 to n + 1 in the clockwise
direction We shall represent any S-configuration c by drawing a polygon of the same
size as the one of c and by labeling its arcs accordingly. For instance

c :=
a

b

a
b

1

2

3 4

5

6

(3.3.2)

is an {a,b}-configuration of size 5. Its set of all diagonals is

Dc = {(1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (2, 6), (3, 5), (3, 6), (4, 6)}, (3.3.3)

its set of all edges is

Ec = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}, (3.3.4)

and its set of all arcs is

Ac = Dc t Ec t {(1, 6)}. (3.3.5)

The arcs (1, 2) and (1, 4) of c are labeled by a, the arcs (2, 5) and (4, 5) are labeled by b,
and the other arcs are unlabeled. The labeled diagonals (1, 4) and (2, 5) are crossing so
that c is not noncrossing.

3.3.2. Noncrossing tree operad. A noncrossing tree is a {?}-configuration c, where
? is any symbol, satisfying the following conditions. First, c is noncrossing and its base is
labeled, and, by denoting by n the size of c, the graph on [n + 1] consisting in the edges
{x, y} if (x, y) is labeled in c, is connected and simply connected. For instance,

(3.3.6)

is a noncrossing tree of size 9. The graded collection of all noncrossing trees is denoted
by NCT. The operad of noncrossing trees NCT is the space K 〈NCT〉 endowed with
the partial composition maps ◦i defined graphically as follows. For any c ∈ NCT(n),
d ∈ NCT(m), and i ∈ [n], the noncrossing tree c ◦i d is obtained by gluing the base of d
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onto the ith edge of c, so that the arc (i, i +m) of c ◦i d is labeled when the ith edge of c
is labeled and is unlabeled otherwise. For example,

◦2 = , (3.3.7a)

◦3 = (3.3.7b)

are two partial compositions in NCT. The unit of NCT is . This operad is a set-operad,
is combinatorial, and its Hilbert series satisfies

HNCT(t) =
∑

n∈N>1

(
3n − 2
n − 1

)
1
n t

n. (3.3.8)

The first coefficients of its Hilbert series are

1, 2, 7, 30, 143, 728, 3876, 21318, 120175 (3.3.9)

and form Sequence A006013 of [Slo]. Moreover, NCT admits the presentation (G,R)
where

G :=
{

,
}

(3.3.10)

and R is the space generated by, by denoting by ↼ (resp. ⇀) the first (resp. second)
noncrossing tree of (3.3.10),

c(⇀) ◦1 c(↼)− c(↼) ◦2 c(⇀). (3.3.11)

3.3.3. Bicolored noncrossing configuration operad. A bicolored noncrossing con-
figuration is a noncrossing {?, ?̄}-configuration c, where ? and ?̄ are any symbols, such
that all arcs labeled by ?̄ are diagonals. We draw any arc labeled by ? (resp. ?̄) by a thick
(resp. dotted) line. For instance,

(3.3.12)

is a bicolored noncrossing configuration of size 9. By definition, we set that there is only
one bicolored noncrossing configuration of size 1, having its only arc unlabeled. The
graded collection of all bicolored noncrossing configurations is denoted by BNC. The
operad of bicolored noncrossing configurations BNC is the space K 〈BNC〉 endowed
with the partial composition maps ◦i defined graphically as follows. For any c ∈ BNC(n),
d ∈ BNC(m), and i ∈ [n], the bicolored noncrossing configuration c ◦i d is obtained by
gluing the base of d onto the ith edge of c, and then, if the base of d and the ith edge of
c are both unlabeled, the arc (i, i+m) of c ◦i d becomes labeled by ?̄; if the base of d and

http://oeis.org/A006013
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the ith edge of c are both labeled by ?, the arc (i, i +m) of c ◦i d becomes labeled by ?;
otherwise, the arc (i, i +m) of c ◦i d becomes unlabeled. For example,

◦3 = , (3.3.13a)

◦5 = , (3.3.13b)

◦3 = (3.3.13c)

are three partial compositions in BNC. The unit of BNC is . This operad is a set-
operad, is combinatorial, and its Hilbert series satisfies

HBNC(t) = 1− 4t −
√

1− 20t + 4t2
6 . (3.3.14)

The first coefficients of its Hilbert series are

1, 8, 80, 992, 13760, 204416, 3180800, 51176960, 844467200 (3.3.15)

and form Sequence A234596 of [Slo].

3.3.4. Gravity operad. A gravity chord configuration is an {?}-configuration c, where
? is any symbol, satisfying the following conditions. By denoting by n the size of c,
all the edges and the base of c are labeled, and if (x, y) and (x′, y ′) are two labeled
crossing diagonals of c such that x < x′, the arc (x′, y) is unlabeled. In other words, the
quadrilateral formed by the vertices x, x′, y, and y ′ of c is such that its side (x′, y) is
unlabeled. For instance,

(3.3.16)

is a gravity chord configuration of size 7 having four labeled diagonals (observe in par-
ticular that, as required, the arc (3, 5) is not labeled). By definition, we set that there is
only one gravity chord configuration of size 1, having its only arc unlabeled. The graded
collection of all gravity chord configurations is denoted by GCC. The operad of gravity
chord configurations Grav is the space K 〈GCC〉 endowed with the partial composition
maps ◦i defined graphically as follows. For any c ∈ GCC(n), d ∈ GCC(m), and i ∈ [n], the
gravity chord configuration c ◦i d is obtained by gluing the base of d onto the ith edge of
c, so that the arc (i, i +m) of c ◦i d is labeled. For example,

◦3 = (3.3.17)

http://oeis.org/A234596
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is a partial composition in Grav. The unit of Grav is . This operad is a set-operad, is
combinatorial, and its Hilbert series satisfies

HGrav(t) = t +
∑

n∈N>2

n!
2 tn. (3.3.18)

The first coefficients of its Hilbert series are

1, 1, 3, 12, 60, 360, 2520, 20160, 181440 (3.3.19)

and form Sequence A001710 of [Slo].

3.3.5. From unitary magmas to graph operads. We describe here a general way for
constructing operads of configurations of chords. LetM be a unitary magma with binary
product ? admitting 1 as unit. By setting M̄ :=M \ {1}, CCM̄ is the graded collection of
all M-configurations where all labeled arcs have labels different from 1. We denote by
CM the space K 〈CCM̄〉. The space CM is endowed with the partial composition maps ◦i
defined linearly, for any c ∈ CCM̄(n), d ∈ CCM̄(m), and i ∈ [n] in the following way. First,
let c′ and d′ be the two M-configurations, respectively, obtained from c and d by labeling
by 1 the possible unlabeled edges and the possible unlabeled bases. The configuration
c ◦i d is obtained by gluing the base of d′ onto the ith edge of c′, then by relabeling the
arc (i, i+m) of c ◦i d by ci ? d0, and finally by making unlabeled the possible arcs labeled
by 1.

PROPOSITION 3.3.1. For any monoid M, CM is an operad.

The unit of CM is the M̄-configuration of size 1 having its only arc unlabeled.
The operad CM is a set-operad. Moreover, when M is finite, CM is combinatorial and
its Hilbert series satisfies

HCM(t) =
∑

n∈N>1

m(n+1
2 ) tn (3.3.20)

where m := #M.

Let us consider an example. By considering the monoid Z for the usual integer
addition, CZ is the space of all configurations with labels in Z \ {0}. Moreover,

1 −2

−2 1
◦2

1

3

1
2 =

1 −2

1 1
1

2

1
, (3.3.21a)

1 −2

−2 1
◦2

1

2

1
2 =

1 −2

1
1

2

1
(3.3.21b)

are two partial compositions in CZ.

http://oeis.org/A001710
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Let now the space

CuM := K

〈
{ }+

⊔

n∈N>2

CCM̄(n)
〉
. (3.3.22)

PROPOSITION 3.3.2. When M is a unitary magma, CuM is an operad. Moreover,
when M is also a monoid, CuM is a suboperad of CM.

Now, when M is a monoid, let us define NCM as the space K 〈NCCM̄〉 of the non-
crossing M̄-configurations. Immediately by definition of the partial composition of CM,
one can observe that if c and d are noncrossing, any partial composition c ◦i d is also
noncrossing. For this reason, NCM is a suboperad of CM.

PROPOSITION 3.3.3. Let M be a monoid. Then, the operad NCM admits the pre-
sentation (G,R) where

G :=
{

x : x ∈ M̄
}
t
{ }

(3.3.23)

and R is the space generated by

c
( )

◦1 c
( )

− c
( )

◦2 c
( )

, (3.3.24a)

c ( x ) ◦1 c ( y )− c ( x ? y ) , x, y ∈ M̄. (3.3.24b)

From the presentation of NCM provided by Proposition 3.3.3 and the one of the
operad of words TM provided by Proposition 3.1.2, we can observe that TM is a quotient
of NCM. The linear map φ : NCM→ TM satisfying, for any x ∈ M̄,

φ ( x ) = x ∈ TM(1), (3.3.25a)

φ
( )

= 11 ∈ TM(2) (3.3.25b)
extends in a unique way into an operad morphism and this morphism is surjective.

All the operads of graphs presented in Section 3.3 can be constructed directly or as
suboperads of CM or CuM for suitable monoids or unitary magmas M.

Bibliographic notes

About operads, pre-Lie systems, and combinatorics. The theory of operads arose
first in the 1970s in the field of algebraic topology through the works of May [May72] and
Boardman and Vogt [BV73]. The first motivation was to study loop spaces. By “operad”,
most of the authors mean what we call symmetric operad, that is a nonsymmetric operad
wherein each subspace consisting in the elements of arity n is endowed with the action
of the symmetric group S(n) (see forthcoming Section 2.3 of Chapter 5). Nonsymmetric
operads appeared a little earlier in the work of Gerstenhaber under the name of pre-Lie
systems [Ger63]. To be more precise, a pre-Lie system is a space endowed with products
◦i which are series associative (see (1.1.4)) and parallel associative (see (1.1.7)), but not
necessarily unital (see (1.1.11)). The theory of operads has somewhat been neglected
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in the next twenty years following its discovery but it was put back on the front of the
stage in the 1990s [Lod96]. At this moment, an increasing number of combinatorists
began to take an interest in the subject and several works relating combinatorics and
operads were performed. One can cite, for instance, [MY91] dealing with Möbius species
and compositions of trees, [Lod01,CL01,Lod08,Gir15,Gir16b,Gir17] where operads on
many combinatorial families are defined, and [Lod05,Cha06,Liv06,CL07,CG14] where
operad structures lead to the discovery of algebraic and combinatorial properties. The
main philosophy is here twofold: on the one hand, the structure thereby added on
combinatorial families enables to see these in a new light, and on the other, techniques
coming from combinatorics lead to establish algebraic properties of operads and the cat-
egory of algebras they encode. Classical and complementary references about operads
are [Mar08,Cha08,LV12,Mén15,Yau16].

About set-operads. Due to the fact that their linear structure can be forgotten, set-
operads form a class of operads which is in some sense simpler than the class of general
ones. Despite this apparent simplicity, set-operads remain very rich structures and, as
suggested in Section 3, a lot of operads appearing in combinatorics are set-operads.
Moreover, as a consequence of the lack of linear structure, there are simple techniques
to establish presentations by generators and relations of set-operads by using rewrite
systems on trees (as exposed in Section 2.2.2). Computer exploration is a crucial tool
in this context. For instance, the works [CG14, Gir16c, Gir16b, Gir17, CCG18] use the
computer to conjecture orientations of spaces of relations (used as a prerequisite of The-
orem 2.2.2). Besides, we exposed in Section 1.2.3 two special notions about set-operads:
the one of rooted operads is, up to a slight variation, introduced by Chapoton in [Cha14]
as a tool to study series on operads, and the one of basic operads is due to Vallette [Val07]
and intervenes as a prerequisite for a tool for showing that an operad is Koszul.

About Koszul duality and Koszulity. Koszul duality for binary and quadratic oper-
ads has been introduced by Ginzburg and Kapranov [GK94]. This duality is an extension
of the Koszul duality of quadratic associative algebras [Pri70]. The so-called rebirth of
the operads in the 1990s [Lod96] was in part due to this duality. Note that the duality
exposed in Section 2.3.1 concerns only nonsymmetric operads but the theory also in-
cludes the case of symmetric operads. Besides, the definition of the Koszul property
for an operad consisting in asking for the acyclicity of its Koszul complex (see, for in-
stance, [LV12]) admits several reformulations. A first criterion is due to Vallette [Val07]
(see also [Mén15]) passing by the construction of a family of posets from an operad
and showing that they are Cohen-Macaulay (see, for instance, [BGS82]). The criterion
using convergent rewrite systems exhibited in Proposition 2.3.1 is a consequence of the
work of Dotsenko and Khoroshkin [DK10]. The concept of Poincaré-Birkhoff-Witt bases
(which, as explained in Section 2.3.2, form bases of Koszul operads) arises in the work
of Hoffbeck [Hof10].
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About the presented examples of operads. Let us now finally give some details
about the operads reviewed in Section 3. The operad of permutations Per is in some
cases called “associative operad” [AL07]. Indeed, Per can be seen as the regularization
of the associative operad As (see forthcoming Section 2.3 of Chapter 5). The diasso-
ciative operad Dias has been introduced by Loday in [Lod01] within its presentation
by generators and relations, and its realization in terms of the elements en,k is due to
Chapoton [Cha05]. The construction T, associating an operad with any monoid has
been brought in [Gir15]. As explained, it provides alternative constructions of As and
Dias, and also for the triassociative operad Trias (see [LR04]). As illustrated in [Gir15],
the construction T can be used in order to build operads on a large range of combinato-
rial graded collections (words, permutations, k-ary trees, integer compositions, directed
animals, etc.). We have presented here in this context only the operad Motz of Motzkin
words, obtained as a suboperad of an operad obtained from the construction T. Besides,
the duplicial operad appeared in [Lod08] in the context of the study of types of bialge-
bras. The dendriform operad Dendr was defined as the Koszul dual of Dias in [Lod01].
The presentations of Dup and Dendr are very similar and they share the same graded
space of binary trees. There are also two alternative realizations of Dendr in terms
of rational functions [Cha07, Lod10]. The bicolored Schröder tree operad BS was con-
sidered in [LR06] under the name 2as. The pre-Lie operad PLie has been defined by
Chapoton and Livernet [CL01] as the operad such that algebras of the category it en-
codes are pre-Lie algebras (see Section 3.3 of Chapter 3). This operad is usually studied
as a symmetric operad but its nonsymmetric version has the interesting property to be
free [BL10]. The nonassociative permutative operad NAP has been introduced in [Liv06]
as a symmetric operad. Unlike PLie, NAP is not free as a nonsymmetric operad (it is
easy to find a nontrivial relation in degree 2 for instance). Some links between PLie and
NAP have been exploited in [Saï14]. The operad of noncrossing trees NCT was defined
in [Cha07] as a suboperad of a bigger operad Mould, the operad of mould. The alge-
bras over NCT are sometimes called L-algebras and have been studied in [Ler11]. In the
same text [Cha07], a generalization of NCT involving noncrossing plants was brought,
that are combinatorial objects defined as configurations of chords satisfying some condi-
tions. The operad of bicolored noncrossing configurations BNC, introduced in [CG14],
is a further generalization of this latter. The operad BNC contains as suboperads gen-
erated by binary elements the operads of noncrossing plants, of noncrossing trees, the
dipterous operad [LR03], and the operad of bicolored Schröder trees. The gravity op-
erad Grav is, as a symmetric operad, defined by Getzler [Get94]. It has been studied as
a nonsymmetric one in [AP17]. The general constructions C, Cu, and NC, introduced
in [Gir17], produce operads on configurations of chords. These constructions can be
used to provide alternative realizations of all the operads presented in Section 3.3, and
also of some other, as the ones of multi-tildes and double multi-tildes [LMN13,GLMN16]
coming from a context of formal language theory [CCM11]. Finally, let us mention that
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a general reference about some of these operads (and some others) is [Zin12], where a
large number of morphisms between them are referenced.





CHAPTER 5

Applications and generalizations

This last chapter is devoted to review some applications of the theory of operads
for enumerative prospects. To this aim, we present formal power series on operads,
generalizing usual generating series. We also provide an overview on enrichments of
operads: colored operads, cyclic operads, symmetric operads, and pros.

1. Series on operads

We consider here the notion of spaces of formal power series on collections, forming
a generalization of usual generating series. Any product ? (in the sense of Section 1.1.7 of
Chapter 1) on a collection C gives rise to a product on the series on C, leading potentially
to the discovery of enumerative properties on the objects of C. We shall present how
associative and graded products on graded collections lead to generalizations of the usual
multiplication product of generating series, and how full composition maps of set-operads
lead to generalizations of the usual composition product of generating series.

1.1. Series on algebraic structures. We introduce now series on collections, which
are intuitively possibly infinite formal sums of objects of a collection. Elementary defini-
tions about these series are reviewed here.

1.1.1. Series spaces. Let C be an I-collection. A series on C (or, for short, a C-
series) is a map f : C → K. The coefficient f(x) of x ∈ C in f is denoted by 〈x, f〉. The
set of all C-series is denoted by K 〈〈C〉〉. This set K 〈〈C〉〉 is endowed with the following
two operations. First, the addition f1 + f2 of two C-series f1 and f2 is defined, for any
x ∈ C, by 〈x, f1 + f2〉 := 〈x, f1〉 + 〈x, f2〉 . Second, the scalar multiplication of a C-series
f by λ ∈ K is defined, for any x ∈ C, by 〈x, λ · f〉 := λ 〈x, f〉 . Endowed with these two
operations, K 〈〈C〉〉 is a K-vector space, named series space on C (or, for short, C-series
space).

Observe that C-polynomials (see Section 1 of Chapter 3) are particular C-series and
that K 〈C〉 is a subspace of K 〈〈C〉〉. One among the crucial differences between K 〈〈C〉〉
and K 〈C〉 is that this last admits C as a basis while K 〈〈C〉〉 has no explicit basis. As a
side remark, a C-series can be seen as a linear form on K 〈C〉. For this reason, K 〈〈C〉〉
can be seen as the (usual) dual space of K 〈C〉 (this has not to be confused with the dual
of a combinatorial polynomial space considered in Section 1.2.7 of Chapter 3).

117



118 5. APPLICATIONS AND GENERALIZATIONS

For any subcollection X of C, the characteristic series of X is the C-series ch(X)
defined, for any x ∈ C, by 〈x, ch(X)〉 := 1 for all x ∈ X and 〈y, ch(X)〉 := 0 for all
y ∈ C \X. By using now the linear structure of K 〈〈C〉〉, any C-series f can be expressed
as the possibly infinite sum

f =
∑

x∈C
〈x, f〉 · ch({x}), (1.1.1)

which is denoted, by a slight abuse of notation, by

f =
∑

x∈C
〈x, f〉 x. (1.1.2)

The notation (1.1.2) for f as a (possibly infinite) linear combination of objects of C is the
infinite sum notation of C-series.

1.1.2. Generating series and products. By setting that {t} is a graded collection
wherein t is an atomic object, K 〈〈MSet({t})〉〉 is the space of the usual generating series.
Indeed, by denoting by tn each object *t, . . . , t+ of MSet({t}) of size n ∈ N, any element
f of K 〈〈MSet({t})〉〉 is by definition of the form

f =
∑

n∈N
〈tn, f〉 tn. (1.1.3)

To not overload the notation, we shall write K 〈〈t〉〉 for K 〈〈MSet({t})〉〉.

The usual multiplication (resp. composition) of generating series is denoted by ·
(resp. ◦). In this way, by setting 1 := ch

({
t0
})

, (K 〈〈t〉〉 , ·, 1) is a unitary associative
algebra. Moreover, by denoting by tK 〈〈t〉〉 the subspace of K 〈〈t〉〉 of all the series f such
that

〈
t0, f

〉
= 0, (tK 〈〈t〉〉 , ◦, t) is a unitary associative algebra.

1.1.3. Index series. When C is combinatorial, the index series of C is the I-series
I(C), where I is seen as a simple collection, defined by

I(C) :=
∑

x∈C
ind(x) =

∑

i∈I
#C(i) i. (1.1.4)

Since the coefficient 〈i, I(C)〉 is the number of elements of index i ∈ I of C, the series I(C)
encodes enumerating data about C. It is then worthwhile to provide ways of expressing
I(C) in order to compute its coefficients. We shall besides consider in the sequel index
series of colored operads and of pros as analogs of usual Hilbert series.

Moreover, let ω : I → N be a map. The ω-evaluation map is the map

evω : K 〈〈C〉〉 → K 〈〈t〉〉 (1.1.5)

defined, for any C-series f, by

evω(f) :=
∑

x∈C
〈x, f〉 tω(x). (1.1.6)
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This series is well-defined if each fiber ω−1(n) is finite for any n ∈ N and is called the
ω-evaluation of f. When C is combinatorial and graded, one has

evId(I(C)) = ev|−|(ch(C)) = GC(t) (1.1.7)

where Id is the identity map on the index set I = N of C, and | − | is the size function of
C. Recall that GC(t) denotes the generating series of C.

1.1.4. Products on series. Assume that the I-collection C is endowed with a product

? : C (J1)× · · · × C
(
Jp
)
→ C (1.1.8)

where p ∈ N and J1, . . . , Jp are nonempty subsets of I (see Section 1.1.7 of Chapter 1).
Then, let the linear map

?̄ : K 〈〈C〉〉⊗p → K 〈〈C〉〉 (1.1.9)

defined, for any f1, . . . , fp ∈ K 〈〈C〉〉 and x ∈ C, by
〈
x, ?̄

(
f1, . . . , fp

)〉
:=

∑

y1,...,yp∈C
?(y1,...,yp)=x

∏

k∈[p]
〈yk, fk〉 . (1.1.10)

In other terms, by using the sum notation of series,

?̄
(
f1, . . . , fp

)
=

∑

xk∈C(Jk),k∈[p]

∏

k∈[p]
〈xk, fk〉 ?

(
x1, . . . , xp

)
. (1.1.11)

We call ?̄ the series extension of ?. In this way, series extensions of products on C allow
to translate set-theoretic algebraic structures on C into products on series.

For instance, by considering the product ? on MSet({t}) defined by tn ? tm := tn+m

for any n,m ∈ N, the series extension of ? on K 〈〈t〉〉 is the multiplication · of generating
series.

1.2. Generalizing series multiplication. We consider series extensions of binary
products on graded collections satisfying some conditions and explain how they provide
generalizations of the multiplication product of generating series.

1.2.1. Series on monoids and multiplication. Let C be a graded collection endowed
with a graded complete binary associative product ?. In this case, its series extension ?̄
endows K 〈〈C〉〉 with the structure of an associative algebra. Moreover, when ? admits a
unit 1, C is a monoid and the series 1 := ch({1}) of K 〈〈C〉〉 is the unit of ?̄.

PROPOSITION 1.2.1. Let C be a graded collection endowed with a graded complete
binary associative product ? admitting a unit. Then, the map ev|−| is a unitary asso-
ciative algebra morphism between (K 〈〈C〉〉 , ?̄,1) and (K 〈〈t〉〉 , ·, 1). Moreover, ev|−| is
surjective when C(n) 6= ∅ for all n ∈ N.
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Proposition 1.2.1 implies in particular that if one obtains a nontrivial expression for
the characteristic series ch(C) of C by using the sum of series and the product ?̄, its
| − |-evaluation will provide a nontrivial expression for the generating series GC(t) of C.
We shall present examples in the further sections.

1.2.2. A monoid of paths. Let us consider an example of series on monoids and an
application to enumeration. We call path any nonempty word u on N and we denote by
Path be the graded collection of all paths, where the size of a path is its length as a word
minus 1. This collection is endowed with the complete binary product ? defined, for any
u ∈ Path(n − 1) and v ∈ Path(m− 1), by

u ? v :=





↑k (u(1) . . . u(n − 1)) · v if v(1) > u(n),
u · ↑k (v(2) . . . v(m)) otherwise,

(1.2.1)

where · is the concatenation product of words, k := |u(n) − v(1)|, and for any path w,
↑k (w) is the path obtained by incrementing all the letters of w by k. For instance,

0101121 ? 210011 = 121223210011. (1.2.2)

By depicting a path through its graph in the quarter plane (that is, by drawing points
(i − 1, u(i)) for all positions i and by connecting all pairs of adjacent points by lines),
(1.2.2) becomes

? = .

In intuitive terms, the product ? consists in concatenating the paths by superimposing
the last letter of the first operand with the first letter of the second. Observe that the
path 0, denoted by , has size zero in Path and is the unit of ?.

PROPOSITION 1.2.2. The triple (Path, ?, ) is a graded monoid.

By Propositions 1.2.1 and 1.2.2, we can consider series of paths and the series ex-
tension of the product of paths. To specify particular families of paths, let us introduce
the following tool. For any subcollection X of Path, the ?-Kleene star X?? of X is the
subcollection defined by

X?? :=
⋃

p∈N
X ? · · · ? X︸ ︷︷ ︸
p terms

. (1.2.3)

In other words, X?? is the submonoid of Path generated by X. As a collection, X?? contains
all the paths obtained by concatenating elements of X.
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1.2.3. Enumeration of families of paths. Let us first study the collection PathSch of
Schröder paths, that are the paths of { , , }?? starting and finishing by 0. This
collection is combinatorial and its characteristic series is

ch
(
PathSch

)
:= + + + + + + + + +· · · . (1.2.4)

By reasoning on the non-ambiguous decomposition of Schröder paths, one can establish
that this series satisfies the nontrivial relation

ch
(
PathSch

)
= + ?̄ ch

(
PathSch

)
+ ?̄ ch

(
PathSch

)
?̄ ?̄ ch

(
PathSch

)
. (1.2.5)

The | − |-evaluation of the left and right members of (1.2.5) leads, by using (1.1.7), to the
algebraic relation

GPathSch
(t) = 1 + t2 GPathSch

(t) + t2 GPathSch
(t)2 (1.2.6)

for the generating series of PathSch.

We can use similar mechanisms to obtain expressions for the generating series of
other families of paths. Let us consider three of these.

Dyck paths. The characteristic series of the collection PathDyck of Dyck paths, that
are paths of { , }?? starting and finishing by 0 satisfies

ch
(
PathDyck

)
= + ?̄ ch

(
PathDyck

)
?̄ ?̄ ch

(
PathDyck

)
. (1.2.7)

Motzkin paths. The characteristic series of the collection PathMotz of Motzkin paths,
that are paths of { , , }?? starting and finishing by 0 satisfies

ch
(
PathMotz

)
= + ?̄ ch

(
PathMotz

)
+ ?̄ ch

(
PathMotz

)
?̄ ?̄ ch

(
PathMotz

)
. (1.2.8)

Fibonacci paths. The characteristic series of the collection PathFib of Fibonacci
paths, that are paths of { , }?? satisfies

ch
(
PathFib

)
= + ?̄ ch

(
PathFib

)
+ ?̄ ch

(
PathFib

)
. (1.2.9)

1.3. Generalizing series composition. We consider now series on combinatorial
collections endowed with the structure of set-operads and explain how they provide
generalizations of the composition product of generating series.

1.3.1. Series on operads and composition. Let C be a set-operad (see Section 1.2.3
of Chapter 4). In this case, the series extensions ◦̄ of its full composition maps ◦ satisfy,
for any n ∈ N>1 and any C-series f, g1, . . . , gn ,

〈x, f ◦̄ [g1, . . . ,gn]〉 =
∑

y∈C(n)
z1,...,zn∈C

y◦[z1,...,zn ]=x

〈y, f〉
∏

i∈[n]
〈zi,gi〉 . (1.3.1)
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Let now � be the binary product on K 〈〈C〉〉 defined as the sum of all the series extensions
of the full composition maps of C. More precisely, for any C-series f and g,

〈x, f � g〉 :=
∑

p∈N>1

〈
x, f ◦̄



g, . . . ,g︸ ︷︷ ︸
p terms





〉
=

∑

y∈C(n),n∈N
z1,...,zn∈C

y◦[z1,...,zn ]=x

〈y, f〉
∏

i∈[n]
〈zi,g〉 . (1.3.2)

As immediate observations, remark that � is linear on left, is not linear on the right, and
admits 1 := ch({1}) as a left and a right unit, where 1 is the operad unit of C.

PROPOSITION 1.3.1. Let C be a set-operad, x ∈ C(n), n ∈ N>1, and g1, . . . , gn be
C-series. Then,

ev|−| (x ◦̄ [g1, . . . ,gn]) =
∏

i∈[n]
ev|−| (gi) . (1.3.3)

PROPOSITION 1.3.2. Let C be a set-operad. Then, the map ev|−| is a unitary asso-
ciative algebra morphism between (K 〈〈C〉〉 ,�,1) and (tK 〈〈t〉〉 , ◦, t). Moreover, ev|−| is
surjective when C(n) 6= ∅ for all n ∈ N>1.

Propositions 1.3.1 and 1.3.2 imply in particular that if one obtains a nontrivial expres-
sion for the characteristic series ch(C) of C by using the sum of series, and the products
◦̄ and �, its | − |-evaluation will provide a nontrivial expression for the generating series
GC(t) of C. We shall present examples in the further sections.

1.3.2. Enumeration of Motzkin paths. Let us consider the set-operad Motz of Motzkin
words introduced in Section 3.1.5 of Chapter 4. By using the operad structure on the
underlying graded collection Path′Motz of Motz, one obtains the nontrivial relation

ch
(
Path′Motz

)
= + ◦̄

[
, ch

(
Path′Motz

)]
+ ◦̄

[
, ch

(
Path′Motz

)
, ch

(
Path′Motz

)]

(1.3.4)
for the characteristic series of Path′Motz. Observe that (1.3.4) and (1.2.8) are two equiv-
alent expressions for enumerating collections of Motzkin paths (yet with different size
functions). Nevertheless, (1.3.4) has the advantage of not requiring the definition of a
general algebraic structure of paths (in (1.3.4), all the terms are series of Motzkin paths,
while in (1.2.8), and are not Motzkin paths).

1.3.3. Enumeration of noncrossing trees. Let us consider the set-operad NCT of
noncrossing trees introduced in Section 3.3.2 of Chapter 4. By using the operad structure
on the underlying collection NCT of NCT, one obtains the nontrivial relation

ch (NCT) = + ◦̄ [ch (NCT) , ch (NCT)] + ◦̄ [f, ch (NCT)] , (1.3.5)

where f is the NCT-series satisfying

f = + ◦̄ [f, ch (NCT)] , (1.3.6)

for the characteristic series of NCT.
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2. Enriched operads

Three enrichments of nonsymmetric operads are presented here: colored operads,
cyclic operads, and symmetric operads.

2.1. Colored operads. We begin by introducing colored operads. These variations
of operads involve colored collections. Intuitively, each element of a colored operad has
a color for its output and colors for each of its inputs. The partial composition of two
elements is defined if and only if the colors of the involved input and output coincide.

2.1.1. Colored polynomial spaces. Given a C-colored collection C (see Section 1.1.4
of Chapter 1), the polynomial space K 〈C〉 is said C-colored and is endowed with the maps
out and in associating with each nonzero homogeneous element f of K 〈C〉, respectively,
its output color out(f ) and its word of input colors in(f ) (see the aforementioned section).
The arity |f | of an (a, u)-homogeneous element f of K 〈C〉, where (a, u) is a C-colored
index, is the length |u| of the word u. Alternatively, the arity of f is the degree of f
in K 〈C′〉 where C′ is the graduation of C (see Section 1.2.2 of Chapter 1). Moreover,
to not overload the notation, we denote by K 〈C〉 (a, u) the homogeneous component
K 〈C〉 ((a, u)) of K 〈C〉 for any C-colored index (a, u).

2.1.2. Colored abstract operators. We regard any homogeneous element f of an
augmented C-colored polynomial space K 〈C〉 as a colored abstract operator, that is, an
abstract operator wherein the output and each input are associated with an element of
C. If f is of arity n, out(f ) = a, and in(f ) = u, f is depicted as

f

1 n

a

u(1) u(n)
. . .

. (2.1.1)

The output and input colors of f are written onto the output and input edges.

2.1.3. Colored operads. Let C be an augmented C-colored collection. Let for all C-
colored indexes (a, u) and (b, v), and i ∈ [|u|] such that b = u(i), binary products of the
form

◦((a,u),(b,v))
i : K 〈[[[C(a, u), C(b, v)]]]×〉 → K 〈C〉 (a, u Î [i v), (2.1.2)

where u Î [i v is the word obtained by replacing the ith letter of u by v. On abstract oper-
ators, these products ◦((a,u),(b,v))

i behave as the products ◦(|u|,|v|)i of operads (see Section 1.1.2
of Chapter 4) but with the addition of taking into account of the output and input colors
of the colored abstract operators. Indeed, for any f ∈ K 〈C〉 (a, u) and g ∈ K 〈C〉 (b, v),
f ◦((a,u),(b,v))

i g is the abstract operator
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f

1 |u|i

a

u(1) u(|u|)u(i)
. . . . . .

◦((a,u),(b,v))
i

g

1 |v|

b

v(1) v(|v|)
. . .

=

f

1 |u|+ |v| − 1. . . . . .

a

u(1) u(|u|)

g

i i + |v| − 1

v(1) v(|v|)

. . .

b = u(i)

=
f ◦((a,u),(b,v))

i g

1 |u|+ |v| − 1

a

u(1) u(|u|)

. . .. . . . . .i i + |v| − 1i − 1 i + |v|

v(1) v(|v|)u(i − 1) u(i + 1)

. (2.1.3)

Let us emphasize the fact that these products require that the output color of g is equal
to the ith input color of f . By a slight abuse of notation, we shall sometimes omit the
((a, u), (b, v)) in the notation of ◦((a,u),(b,v))

i in order to denote it in a more concise way
by ◦i.

When for any objects x, y, and z of C, the fact that the left and right members of
Relation (1.1.4) (resp. Relation (1.1.7)) of Chapter 4 are well-defined implies that they
are equal, ◦i is series associative (resp. parallel associative). Moreover, assume that
there exists a set of elements {1a : a ∈ C} of arity 1 of K 〈C〉 such that for any a ∈ C,
out (1a) = a = in (1a) . When for any object x of C, the fact that, by replacing by 1a each
occurrence of 1 in Relation (1.1.11) of Chapter 4, the first or the last members of the
relation are well-defined implies that they are equal to x, ◦i is unital. We call in this case
each 1a , a ∈ C, a unit of color a.

When the products ◦i are series associative, parallel associative, and unital, the ◦i are
called partial composition maps. A C-colored operad is a C-colored polynomial space
K 〈C〉 endowed with partial composition maps. The main algebraic notions presented in
Section 1.2 of Chapter 4 for operads (like full composition maps associated with partial
composition maps, morphisms, quotients, group of symmetries, set-operads, etc.) hold
straightforwardly for colored operads. When K 〈C〉 is combinatorial, its Hilbert series
is the C× C+-series

HK〈C〉 := I(C) =
∑

(a,u)∈C×C+

(dimK 〈C〉 (a, u)) (a, u). (2.1.4)

2.1.4. Categorical point of view. Recall that a monoid M can be seen as a category
with exactly one object • wherein the elements of M are interpreted as morphisms
φ : • → •. In the same way, an operad K 〈C〉 can be seen as a multicategory with
exactly one object •. In this case, the elements of K 〈C〉 (n), n ∈ N>1, are interpreted
as multimorphisms φ : •n → •. The full composition maps of K 〈C〉 translate as the
composition of multimorphisms.
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In a similar way, a C-colored operad K 〈C〉 can be seen as a multicategory having C as
set of objects. In this case, the elements of K 〈C〉 (a, u) where (a, u) is a C-colored index,
are interpreted as multimorphisms φ : u(1)× · · · × u(n)→ a. The full composition maps
of K 〈C〉 translate as the composition of multimorphisms, where the constraints imposed
by the colors in K 〈C〉 become constraints imposed by the domains and codomains of
multimorphisms.

2.1.5. Free colored operads. Let C be a set of colors and G be an augmented C-
colored collection. The free colored operad over G is the operad

FCO(G) := K
〈
CSTG

⊥
〉
, (2.1.5)

where CSTG
⊥ is the graded collection of all the C-colored G-syntax trees (see Section 3.2 of

Chapter 2). The space FCO(G) is endowed with the linearizations of the partial grafting
operations ◦i , i ∈ N>1, defined in Section 3.2 of Chapter 2. The unit of color a, a ∈ C, of

FCO(G) is the only C-colored G-syntax tree a of arity 1 and degree 0 and having a as

output and input color.

2.1.6. Example: bud operads. Given an operad K 〈C〉 and a set of colors C, there is
an easy way to construct a C-colored operad. Let BudC(K 〈C〉) be the C-colored space
K 〈ColC(K 〈C〉)〉 where ColC(C) denotes the C-coloration of C (see Section 1.2.10 of Chap-
ter 1). Let us endow BudC(K 〈C〉) with the partial composition maps defined linearly, for
any objects (a, x, u) and (b, y, v) of ColC(C), and i ∈ [|u|] such that b = u(i), by

(a, x, u) ◦i (b, y, v) := (a, x ◦i y, u Î [i v) (2.1.6)

where the second occurrence of ◦i in (2.1.6) is the partial composition map of the operad
K 〈C〉 and Î [i is the operation on words on C defined in Section 2.1.3.

PROPOSITION 2.1.1. For any set of colors C and any operad K 〈C〉, BudC(K 〈C〉) is a
C-colored operad.

We call BudC(K 〈C〉) the C-bud operad of K 〈C〉. For instance, one has in Bud{a,b} (As)
(where As is the associative operad defined in Section 3.1.1 of Chapter 4) the partial
composition

(a, a4,bbab) ◦2 (b, a3, aab) = (a, a6,baabab) . (2.1.7)

Let us observe that the bud operad of a free operad can be not free as a colored
operad. For instance, consider the {a,b}-bud operad of the magmatic operad Mag (see
Section 3.2.1 of Chapter 4). One has in Bud{a,b}(Mag) among others the nontrivial rela-
tion
(

a, , aa
)
◦1
(

a, , aa
)

=
(

a, , aaa
)

=
(

a, ,ba
)
◦1
(

b, , aa
)
, (2.1.8)

implying that Bud{a,b}(Mag) is not free as a colored operad.
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2.2. Cyclic operads. We focus now on cyclic operads. These variations of operads
involve cyclic collections. Intuitively, in a cyclic operad, the output and the inputs of the
elements play an interchangeable role. This is due to the fact that these structures are
endowed with a map performing a cyclic action on the inputs and outputs of its elements.

2.2.1. Cyclic polynomial spaces. A graded polynomial space K 〈C〉 is cyclic if it is
endowed for all n ∈ N with unary products

�n: K 〈C〉 (n)→ K 〈C〉 (n) (2.2.1)

such that �n+1
n is the identity map on K 〈C〉 (n). We say that the �n , n ∈ N, are cycle maps

of K 〈C〉. By a slight abuse of notation, we shall sometimes omit the n in the notation
of �n in order to denote it in a more concise way by �. As usual, if φ : K 〈C1〉 → K 〈C2〉
is a morphism between two graded polynomial spaces K 〈C1〉 and K 〈C2〉, φ is a cyclic
polynomial space morphism if it commutes with the cycle maps of K 〈C1〉 and K 〈C2〉.

Remark that when C is a cyclic collection (see Section 1.1.5 of Chapter 1), the lin-
earizations of the cycle maps of C endow K 〈C〉 with the structure of a cyclic polynomial
space.

2.2.2. Cyclic abstract operators. We regard any homogeneous element f of an aug-
mented cyclic polynomial space K 〈C〉 as a cyclic abstract operator, that is, an abstract
operator wherein the output can play the role of an input and an input can play the role
of the output. In this case, � behaves in the following way. For any f ∈ K 〈C〉 (n),

�



 f

1 2 n. . .



 = f

1 n − 1 n. . .

= � (f )

1 2 n. . .

. (2.2.2)

In words, � (f ) is obtained by transforming each input of f of index i + 1 into an input
of index i for any i ∈ [n − 1], by transforming the 1st input of f into an output, and by
transforming the output of f into an input of index n. It is straightforward to check that
�n+1 (f ) = f as required due to the fact that C is a cyclic collection.

2.2.3. Cyclic operads. A cyclic operad is an operad K 〈C〉 such that K 〈C〉 is also
cyclic as a polynomial space and satisfies, for any x ∈ C(n), y ∈ C(m), and i ∈ [n− 1], the
compatibility relations,

� (x ◦1 y) =� (y) ◦m � (x), (2.2.3a)

� (x ◦i+1 y) =� (x) ◦i y, (2.2.3b)

� (1) = 1. (2.2.3c)
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To understand these relations, let us consider first the abstract operators expressed by
the left and right members of (2.2.3a). On the one hand, we have

�



 x

1 n. . .

◦1 y

1 m. . .



 = �





x

n +m− 1. . .y

1 m. . .




=

x

. . .y

1 . . .

n +m− 1

,

(2.2.4)
and on the other,

�



 y

1 m. . .



 ◦m �



 x

1 n. . .



 = y

1 m− 1m. . .

◦m x

1 n − 1 n. . .

= y

. . .1 x

. . . n +m− 1

.

(2.2.5)
We observe that the two obtained abstract operators are the same. Indeed, for both
of them, the connections between x and y are the same. This is what is expressed
by (2.2.3a). Let us now consider the abstract operators expressed by the left and right
members of (2.2.3b). On the one hand, we have

�



 x

1 n. . .

◦i+1
y

1 m. . .



 = �





x

1 n +m− 1. . . . . .y

i + 1 i +m. . .




=

x

1 n +m− 2. . . . . .y

i i +m− 1. . . n +m− 1

,

(2.2.6)
and on the other,

�



 x

1 n. . .



 ◦i y

1 m. . .

= x

1 n − 1 n. . .

◦i y

1 m. . .

=
x

1 n +m− 2. . . . . .y

i i +m− 1. . . n +m− 1

.

(2.2.7)
We observe that the two obtained abstract operators are the same. Indeed, for both
of them, the connections between x and y are the same. This is what is expressed
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by (2.2.3b). Last relation (2.2.3c) expresses that

�



 1

1



 = 1

1

= 1

1

. (2.2.8)

Since, in an operad, the unit 1 can be seen as the identity map (see Section 1.1.2 of
Chapter 4), this map is also invertible. This is what is expressed by (2.2.3c).

2.2.4. Example: operads of configurations of chords. Let us consider the construc-
tion C associating with any monoid M the operad of configurations of chords CM
exposed in Section 3.3.5 of Chapter 4.

Let � be the cyclic map on CCM̄ defined, for any M̄-configuration c in the following
way. The configuration � (c) is obtained by applying a rotation of one step of c in the
counterclockwise direction. For instance, one has in CZ,

�




1 −2

−2 1



 =
−2

1

1
−2 . (2.2.9)

PROPOSITION 2.2.1. For any monoid M, CM is a cyclic operad for the cycle maps �.

2.3. Symmetric operads. As a last variant of operads, we consider now symmetric
operads. These variations of operads involve symmetric collections. Intuitively, in a
symmetric operad, the inputs of the elements can be permuted. This is due to the fact
that these structures are endowed with maps letting the symmetric group of order n
acting on its elements of arity n.

2.3.1. Symmetric polynomial spaces. A graded polynomial space K 〈C〉 is symmetric
if it is endowed for all n ∈ N and σ ∈ S(n) with unary products

}σ : K 〈C〉 (n)→ K 〈C〉 (n) (2.3.1)

such that }Idn is the identity map on K 〈C〉 (n), where Idn denotes the identity map of
Sn , and }σ1 ◦ }σ2 = }σ2◦σ1 for any permutations σ1 and σ2 of S(n). We say that the }σ ,
σ ∈ S, are symmetric maps of K 〈C〉. As usual, if φ : K 〈C1〉 → K 〈C2〉 is a morphism
between two graded polynomial spaces K 〈C1〉 and K 〈C2〉, φ is a symmetric polynomial
space morphism if it commutes with the symmetric maps of K 〈C1〉 and K 〈C2〉.

Remark that when C is a symmetric collection (see Section 1.1.6 of Chapter 1), the
linearizations of the symmetric maps of C endow K 〈C〉 with the structure of a symmetric
polynomial space.
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2.3.2. Symmetric abstract operators. We regard any homogeneous element f of an
augmented symmetric polynomial space K 〈C〉 as a symmetric abstract operator, that is,
an abstract operator wherein the inputs are endowed with a total order. More precisely,
the inputs of a symmetric abstract operator of arity n are number from 1 to n, but not
necessarily from left to right in the increasing order as is the case for usual abstract
operators (see Section 1.1.1 of Chapter 4). A symmetric abstract operator f of arity n is
depicted as

f

π(1) π(n). . .

(2.3.2)

where π is a permutation of size n. Moreover, each symmetric map }σ , σ ∈ S, behaves
in the following way. For any f ∈ K 〈C〉 (n) and σ ∈ S(n),

}σ




f

π(1) π(n). . .



 = f

σ−1(π(1)) σ−1(π(n)). . .

= }σ (f )

π(1) π(n). . .

. (2.3.3)

In words, }σ (f ) is obtained by permuting the inputs of f as specified by σ . It is straightfor-
ward to check that (}σ1 ◦}σ2 ) (f ) = }σ2◦σ1 (f ) for all σ1, σ2 ∈ S(n) as expected since K 〈C〉
is a symmetric polynomial space. On symmetric abstract operators, for any f ∈ K 〈C〉 (n)
and g ∈ K 〈C〉 (m), the partial composition f ◦i g is the symmetric abstract operator

f

π(1) π(n)π(j). . . . . .

◦i g

τ(1) τ(m). . .

=

f

µ(1) µ(n +m− 1). . . . . .g

µ(j) µ(j +m− 1). . .

= f ◦i g

µ(1) µ(n +m− 1). . .

,

(2.3.4)
where j ∈ [n] is such that π(j) = i and µ = π ◦j τ , where the occurrence of ◦i is the partial
composition map of the operad Per of permutations (see Section 3.1.2 of Chapter 4).

2.3.3. Symmetric operads. A symmetric operad is an operad K 〈C〉 such that K 〈C〉
is also symmetric as polynomial space and satisfies, for any x ∈ C(n), σ ∈ S(n), y ∈ C(m),
ν ∈ S(m), and i ∈ [n], the compatibility relation

}σ (x) ◦i }ν(y) = }σ◦iν
(
x ◦σ (i) y

)
, (2.3.5)

where the occurrence of ◦i in the right member of (2.3.5) refers to the partial composition
maps of Per. To understand this relation, let us consider the abstract operators expressed
by the left and right members of (2.3.5). On the one hand, we have

}σ




x

π(1) π(n). . .



 ◦i }ν




y

τ(1) τ(m). . .



 = x

σ−1(π(1)) σ−1(π(n)). . .

◦i y

ν−1(τ(1)) ν−1(τ(m)). . .



130 5. APPLICATIONS AND GENERALIZATIONS

=

x

µ(1) µ(n +m− 1). . . . . .y

µ(j) µ(j +m− 1). . .

, (2.3.6)

where j ∈ [n] is such that
(
σ−1 ◦ π

)
(j) = i and µ =

(
σ−1 ◦ π

)
◦j
(
ν−1 ◦ τ

)
. On the other,

we have

}σ◦iν




x

π(1) π(n). . .

◦σ (i)
y

τ(1) τ(m). . .



 = }σ◦iν





x

µ′(1) µ′(n +m− 1). . . . . .y

µ′ (j ′) µ′ (j ′ +m− 1). . .





=

x

(σ ◦i ν)−1 (µ′(1)) (σ ◦i ν)−1 (µ′(n +m− 1)). . . . . .y

(σ ◦i ν)−1 (µ′ (j ′)) (σ ◦i ν)−1 (µ′ (j ′ +m− 1)). . .

, (2.3.7)

where j ′ ∈ [n] is such that π (j ′) = σ (i) and µ′ = π ◦j ′ τ. Let us now explain why the last
symmetric abstract operators of (2.3.6) and (2.3.7) are equal. First, from the hypothesis
σ−1(π(j)) = i and π (j ′) = σ (i), we deduce that σ−1(π (j ′)) = σ−1(σ (i)) = i, implying that
j ′ = j . This provides the fact that the considered abstract operators have the same shape:
the output of y is connected to the jth input of x in both cases. Now, consider the
following result connecting the group theoretic composition ◦ of permutations and the
partial composition maps ◦i of Per.

LEMMA 2.3.1. Let n,m ∈ N>1, i ∈ [n], and four permutations π, σ ∈ S(n), τ, ν ∈ S(m).
Then, in the operad Per,

(σ ◦i ν)−1 ◦
(
π ◦π−1(σ (i)) τ

)
=
(
σ−1 ◦ π

)
◦π−1(σ (i))

(
ν−1 ◦ τ

)
. (2.3.8)

By Lemma 2.3.1, the permutations µ and (σ ◦i ν)−1 ◦ µ′ are equal. Therefore, the two
obtained abstract operators are the same.

2.3.4. Example: the symmetric operad NAP. Let us consider the operad NAP intro-
duced in Section 3.2.7 of Chapter 4. We endow the underlying collection SRT of NAP
with the symmetric maps }σ , σ ∈ S, defined for any standard rooted tree t of size n in
the following way. The tree }σ (t) is obtained by relabeling all the nodes i ∈ [n] by σ−1(i).
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For instance,

}3142



 4
2

3
1



 =
3
4

1
2
, (2.3.9a)

}132

(

2
1

3

)
=

2
1

3
. (2.3.9b)

Then, the linearization of these symmetric maps endows NAP with the structure of a
symmetric polynomial space. Together with the partial composition maps of NAP and
its unit, NAP is a symmetric operad.

It is possible to show that, as a symmetric operad, the set

G :=
{

1
2

}
(2.3.10)

is a minimal generating set of NAP. Moreover, NAP contains the single nontrivial relation

1
2
◦1 1

2
− }132

(
1
2
◦1 1

2

)
= 0 (2.3.11)

involving its generator.

2.3.5. Constructions involving operads. If K 〈C〉 is a symmetric operad, by forgetting
its symmetric maps, the space K 〈C〉 seen as an augmented graded polynomial space is
an operad. We call this operad the symmetric oblivion of the symmetric operad K 〈C〉.

Besides, given an operad K 〈C〉, there are at least two ways to construct a symmetric
operad. Let us present these. The first one consists in turning the augmented graded
collection C into a symmetric collection by endowing it with the symmetric maps }σ ,
σ ∈ S, defined by }σ (x) := x for all x ∈ C and σ ∈ S(|x|). The space K 〈C〉 endowed with
the linearizations of these symmetric maps on C, together with the partial composition
maps and unit of the operad K 〈C〉 forms a symmetric operad, called trivial symmetric
operad of K 〈C〉.

The second one consists in turning C into a symmetric collection by considering its
regularization Reg(C) (see Section 1.2.12 of Chapter 1). Let us endow the symmetric
polynomial space K 〈Reg(C)〉 with the partial composition maps defined linearly for any
(x, σ ) ∈ (Reg(C)) (n), (y, ν) ∈ Reg(C), and i ∈ [n], by

(x, σ ) ◦i (y, ν) :=
(
x ◦σ−1(i) y, σ ◦σ−1(i) ν

)
, (2.3.12)

where the first occurrence of a partial composition map in the right member of (2.3.12)
refers to the partial composition map of the operad K 〈C〉, and the second one refers to
the partial composition map of the operad Per.
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PROPOSITION 2.3.2. For any operad K 〈C〉, K 〈Reg(C)〉 is a symmetric operad.

Proposition 2.3.2 is a consequence of Lemma 2.3.1. The symmetric operad K 〈Reg(C)〉,
denoted by a slight abuse of notation by Reg(K 〈C〉), is the regularization of K 〈C〉. Let
us notice that in general, the regularization of the symmetric oblivion of a symmetric
operad K 〈C〉 is different to K 〈C〉. For instance, consider the symmetric operad NAP
considered in Section 2.3.4. The regularization of the oblivion of NAP is the symmetric
operad Reg(NAP), and this last is not isomorphic to NAP since dim NAP(3) = 9 and
dim(Reg(NAP))(3) = 9× 3! = 54.

2.3.6. Algebras over symmetric operads. Let K 〈C〉 be a symmetric operad. An
algebra over K 〈C〉 (or, for short, a K 〈C〉-algebra) is an algebra K 〈D〉 over the oblivion
of K 〈C〉 (see Section 1.3 of Chapter 4) satisfying the following additional condition. By
denoting by •n , n ∈ N>1, the linear maps (1.3.1) of Chapter 4 endowing the space K 〈D〉
with the structure of a K 〈C〉-algebra, for any x ∈ C(n), σ ∈ S(n), and (a1, . . . , an) ∈
List{n}(D),

•n (}σ (x), (a1, . . . , an)) = •n
(
x,
(
aσ−1(1), . . . , aσ−1(n)

))
. (2.3.13)

As for operads, one can regard each homogeneous element of arity n ∈ N>1 of the
symmetric operad K 〈C〉 as a complete product of arity n on K 〈D〉.

For instance, let us consider algebras on the symmetric operad NAP. We denote by
t the single generator of NAP appearing in (2.3.10). Since this generator is subjected to
Relation (2.3.11), for any f1, f2, f3 ∈ K 〈D〉,

0 = (t ◦1 t−}132 (t ◦1 t)) (f1, f2, f3)
= (t ◦1 t) (f1, f2, f3)− (}132 (t ◦1 t)) (f1, f2, f3)

= (t ◦1 t) (f1, f2, f3)− (t ◦1 t) (f1, f3, f2)
= t (t (f1, f2) , f3)− t (t (f1, f3) , f2) .

(2.3.14)

This is equivalent to the relation

(f1 t f2) t f3 − (f1 t f3) t f2 = 0 (2.3.15)

written in infix way.

3. Product categories

A very intuitive generalization of operads arises when one thinks of considering
elements with several outputs, instead of only one as in the case of operads. This leads
to a sort of extension of operads, called pros. We present here these algebraic structures.

3.1. Abstract bioperators. While operads are defined over augmented graded poly-
nomial spaces, pros require spaces on 2-graded collections. Let us provide elementary
definitions about these.
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3.1.1. Bigraded polynomial spaces. Given a 2-graded collection C (see Section 1.1.3
of Chapter 1), the polynomial space K 〈C〉 is said bigraded. The arity (resp. coarity) of a
nonzero (p, q)-homogeneous element f of K 〈C〉 is p (resp. q). Moreover, to not overload
the notation, we denote by K 〈C〉 (p, q) the homogeneous component K 〈C〉 ((p, q)) of
K 〈C〉 for any (p, q) ∈ N2. When K 〈C〉 is combinatorial, its Hilbert series is the N2-series

HK〈C〉 := I(C) =
∑

(p,q)∈N2

(dimK 〈C〉 (p, q)) (p, q). (3.1.1)

3.1.2. Abstract bioperators. We regard any homogeneous element f of a bigraded
polynomial space K 〈C〉 as an abstract bioperator, that is, an abstract operator having
zero or more inputs and zero or more outputs. These abstract bioperators are depicted
by following the drawing conventions of biproducts exposed in Section 2.1.1 of Chapter 3.
Therefore, if f is of arity p and of coarity q , f is depicted by

f

1 p

1 q

. . .

. . .

. (3.1.2)

3.1.3. Composing abstract bioperators. Let K 〈C〉 be bigraded polynomial space. A
horizontal composition map on K 〈C〉 is a complete binary ω-concentrated product on
K 〈C〉 of the form

∗ : K 〈[[[C,C ]]]×〉 → K 〈C〉 (3.1.3)
for the map ω : N2 × N2 → N2 satisfying ω ((p1, q1) , (p2, q2)) := (p1 + p2, q1 + q2) . On
abstract bioperators, for any f ∈ K 〈C〉 (p, q) and g ∈ K 〈C〉 (p′, q ′), f ∗ g is the abstract
bioperator

f

1 p

1 q

. . .

. . .

∗ g

1 p′

1 q ′

. . .

. . .

= f g

1 p

1 q

. . .

. . .

p + 1 p + p′

q + 1 q + q ′

. . .

. . .

= f ∗ g

1 p + p′

1 q + q ′

. . .

. . .

. (3.1.4)

A vertical composition map on K 〈C〉 is a binary product on K 〈C〉 of the form, for
any p, q, r ∈ N,

◦(p,q,r) : K 〈[[[C(q, r), C(p, q)]]]×〉 → K 〈C〉 (p, r). (3.1.5)
By a slight abuse of notation, we shall sometimes omit the (p, q, r) in the notation of
◦(p,q,r) in order to denote it in a more concise way by ◦. On abstract bioperators, for any
f ∈ K 〈C〉 (q, r) and g ∈ K 〈C〉 (p, q), f ◦ g is the abstract bioperator

f

1 q

1 r

. . .

. . .

◦ g

1 p

1 q

. . .

. . .

=
f

g

1 p

1 r

. . .

. . .

. . . = f ◦ g

1 p

1 r

. . .

. . .

. (3.1.6)
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Finally, a unit map on K 〈C〉 is a product of arity zero on K 〈C〉 of the form, for any
p ∈ N,

1p : K 〈[[[ ]]]×〉 → K 〈C〉 (p, p). (3.1.7)

For any p ∈ N, 1p is the abstract bioperator

1p

1 p

1 p

. . .

. . .

=

1 p

1 p

. . .

. . .

. (3.1.8)

3.2. Pros. Pros are algebraic structures furnishing a formalization of the notion of
abstract bioperators and their compositions. We provide here definitions about these
structures and about bialgebras over pros.

3.2.1. Elementary definitions. The bigraded space K 〈C〉 is a product category (or,
for short, a pro) if it is endowed with a horizontal composition map ∗, vertical composition
maps ◦, and unit maps 1p , p ∈ N, satisfying the following six relations (3.2.1), (3.2.2), (3.2.3),
(3.2.4), (3.2.5) and (3.2.6).

First, ∗ is associative, that is, for any x, y, z ∈ C,

(x ∗ y) ∗ z = x ∗ (y ∗ z). (3.2.1)

Second, the products ◦ are associative, that is, for any x ∈ C(r, s), y ∈ C(q, r), z ∈ C(p, q),

(x ◦ y) ◦ z = x ◦ (y ◦ z). (3.2.2)

Moreover, the products ∗ and ◦ satisfy the square compatibility relation, that is for any
x ∈ C(q, r), y ∈ C(p, q), x′ ∈ C (q ′, r′), y ′ ∈ C (p′, q ′),

(x ◦ y) ∗
(
x′ ◦ y ′

)
=
(
x ∗ x′

)
◦
(
y ∗ y ′

)
. (3.2.3)

Finally, the unit maps satisfy the following three sorts of relations. For any p, q ∈ N,

1p ∗ 1q = 1p+q , (3.2.4)

for any x ∈ C(p, q),
x ∗ 10 = x = 10 ∗ x, (3.2.5)

and for any x ∈ C(p, q),
x ◦ 1p = x = 1q ◦ x. (3.2.6)

Let us understand these relations with the help of abstract bioperators and the be-
havior of their compositions. First, the left and right members of (3.2.1) are both equal
to

x y z

1 p

1 q

. . .

. . .

. . .

. . .

p + p′ + p′′

q + q ′ + q ′′

. . .

. . .

, (3.2.7)
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where x ∈ C(p, q), y ∈ C (p′, q ′), and z ∈ C (p′′, q ′′). Second, the left and right members
of (3.2.2) are both equal to

x

y

z

1 p

1 s

. . .

. . .

. . .

. . .

. (3.2.8)

Moreover, the left and right members of (3.2.3) are both equal to

x

y

1

1

. . .

. . .

. . .
x′

y′

p + p′

r + r′

. . .

. . .

. . . . (3.2.9)

Finally, concerning the relations involving the unit maps, the left and right members
of (3.2.4) are both equal to

1 p

1 p

. . .

. . .

p + 1 p + q

p + 1 p + q

. . .

. . .

. (3.2.10)

Relation (3.2.5) expresses the fact that 10 is the unit for the product ∗, and Relation (3.2.6)
says that 1p , p ∈ N, is the unit of the products ◦(p,p,q) and ◦(q,p,p) for any q ∈ N.

Since a pro is a particular polynomial algebra, all the properties and definitions about
polynomial algebras exposed in Section 2.3 of Chapter 3 remain valid for pros (like pros
morphisms, sub-pros, generating sets, pro ideals and quotients, etc.).

3.2.2. Categorical definition. In the same way as monoids, operads, and colored
operads can be defined precisely and concisely by using the language of category theory
(see Section 2.1.4), pros admit a similar definition using this language. Indeed, a pro K 〈C〉
can be seen as a category where the objects are the elements of N and which is equipped
with a bifunctor ∗ defined by p ∗ p′ := p + p′. The elements of K 〈C〉 are interpreted as
maps φ : p → q. The horizontal composition of K 〈C〉 translates as the bifunctor of the
category, the vertical composition translates as the composition of morphisms, and the
unit map translates as the identity maps 1p : p → p of the category.

3.2.3. Bialgebras over pros. Let K 〈C〉 be a pro. A bialgebra over K 〈C〉 (or, for short,
a K 〈C〉-bialgebra) is a polynomial space K 〈D〉, where D is a (not necessarily 2-graded)
collection, which is endowed for all p, q ∈ N with linear maps

•p,q : K
〈[[[
C(p, q),List{p}(D)

]]]
×
〉
→ K

〈
List{q}(D)

〉
(3.2.11)
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satisfying the relations imposed by the pro structure of K 〈C〉, that are, for all x ∈ C (p′, q ′),
y ∈ C (p′′, q ′′), and

(
a1, . . . , ap′+p′′

)
∈ List{p′+p′′}(D), by denoting by · the concatenation of

tuples extended by linearity,

•p′+p′′,q ′+q ′′
(
x ∗ y,

(
a1, . . . , ap′ , ap′+1, . . . , ap′+p′′

))

= •p′,q ′
(
x,
(
a1, . . . , ap′

))
· •p′′,q ′′

(
y,
(
ap′+1, . . . , ap′+p′′

))
, (3.2.12a)

for all x ∈ C(q, r), y ∈ C(p, q), and
(
a1, . . . , ap

)
∈ List{p}(D),

•p,r
(
x ◦ y,

(
a1, . . . , ap

))
= •q,r

(
x, •p,q

(
y,
(
a1, . . . , ap

)))
, (3.2.12b)

and for all
(
a1, . . . , ap

)
∈ List{p}(D),

•p,p
(
1p,
(
a1, . . . , ap

))
=
(
a1, . . . , ap

)
. (3.2.12c)

In other words, any object x of C of arity p and coarity q plays the role of a complete
biproduct (in the sense of Section 2.1.1 of Chapter 3) of the form

x : K
〈
List{p}(D)

〉
→ K

〈
List{q}(D)

〉
, (3.2.13)

defined, for any
(
a1, . . . , ap

)
∈ List{p}(D) by

x
(
a1, . . . , ap

)
:= •p,q

(
x,
(
a1, . . . , ap

))
. (3.2.14)

3.3. Main pros. We provide here classical examples of pros involving for most of
these combinatorial objects (see Table 5.1). The first one is the associative pro, a sort
of generalization of the associative operad. The next one is a pro of matrices, where
the usual matrix operations (direct sum and multiplication) are revisited in the context of
pros. This structure contains a lot of interesting sub-pros, like a pro of binary relations,
a pro of maps, and a pro of permutations.

Pro Objects Arity Coarity

PAs Pairs (p, q) of nonneg. int. p q

MatS Matrices on S num. of rows num. of columns

BRel Binary relations card. of domain card. of codomain

K 〈Map〉 Maps card. of domain card. of codomain

K 〈NDMap〉 Nondecreasing maps card. of domain card. of codomain

K 〈IMap〉 Injective maps card. of domain card. of codomain

K 〈SMap〉 Surjective maps card. of domain card. of codomain

K 〈BMap〉 Bijective maps card. of domain card. of domain

TABLE 5.1. Overview of some pros. Here, S is a semiring.
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3.3.1. Associative pro. Let A := {ap,q : p, q ∈ N} be the 2-graded collection where
the index of each ap,q , p, q ∈ N, is (p, q). The associative pro PAs is the space K 〈A〉
endowed with the horizontal composition map ∗ defined linearly, for any ap,q ∈ A(p, q)
and ap′,q ′ ∈ A (p′, q ′) by ap,q ∗ ap′,q ′ := ap+p′,q+q ′ , with the vertical composition maps ◦
defined linearly, for any aq,r ∈ A(q, r), ap,q ∈ A(p, q) by aq,r ◦ ap,q := ap,r , and with the unit
maps 1p , p ∈ N, defined by 1p := ap,p .

3.3.2. Pro of matrices. Let S be a semiring (that is, a ring such without the condition
that each element have an additive inverse). Let MatS be the 2-graded collection of all
matrices on S where MatS(p, q) is the set of such matrices of dimension p × q , p, q ∈ N.
The pro of matrices MatS is the space K 〈MatS〉 endowed with the horizontal composition
map ∗ defined linearly, for any m1,m2 ∈MatS by

m1 ∗m2 := m1 ⊕m2, (3.3.1)

where ⊕ is the matrix direct sum. Moreover, MatS is endowed with the vertical compo-
sition maps ◦ defined linearly, for any m1 ∈ MatS(q, r) and m2 ∈ MatS(p, q), p, q, r ∈ N,
by

m1 ◦m2 := m2 ·m1, (3.3.2)
where · is the matrix multiplication. Finally, we define the unit maps 1p , p ∈ N, of MatS
as the identity matrix of order p. For instance, by setting S as the semiring (N,+, ·),

[ 2 0 0
1 1 0

]
∗
[ 1 1

3 0
]

=
[ 2 0 0 0 0

1 1 0 0 0
0 0 0 1 1
0 0 0 3 0

]
(3.3.3)

and [ 1 0
0 1
1 1

]
◦
[ 0 1 1

0 2 1
]

=
[ 1 2

1 3
]

(3.3.4)

are, respectively, horizontal and vertical compositions in MatS.

3.3.3. Pro of binary relations. Let B be the Boolean semiring, that is the set {0, 1}
equipped with the addition + satisfying 0 + 0 = 0 and 0 + 1 = 1 + 0 = 1 + 1 = 1, and the
multiplication · satisfying 1 · 1 = 1 and 0 · 1 = 1 · 0 = 0 · 0 = 0. The pro of binary relations
BRel is the pro MatB. By definition, the collection of all matrices on B, called Boolean
matrices forms a basis of BRel. For instance,

[ 1 1 0
1 0 0
0 0 0
0 1 0

]
∗
[ 0 1

1 0
]

=




1 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0



 (3.3.5)

and [ 1 1 0
1 0 0
0 1 0
0 1 0

]
◦
[ 1 0 0 0

0 1 0 1
0 0 1 1

]
=
[ 1 1 0

1 1 0
0 1 0

]
(3.3.6)

are, respectively, horizontal and vertical compositions in BRel. There is, for any p, q ∈ N,
a one-to-one correspondence between the set MatB(p, q) and the set of all binary relations
between [p] and [q]. Indeed, a matrix m ∈ MatB(p, q), p, q ∈ N, and a binary relation R

between [p] and [q] are in correspondence if, for any x ∈ [p] and y ∈ [q], one has mx,y = 1
if and only if xRy. By using this correspondence, and by drawing a binary relation R
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through a graph connecting x to y if xRy, where the elements of the domain are
depicted below and the elements of the codomain are depicted above, (3.3.5) and (3.3.6)
translate, respectively, as

1 2 3 4

1 2 3

∗

1 2

1 2

=

1 2 3 4 5 6

1 2 3 4 5

(3.3.7)

and

1 2 3 4

1 2 3

◦

1 2 3

1 2 3 4

= 1 2 3 4

1 2 3

1 2 3

=

1 2 3

1 2 3

. (3.3.8)

Therefore, ∗ is the concatenation of binary relations and ◦ is their composition.

3.3.4. Pros of maps and variations. The pro BRel admits many sub-pros by con-
sidering subspaces of binary relations satisfying particular conditions. For instance, by
setting Map as the subcollection of MatB restrained on binary relations that are maps
(that is, m ∈Map(p, q) if for any x ∈ [p], there is exactly one y ∈ [q] such that mx,y = 1),
K 〈Map〉 is a sub-pro of BRel. Moreover, by setting NDMap as the subcollection of
Map restrained on maps that are nondecreasing (that is, m ∈ NDMap(p, q) if for any
x, x′ ∈ [p] such that x 6 x′, mx,y = mx′,y ′ = 1 implies y 6 y ′), K 〈NDMap〉 is a sub-pro of
K 〈Map〉. Besides, by setting IMap (resp. SMap) as the subcollection of Map restrained
on maps that are injections (resp. surjections), K 〈IMap〉 (resp. K 〈SMap〉) is a sub-pro
of K 〈Map〉. Finally, by setting BMap as the subcollection of Map restrained on maps
that are bijections, K 〈BMap〉 is a sub-pro of both K 〈IMap〉 and K 〈SMap〉.

Bibliographic notes

About series on operads. Our approach concerning formal power series through
the framework of collections encompasses the classical case of power series, as explained
in Section 1. Since the introduction of formal power series, a lot of generalizations were
proposed in order to extend the range of enumerative problems they can help to solve.
The most obvious ones are multivariate series allowing to count objects not only with
respect to their sizes but additionally with respect to various other statistics (see Sec-
tion 1.1.3 of Chapter 1). Such series are elements of K 〈〈MSet ({t1, . . . , tk})〉〉 where all
the ti , i ∈ [k], are atomic objects. Another one consists in considering noncommutative se-
ries on words [Eil74,SS78,BR10] (and thus, elements of K 〈〈A∗〉〉, where A is an alphabet),
or even, pushing the generalization one step further, on elements of a monoid [Sak09]
(and thus, elements of K 〈〈M〉〉, where M is a monoid). Besides, as another generaliza-
tion, series on trees have been considered [BR82, Boz01]. Series on operads increase
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the list of these generalizations. Chapoton was the first to have considered such series
on operads [Cha02, Cha08, Cha09]. Several authors have contributed to this field by
considering slight variations in the definitions of these series. Among these, one can
cite van der Laan [vdL04], Frabetti [Fra08], and Loday and Nikolov [LN13]. In this text,
we have presented series on set-operads as powerful tools to provide descriptions of
the generating series of some combinatorial graded collections C. All this relies on a
set-operad structure on C having the property to be a Koszul operad and admitting a
Poincaré-Birkhoff-Witt basis. The obtained descriptions of the generating series of C are
in fact the generating series of the syntax trees on the generators of C (as an operad) that
avoid some patterns (that are the left members of an orientation of the space of relations
of C, see Proposition 2.3.1 of Chapter 4). Similar ideas were brought by Khoroshkin and
Piontkovski [KP15], focused on the theory of Gröbner bases for symmetric operads.
In [Gir19], the emphasis was put on the combinatorial and enumerative consequences
of set-operads admitting Poincaré-Birkhoff-Witt bases, leading to refinements of their
Hilbert series.

About colored operads. Classical references about colored operads are [BV73] and [Yau16].
By looking at this theory in the shoes of a computer scientist, one can think the colors
as data types in computer programming. In the same way as two functions can be com-
posed only if the output type of the one is equal to the type of an input of the second,
the (partial and full) composition maps of a colored operad require a property on the
colors of the operands. Moreover, to pursue the analogy, the elements of arity one of
a colored operad having different input and output colors can be interpreted as cast-
ing operators in computer programming (that are, operators taking as input one object
and changing its type). Besides, colored operads are interesting devices for enumerative
prospects when combined with series on operads [Gir16a]. In this cited work, a general-
ization of both context-free grammars (see [Har78,HMU06]) and regular tree grammars
(see [CDG+07]) using colored operads was proposed. The colors play here the role of
terminal and nonterminal symbols of the grammars. The bud operad construction pre-
sented in Section 2.1.6 appears in this context.

About cyclic operads. In a cyclic operad, the distinction between inputs and outputs
of the elements is diminished due to the fact that the cycle maps change outputs into in-
puts and conversely. These structures appeared first in [GK95]. Alternative descriptions
of cyclic operads have been provided. Among them, in [CO17], the authors proposed
an axiomatization wherein composition maps are parametrized by two vertices (corre-
sponding to inputs or outputs of the elements involved in the composition). Intuitively,
this amounts to create a link between the two vertices of the abstract operators.
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About symmetric operads. In the literature, symmetric operads are simply called
“operads” and are the main considered variants among all the algebraic structures of this
sort. There are several alternative ways to define symmetric operads, and an interesting
one relies on the theory of species of structures [Mén15] (see the bibliographic notes
of Chapter 1). Besides, some of the tools and notions presented in Chapter 4 admit
generalizations for symmetric operads. Among these, free structures can be described by
syntax trees with labeled leaves, Poincaré-Birkhoff-Witt bases can be described by pattern
avoidance in these trees, and Koszul duality remains a well-defined notion. General
references about symmetric operads are [Mar08, LV12, Mén15]. As a matter of fact,
Koszul duality is a very important topic in the theory of symmetric operads. One of
the most beautiful properties of this duality is the fact that the symmetric operad of
commutative associative algebras is the Koszul dual of the symmetric operad of Lie
algebras. An important object here is the operadic butterfly [Lod01, Lod06], a diagram
of symmetric operads related by symmetric operad morphisms and links established by
Koszul duality. This diagram contains, for instance, the operads of associative algebras,
commutative associative algebras, Lie algebras, and dendriform algebras.

About pros. Surprisingly, even if pros are in some sense generalizations of operads,
they appeared earlier than these lasts in the work of Mac Lane [ML65]. Equally surpris-
ing is the fact that the axiomatization of pros is in some way simpler than the one of
operads (there is no need to do arithmetic on the indexes to describe the relations the
horizontal and vertical composition maps have to satisfy, contrarily to partial composition
maps of operads). Basic and modern references about pros are [Lei04] and [Mar08].
Besides, pros are related to the Hopf bialgebra theory since in [BG16] a construction
from set-pros to Hopf bialgebras was proposed. Moreover, in [Laf03, Laf11], several
examples of pros were provided, and links with rewrite systems on elements of free
pros were presented. As a last remark, free pros are difficult objects to describe explic-
itly due mainly to the fact that they can contain elements of arity or coarity zero. The
works [Cor18,LLMN18] collected results in this direction.
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